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Abstract—In this paper, we study a continuously tested 

digital electronic system subject to revealed, unrevealed, and 

intermittent failures. A new maintenance model is proposed for 

assessing the average availability of a digital electronic system 

by using a regenerative stochastic process with a finite number 

of states. Based on the properties of the regenerative process, 

general expressions are derived to calculate the mean times 

spent by the system in various operation and maintenance 

states. The average availability equation is derived under 

arbitrary and exponential failure distributions. Numerical 

examples illustrate the effect of fault coverage and failure rates 

on the average availability under exponential failure 

distributions. The proposed mathematical model considers the 

main failure types of digital telecommunications systems that 

allows more accurately assess the reliability of their operation. 

 
Index Terms—Availability, intermittent failure, permanent 

failure, fault coverage, regenerative process. 

 

I. INTRODUCTION 

URRENTLY, most telecommunications systems use a 

digital information processing method. Failures of such 

systems usually include (1) sudden and complete permanent 

failures and (2) intermittent failures. The latter are usually 

detected by the results of periodic or continuous testing. 

Permanent failures are divided into revealed and unrevealed. 

Revealed failures are the failures that are covered by 

continuous testing. Conversely, unrevealed failures are not 

covered by continuous testing. However, hidden failures 

usually become revealed failures when the duration in the 

hidden state exceeds an upper time limit. As is well known 

[1], [2], the availability of telecommunications systems is 

one of the most important quality and reliability indicators. 

In the case of periodic testing and exponential distribution 

of time to failures, mathematical modeling has been applied 

to assess the reliability maintenance of digital electronic 

systems with permanent and intermittent failures for 

decades. Nakagava [3] analyzed an inspection policy for 

intermittent faults where the test is planned at periodic times 

to detect the faults. Exponential distribution of time to an 

intermittent fault is assumed. Nakagava [4] considered a  
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communication system subject to intermittent faults. Faults 

occur according to the exponential distribution and are 

hidden. Faults become permanent failures when the duration  

in the hidden state exceeds an upper time limit. Y. Hsu and 

C. Hsu [5] analyzed a three-state Markov model for fault-

tolerant systems by taking both the effects of permanent and 

intermittent faults into consideration. Kranitis et al. [6] 

conducted a reliability analysis for optimal periodic testing 

of intermittent faults that minimizes the test cost. A Markov 

model is used for the probabilistic modeling of intermittent 

faults. The models for studying the reliability of digital 

systems subject to both permanent and intermittent faults 

were considered by Prasad [7], [8]. The models are based on 

a Markov model containing three states. Dharmaraja [9] 

developed an analytical model for the reliability and 

survivability analysis of UMTS network using Markov 

chains and a semi-Markov process with an exponential 

distribution of the random variables. However, unrevealed 

and intermittent failures are not considered in this model. 

Ulansky and Machalin [10] considered a maintenance model 

for a one-unit system with periodic testing subject to 

revealed and unrevealed failures under arbitrary failure 

distributions. Taghipour and Banjevic [11] considered 

hidden failures in the model with optimal periodic inspection 

for finite and infinite time horizons. Tai et al. [12] 

developed a maintenance model for maximizing the 

availability of the one-unit system assuming that 

maintenance is imperfect. Constantinescu [13] analyzed the 

hardware structure and fault occurrence using a continuous-

time, discrete-state Markov model. Closed form solutions 

are derived for time-dependent and steady-state probabilities 

taking into consideration the weights of permanent and 

transient fault classes. Kim et al. [14] presented a semi-

Markov model to assess and validate a hard real-time control 

system subject to permanent failure only. Analytical bounds 

are derived for exponential and Weibull failure distributions. 

