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Abstract—This paper is concerned with a delayed Leslie-
Gower predator-prey system with stage-structure on time scales.
By using the theory of calculus on time scales and some
mathematical methods as well as some dynamic inequalities on
time scales, sufficient conditions which guarantee the predator
and the prey to be permanent are obtained. Moreover, under
some suitable conditions, we show that the prey species will be
driven to extinction. Finally, an example and its corresponding
numerical simulations are presented to explain our theoretical
results.

Index Terms—Permanence; Extinction; stage-structure; Dy-
namic inequality; Time scale.

I. INTRODUCTION

PERMANENCE (or persistence) is an important property
of dynamical systems and of the systems arising in e-

cology, epidemics etc, since permanence addresses the limits
of growth for some or all components of a system, while
persistence also deals with the long-term survival of some
or all components of the system. As is well known, most
prey species have a life history that includes multiple stages
juvenile and adults or immature and mature. In particular, we
have in mind mammalian populations and some amphibious
animals. In the past few years, permanence (or persistence)
and extinction of different types of continuous or discrete
predator-prey systems with stage-structure have been studied
wildly both in theories and applications; see, for example,
[1-4] and the references therein.

Notice that, in the nature world, there are many species
whose developing processes are both continuous and discrete.
Hence, using the only differential equation or difference
equation can’t accurately describe the law of their develop-
ments. Therefore, there is a need to establish correspondent
dynamic models on new time scales.

A time scale is a nonempty closed subset of R. The
theory of calculus on time scales (see [5]) was initiated by
Stefan Hilger in his Ph.D. thesis in 1988 (see [6]). The time
scales approach not only unifies differential and difference
equations, but also solves some other problems such as a mix
of stop-start and continuous behaviors powerfully, see [7-10].
However, to the best of the authors’ knowledge, there are few
papers considered permanence of predator-prey system with
stage-structure on time scales.
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Motivated by the above statements, in this paper, we first
establish a limitation theorem on time scales by using the
theory of calculus on time scales and some mathematical
methods, then, based on the theorem and some inequalities
obtained in [7], as an application, we shall study the perma-
nence and the extinction of the following delayed Leslie-
Gower predator-prey system with stage-structure on time
scales:

x∆1 (t) = αx2(t)− r1x1(t)− αe−r1τx2(δ−(τ, t)),

x∆2 (t) = αe−r1τx2(δ−(τ, t))− r2x2(t)− r3x
2
2(t)

− a1y1(t)x2(t)

x2(t) + k1
,

y∆1 (t) =
(
β1 −

a2y1(t)

x2(t) + k2

)
y1(t)

+D1(y2(t)− y1(t)),

y∆2 (t) = (β2 − r4y2(t))y2(t) +D2(y1(t)− y2(t)),

(1)

where t ∈ T, T is a time scale. x1(t) and x2(t) represent the
densities of immature and mature individual prey in patch
1 at time t, yi(t) denote the density of predator species in
patch i, i = 1, 2 at time t. The prey only lives in patch 1.
For immature prey, α is birth rate, r1 is death rate, and the
term αe−r1τx2(δ−(τ, t)) represents the number of immature
prey that was born at time δ−(τ, t), which still survive at
time t and are transferred from the immature stage to the
mature stage at time t. For mature prey, r2 is death rate,
r3 is the intraspecific competition rate of mature prey, a1
is the maximum value of the per-capita reduction rate of
x2 due to y1, and k1 (resp., k2) measures the extent to
which environment provides protection to prey x2 (resp., to
the predator y1). For the predator, βi is the birth rate of
predator in patch i, i = 1, 2, Di is the dispersion rate of
predator between two patches, r4 is death rate of predator in
patch 2, a2 has a similar meaning to a1. For the ecological
justification of (1), one can refer to [11,12].
δ−(τ, t) is a delay function with t ∈ T and τ ∈ [0,+∞)T,

where δ− is a backward shift operator on the set T∗, and
T∗ is a non-empty subset of the time scale T. More details
about backward shift operator, one may see [13].

The initial conditions of (1) are of the form

xi(t) = ϕi(t), yi(t) = ψi(t), (2)
ϕi(0) > 0, ψi(0) > 0, i = 1, 2,

where (ϕ1(t), ϕ2(t), ψ1(t), ψ2(t)) ∈ C([δ−(τ, 0), 0]T,R4
+0),

the Banach space of continuous function mapping the interval
[δ−(τ, 0), 0]T into R4

+0, where R4
+0 = {(x1, x2, y1, y2) :

xi > 0, yi > 0, i = 1, 2}.
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The organization of this paper is as follows. In section 2,
we introduce some notations and definitions and state some
preliminary results needed in later sections; a limitation the-
orem on time scales is established, which plays an important
role in this paper. Section 3 is devoted to discussing the
permanence and the extinction of system (1). An Example
together with its numerical simulations is provided in Section
4; and a conclusion is made in section 5.

II. PRELIMINARIES

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators σ, ρ : T → T and the
graininess µ : T → R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t},
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t,
left-scattered if ρ(t) < t, right-dense if t < supT and σ(t) =
t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If
T has a right-scattered minimum m, then Tk = T\{m};
otherwise Tk = T.

For the basic theory of calculus on time scales, see [5].
A function p : T → R is called regressive provided 1 +

µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all regressive and
rd-continuous functions p : T → R will be denoted by R =
R(T) = R(T,R). We define the set R+ = R+(T,R) =
{p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized expo-
nential function er is defined by

er(t, s) = exp

{∫ t

s

ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions, define

p⊕ q = p+ q + µpq, ⊖p = − p

1 + µp
, p⊖ q = p⊕ (⊖q).

Lemma 1. (see [5]) Assume that p, q : T → R be two
regressive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e⊖p(t, s))

∆ = (⊖p)(t)e⊖p(t, s).

In order to discuss the permanence of system (1), we need
the following lemmas.

Lemma 2. (see [7]) Assume that a > 0, b > 0 and −a ∈ R+.
Then

x∆(t) ≥ (≤)b− ax(t), x(t) > 0, t ∈ [t0,∞)T

implies

x(t) ≥ (≤)
b

a
[1 + (

ax(t0)

b
− 1)e−a(t, t0)], t ∈ [t0,∞)T.

Lemma 3. Consider the following equation:

x∆(t) = ax(δ−(τ, t))− bx