Badia et al. [15], [16] developed maintenance models for a 

system subject to both revealed and unrevealed failures 

using a renewal process. Boonyathap and Jaturonnatee [17] 

formulated models of periodic preventive maintenance for 

used equipment under lease. Assumption of failures form is 

applied by the nonhomogeneous Poisson process, and failure 

distribution is appraised by Weibull. However, these models 

do not consider the effect of intermittent faults on a system, 

and may be useful only for determining optimal periodic 

inspection policy. Pham and Zhang [18] introduced a 
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generalized model that incorporates a testing coverage 

measure into software reliability assessment. However, such 

testing coverage measures have not been considered for 

hardware of digital electronic systems. Malik and Kaiser 

[19] evaluated the reliability of a telecommunications system 

operating in harsh environments. The system’s reliability 

was assessed by measuring shear strengths of solder joints of 

different electronic components at set intervals. Yasui et al. 

[20] formulated three typical stochastic models of data 

transmission and considered optimal policies to achieve high 

reliability of communication. Raza and Ulansky [21], [22] 

considered mathematical reliability models of a continuously 

tested avionic line replaceable unit subject to permanent and 

intermittent failures. However, these models cannot be 

applied to telecommunications systems because the systems 

have a continuous mode of operation, but the avionics 

systems are used in an interrupted mode of operation. Gil-

Tomas et al. [23] considered a fault-tolerant microcomputer 

system against intermittent faults. Markov models for this 

system were generated, and some dependability functions, 

such as reliability and safety, were calculated. Li and Hao 

[24] proposed a novel system reliability assessment model 

with two dependent performance characteristics based on 

copula theory. 

 

II. PROBLEM STATEMENT 

The analysis of published studies showed the following 

features of the mathematical models developed to assess the 

reliability maintenance of digital systems with intermittent 

failures: 

 The proposed mathematical models of reliability 

maintenance of hardware of digital electronic 

systems were developed for the case of periodical 

testing and 100% fault coverage. 

 All models are based on the Markov or semi-Markov 

process. 

There are no mathematical models that simultaneously 

consider unrevealed, revealed, and intermittent failures. 

Therefore, the purpose of this study is to develop a 

mathematical model to calculate the average availability of a 

continuously tested telecommunications system subject to 

revealed, unrevealed, and intermittent failures under 

arbitrary failure distributions. 

 

III. NOTATION 

Z(t)     Random process with a limited number of states 

T0      Random regenerative cycle 

Ti  Random time spent by the system in the state Zi 

(i = 1,…, 4) per regenerative cycle 

E[Ti ]   Mean time of random variable Ti 

Γ (≥ 0)  Random operating time to revealed failure 

Ξ (≥ 0)  Random operating time to unrevealed failure 

Η (≥ 0)  Random operating time to intermittent failure 

Φ(t) Distribution function of operating time to 

revealed failure for the part of the system that is 

covered by testing 

ϕ(t) Revealed failure density function for the part of 

the system that is covered by testing 

F(t) Distribution function of operating time to 

unrevealed failure for the part of the system that 

is not covered by testing 

f(t) Unrevealed failure density function for the part 

of the system that is not covered by testing 

Ψ(t) Distribution function of operating time to 

intermittent failure for the part of the system 

that is covered by testing 

ψ(t) Intermittent failure density function for the part 

of the system that is covered by testing 

μ     Revealed failure rate 

λ     Unrevealed failure rate 

θ     Intermittent failure rate 

IV. MAINTENANCE MODEL OF A CONTINUOUSLY TESTED 

SINGLE-UNIT TELECOMMUNICATIONS SYSTEM 

Let us develop a maintenance model of a single-unit 

digital telecommunications system. The following 

assumptions are accepted: 

 A revealed failure may occur only in the part of the 

system that is covered by continuous testing. 

 An unrevealed failure may occur only in the part of 

the system that is not covered by continuous testing. 

 The system leaves the state of an unrevealed failure 

only after the occurrence of a revealed or intermittent 

failure. 

 Only one type of failure may occur at any time, and 

revealed and intermittent failures are detected 

immediately. The failed unit is perfectly repaired, 

renewing the system condition to be as-good-as-new. 

 The time of replacement is negligible, and the 

number of spare parts is unlimited. 

To determine the maintenance efficiency measures, we 

use a random regenerative process Z(t) with a finite number 

of states 

1

n

i
i

Z Z


  

on the infinite time horizon (0, ∞). Further, we use a well-

known property of regenerative stochastic processes [25], 

which states that the fraction of time for which the system is 

in the state Zi (i = 1, 2, …, n) is equal to the ratio of the 

average time spent in the state Zi per regeneration cycle to 

the average cycle duration. A possible realization of the 

stochastic process Z(t) is shown in Fig. 1. 

 

Fig. 1.  Time diagram of realization of the regenerative process Z(t). 

Let us define the random process Z(t). At any arbitrary 

time t, the system can be in one of the following states: 

Z(t) = Z1, if at time t, the system is in the operable state; 
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Z(t) = Z2, if at time t, the system is used as intended and is 

in an inoperable state because an unrevealed failure occurred 

in the part of the system that is not covered by the test; 

Z(t) = Z3, if at time t, the system is not used for its 

intended purpose because it is repaired after the occurrence 

of an intermittent failure; 

Z(t) = Z4, if at time t, the system is not used for its 

intended purpose because it is repaired after the occurrence 

of a revealed failure. 

The system will be in the operable state from t = 0 to a 

time when one of the failures occurs as shown in Fig. 1. 

We assume that a revealed failure occurs at time γi. The 

failure is detected by the testing equipment, and the system 

is judged as inoperable. Then, the system enters the state Z4. 

We denote the average duration the system stays in the state 

Z4 as tCR. After completion of the repair, the system returns 

to the operable state Z1. 

We also assume that an intermittent failure occurs at an 

arbitrary time ηi. As a result, the system changes its state to 

the state Z3 where it will stay for a time tFR. After its repair, 

the system returns back to the operable state Z1 being as-

good-as-new. 

We further assume that an unrevealed failure occurs at 

time ξ. Then, the system changes its state to Z2, from which 

the system can pass to the state Z3 or Z4. 

Let Ti be the time in the state Zi (i = 1,…, 4). Obviously, 
Ti is a random variable with expected mean time E[Ti]. The 

average duration of the system regeneration cycle is 

determined by the following formula: 

   
4

0
1

i
i

E T E T


  .                 (1) 

If the expected mean times E[T1], …, E[T4] are known, 

the average availability is determined as 

   1 0E T E TA  .                 (2) 

A. The Mean Time the System Stays in the Operable State 

An illustration of a possible duration of the system stay in 

the operable state is shown in Fig. 2 

We then assume that an unrevealed failure occurs at an 

arbitrary time ξ (0 < ξ ≤ ∞) in the part of the system that is 

not covered by testing. Then, the system will be in the 

operable state in one of the three possible cases. The first 

case is when the system operates until the time γ (γ < ξ), 

when the revealed failure occurs as shown in Fig. 2(a). The 

second case is when the system operates until the time η (η < 

ξ), when the intermittent failure occurs as shown in Fig. 

2(b). 

 
Fig. 2.  Illustration of possible time spent by the system in the operable 

state: (a) The operable state of the system until the time when a revealed 

failure occurs (Case 1), (b) The operable state of the system until the time 

when an intermittent failure occurs (Case 2), and (c) The operable state of 

the system until the time when an unrevealed failure occurs (Case 3). 

The third case is when the system operates until the time 

ξ, when the unrevealed failure occurs under the condition 

that no revealed or intermittent failure has occurred before 

it, as illustrated in Fig. 2(c). 

The expected mean time the system stays in the operable 

state is determined by the law of total expectation: 





1 1 1
0

1

[ ]

( ),

E T E T E T

E T dF


 



              

      


      (3) 

where E[T1
γ | Ξ = ξ] is the conditional mathematical 

expectation of the random operating time to a revealed 

failure under the condition that Ξ = ξ, E[T1
η | Ξ = ξ] is the 

conditional mathematical expectation of the random 

operating time to an intermittent failure under the condition 

that Ξ = ξ, and E[T1
ξ | Ξ = ξ] is the conditional mathematical 

expectation of the random operating time to an unrevealed 

failure under the condition that Ξ = ξ. 

Let us determine the conditional mathematical 

expectations in (3). From Fig. 2, we write the following 

expressions for the conditional mathematical expectations: 

1 ,E T                          (4) 

1 ,E T                         (5) 

1 .E T                          (6) 

The random variable Γ varies from 0 to ξ due to the 

condition Γ = γ < ξ in (4). The condition Η > γ indicates that 

until the time Γ = γ, when the revealed failure occurs, the 

intermittent failure will not occur with the probability P(Η > 

γ) = 1 – Ψ(γ). Therefore, based on other conditions in (4), 

we obtain the following formula: 

   1
0

1 .E T u u d u


                     (7) 

Similarly, the random variable Η varies from 0 to ξ due to 

the condition Η = η < ξ in (5). The condition Γ > η indicates 

that until the time Η = η, when the intermittent failure 

occurs, the revealed failure does not occur with the 

probability P(Γ > η) = 1 – Φ(η). Therefore, 

   1
0

1 .E T x x d x


                     (8) 

Due to the condition Γ > ξ ∩ Η > ξ in (6), the unrevealed 

failure may occur at time ξ only if the revealed and 

intermittent failures have not occurred until this time. The 

probability of this event is determined as P(Γ > ξ ∩ Η > ξ) = 

[1 – Φ(ξ)][1 – Ψ(ξ)]. Therefore, 

  1 1 ( ) 1 ( ) .E T           
          (9) 

By substituting (7)–(9) into (3), we obtain 

     

  

1
0 0 0

1 ( ) ( ) 1 ( ) ( )

1 ( ) 1 ( ) ( ).

v v

E T u ud u x xd x

v v v dF v



      

  

  
    (10) 

B. The Mean Time the System Stays in the Inoperable 

State 

An illustration of different variants for the duration of the 

system stay in the inoperable state is depicted in Fig. 3. 

We first assume that the unrevealed failure occurs at an 

arbitrary time ξ (0 < ξ ≤ ∞). Then, the system will be in the 

inoperable state until the time γ (γ < ξ), when the revealed 

failure occurs, i.e., in the time interval (ξ, γ), as shown in 

Fig. 2(a), or until the time η (η < ξ), when the intermittent 
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Fig. 3.  Illustration of possible duration of the time spent by the system in 

the (a) inoperable state of the system in the time interval (ξ, γ) and (b) 

inoperable state of the system in the time interval (ξ, η). 

failure occurs, i.e., in the time interval (ξ, η) as shown in Fig. 

2(b). 

The expected mean time the system stays in the 

inoperable state is determined by the law of total expectation 

     2 2 2
0

,E T E T E T dF


                     (11) 

where E[T2
γ | Ξ = ξ] is the conditional mean time the system 

stays in the inoperable state until the time γ, when the 

revealed failure occurs under the condition that Ξ = ξ, and 

E[T2
η | Ξ = ξ] is the conditional mean time the system stays 

in the inoperable state until the time η, when the intermittent 

failure occurs under the condition that Ξ = ξ. 

Let us determine the conditional mean times included in 

(11). From Fig. 3, we write the following expressions: 

2 ,E T                         (12) 

2 .E T                        (13) 

Using (12)–(13), we determine the conditional mean times 

included in (11). 

The random variable Γ takes values greater than ξ due to 

the condition Γ = γ > ξ in (12). The condition Η > γ 

indicates that until the time Γ = γ, when the revealed failure 

occurs, the intermittent failure does not occur with the 

probability P(Η > γ) = 1 – Ψ(γ). Therefore, based on other 

conditions in (12), we obtain 

   2 ( ) 1 .E T u u d u





                   (14) 

Similarly, the random variable Η takes values greater than 

ξ due to the condition Η = η > ξ in (13). The condition Γ > η 

indicates that until the time Η = η, when the intermittent 

failure occurs, the revealed failure does not occur with the 

probability P(Γ > η) = 1 – Φ(η). Therefore, 

   2 ( ) 1 .E T x x d x





                   (15) 

By substituting (14)–(15) into (11), we obtain 

 
  

2
0

[ ] ( ) 1 ( ) ( )

( ) 1 ( ) ( ) ( ).

v

v

E T u v u d u

x v x d x dF v

 



    

   

 



          (16) 

C. The Mean Time the System Stays in the Repair State 

Due to the Intermittent Failure 

We assume that the intermittent failure occurs at an 

arbitrary time η under the condition that until this time, the 

revealed and unrevealed failures have not occurred. As a 

result, the false repair of the system will be performed for 

the time tFR as illustrated in Fig. 4. After its repair, the 

system becomes as-good-as-new, and can be used for its 

intended purpose. 

Let the intermittent failure occur in a time interval from η 

to η + dη (0 < η < ∞). 

 

Fig. 4.  Illustration of possible time spent by the system in the repair state 

Z3. 

Then, the conditional probability of such a random event 

is equal to the probability element ψ(η)dη (Fig. 5) if until the 

time η, the revealed and unrevealed failures have not 

occurred 

    .P d d                  (17) 

The probability of the intermittent failure in the time 

interval (η, η + dη) is calculated as 

        .P d F d                    (18) 

 

Fig. 5.  The curve of the intermittent failure density function. 

The probability of the intermittent failure in the time 

interval (0, ∞) is determined by the integration of (18) in the 

range of existence of random variable Η, i.e. 

       
0

0 Η 1 1 ψ .P x F x x dx


               (19) 

The mean time the system stays in the repair state Z3 is 

determined by multiplying the average repair time tFR by the 

probability in (19) 

 

    

3

0

[ ] 0

1 ( ) 1 ( ) ψ .

FR

FR

E T t P

t x F x x dx


     

  
         (20) 

D. The Mean Time the System Stays in the Repair State 

Due to the Revealed Failure 

An illustration of different variants for duration the system 

stays in the repair state Z4 is depicted in Fig. 6. 

We assume that the revealed failure occurs at an arbitrary 

time γ, and until that time, the intermittent failure has not 

occurred. As a result, the correct repair of the system will be 

performed during the time tCR as illustrated in Fig. 6(a). 

Further, we assume that the intermittent failure occurs at 

an arbitrary time η, and until that time, the unrevealed failure 

only occurred at time ξ (0 < ξ < η). Since the system is in the 

inoperable state due to the unrevealed failure that occurred 

in the part of the system not covered by testing, the repair of 

the system will be performed during the time tCR, as 

illustrated in Fig. 6(b). After its repair, the system returns to 

the operable state being as-good-as-new. 

 

Fig. 6.  Illustration of possible time spent by the system in the repair state 

Z4. 
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Returning to Fig. 6(a), let the revealed failure occur in a 

time interval from γ to γ + dγ (0 < γ < ∞). Then, the 

conditional probability of such a random event is equal to 

the probability element ϕ(γ)dγ (Fig. 7): 

    .P d d                        (21) 

The unconditional probability of the revealed failure in 

the time interval (γ, γ + dγ) is calculated as 

     1 .P d d                       (22) 

Let us now go back to Fig. 6(b), and assume that 

unrevealed failure occurs at the time ξ and the intermittent 

failure occurs in a time interval from η to η + dη (ξ < η < ∞). 

Then, the conditional probability of such a random event is 

equal to the probability element ψ(η)dη if until the time η, 

the unrevealed failure has not occurred: 

    .P d d                   (23) 

The unconditional probability of the occurrence of the 

intermittent failure in the time interval (η, η + dη) is 

calculated as 

       1 .P d F d                   (24) 

 

Fig. 7.  The curve of the revealed failure density function 

The probability of the occurrence of the revealed failure 

in the time interval (0, ∞) is determined by the integration of 

(22) in the range of existence of the random variable Γ, i.e., 

     
0

0 1 .P u u du


                  (25) 

The probability of the occurrence of the intermittent 

failure in the time interval (0, ∞) is determined by the 

integration of (24) in the range of existence of the random 

variable Η, i.e., 

       
0

0 Η 1 ψ .P F x x x dx


             (26) 

The mean time spent by the system in the repair state Z4 is 

determined by the law of total expectation 

   
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   





     (27) 

 

V. A CASE OF EXPONENTIAL DISTRIBUTION OF TIME TO 

FAILURE 

Let us determine the mean time spent by the system in the 

states Z1, …, Z4 and the average availability A for the case of 

an exponential distribution of time to failure. Distribution 

functions of time to failure for random variables Γ, Ξ, and Η 

are given by 

   ,1 expt t                   (28) 

   1 exp λ ,F t t    and              (29) 

   1 exp θ .t t                    (30) 

Failure density functions are determined respectively as 

   μexp μ ,t t                   (31) 

   λexp λ ,f t t   and               (32) 

   ψ θexp θ .t t                   (33) 

Substituting (28)–(33) into (10), we obtain the formula for 

calculating the mean time the system stays in the operable 

state: 

1

1
[ ] .E T 

 
                 (34) 

Substituting (28)–(33) into (16), we obtain the formula for 

calculating the mean time the system stays in the inoperable 

state: 

2[ ] .
( )( )

E T



  

              (35) 

Substituting (28)–(33) into (20) gives the expression for 

calculating the mean time the system stays in the repair state 

Z3: 

3[ ] .FRt
E T



 

                 (36) 

Substituting (28)–(33) into (27) gives the expression for 

calculating the mean time the system stays in the repair state 

Z4: 

  
4[ ] .CRE T t

  
         

         (37) 

And finally, substituting (35)–(37) into (2), we obtain the 

formula for calculating the system’s average availability: 

 
.

( )(1 ) ( )CR FR CR

A
t t t




       
      (38) 

Let us determine relations between the fault coverage a 

and failure rates μ and λ. The fault coverage (a) can be 

determined as follows: 

,CBT

CBT NCBT

a
 

 
  

              (39) 

where λCBT is the failure rate for the part of the system that is 

covered by testing, and λNCBT is the failure rate for the part of 

the system that is not covered by testing. 

From (39), we obtain the formula for determining the 

relationship between the unrevealed and revealed failure 

rates: 

1
.

a

a


                      (40) 

The revealed and unrevealed failure rates are linked by 

the following equation: 

,                       (41) 

where Λ is the total permanent failure rate of the system. 

 

VI. NUMERICAL EXAMPLES 

Let us assess the impact of the model parameters on the 

average availability of a non-redundant unit of the UA5000 

(Universal Access Unit) system. 

The UA5000 is a device for accessing both the 

narrowband and broadband services. The UA5000 provides 

subscribers quality voice and broadband access services and 

IP-based voice access and multimedia services [26]. To 

provide high level of QoS the availability of the UA5000 

must be more than five nines after decimal point. The 
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average availability of the UA5000’s units affects the overall 

availability of the UA5000. The operation and maintenance 

process of any UA5000’s unit corresponds to the time 

diagram shown in Fig. 1. Therefore, the proposed model can 

be used to assess the average availability of any UA5000’s 

unit. 

The hardware architecture of the UA5000 consists of 

cabinet, shelves, and boards. The rear-access UA5000 

cabinet's shelf is called HABA. The HABA shelf is the 

master shelf of the UA5000. 

The layout of the HABA shelf is shown in Fig. 8 [26], 

where PWX is the secondary power supply card, xPBM is 

the broadband control card (APMB/IPMB), PVx is the 

narrowband control card (PVU8/PVU4/PVM), RSUx is the 

remote subscriber unit (RSU8/RSU4), AIUB is the ATM 

interface card, xSL is the service line card 

(ASL/DSL/ADMB/VDLA/SDLB…), TSSB is the test card. 

 

 
 

Fig. 8.  Layout of the HABA shelf. 

 

Example 1. Let us assess the average availability of the 

service board xSL as a non-redundant unit of the UA5000 

and determine the dependence between the system’s main 

parameters if θ = 1 × 10−4 h−1 and tCR = tFR = 1 h. 

The dependence of E[T1] on Λ when a = 0.9 is shown in 

Fig. 9. As seen, E[T1] decreases when Λ increases. 

The dependence of E[T2] on the fault coverage a is shown 

in Fig. 10. The parameter of the family of curves is the rate 

of revealed failures μ. As seen in Fig. 10, E[T2] decreases 

when a increases. 

The dependence of the average availability on the fault 

coverage at a different revealed failure rate is shown in Fig. 

11. As it can be seen in the figure, the average availability 

increases when the fault coverage and revealed failure rate 

increase. 

 

 
Fig. 9.  Dependence of the mean time spent by the system in the operable 

state on the total failure rate. 

 

 

Fig. 10.  Dependence of the mean time spent by the system in the 

inoperable state on the fault coverage. 

 

 

Fig. 11.  Dependence of the average availability on the fault coverage. 
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Using (38), let us calculate the average availability of the 

non-redundant service board xSL at different values of the 

revealed failure rate when the fault coverage is unity. The 

results of the calculations are listed in Table 1. 

As seen in Table 1, the average availability has weak 

dependence on the revealed failure rate when a = 1. 
 

TABLE I 

AVERAGE AVAILABILITY AS A FUNCTION  

OF THE REVEALED FAILURE RATE 

µ A 

1 × 10−5  0.99978 

0.5 × 10−5 0.99979 

1 × 10−6 0.99980 

 

Example 2. Let us assess the impact of the intermittent 

failure rate of the service board xSL on the mean times 

E[T1], E[T2], and E[T3] for the initial data of Example 1. 

The dependence of E[T1], E[T2], and E[T3] on the 

intermittent failure rate θ when μ = 1 × 10−5 h−1 are shown in 

Fig. 12. The vertical axis is in log-10 scale. 

As seen in Fig. 12, E[T1] decreases with increasing θ 

because any intermittent failure reduces the system’s uptime. 

The dependence of E[T2] on θ is also decreasing because if 

there is an unrevealed failure in the part of the system not 

covered by testing and an intermittent failure occurs in the 

tested part, then the system is replaced by a new one. 

 

 

Fig. 12. Dependence of the mean times E[T1], E[T2], and E[T3] on the 

intermittent failure rate θ when μ = 1 × 10−5 h−1. 

The shape of the curve of E[T3] versus θ shows that the 

average time spent by the system in the repair state Z3 

increases with the increasing intermittent failure rate. It 

should be also noted that E[T1] and E[T2] depend 

significantly on the intermittent failure rate. 

Figure 13 shows the dependence of the average 

availability on the intermittent failure rate at different values 

of the revealed failure rate. 

As seen in Fig. 13, the average availability of the service 

board xSL increases with increasing intermittent and 

revealed failure rates because the unrevealed failures are 

detected more quickly in such cases. It should also be noted 

that the impact of the revealed failure rate on the average 

availability decreases with the increasing intermittent failure 

rate. 

 

Fig. 13.  Dependence of the average availability on the intermittent failure 

rate at different values of the revealed failure rate. 

 

VII. CONCLUSION 

In this study, we have developed a reliability maintenance 

model for a continuously tested digital telecommunications 

system subject to revealed, unrevealed, and intermittent 

failures under arbitrary failure distributions. The 

mathematical expressions for calculating the average 

availability of the telecommunications system have been 

derived. In the case of exponential failure distributions, it 

has been shown that the average availability largely depends 

on the fault coverage and intermittent failure rate. The 

obtained results are advisable to use in the design, operation, 

and maintenance phases of a telecommunications system. 

Concerning the future work, we plan to generalize the 

developed mathematical model to a model in which an 

unrevealed failure becomes a revealed failure when the 

duration of the system stay in the hidden state exceeds the 

upper time limit. Such situations occur during the operation 

of some telecommunications systems. 
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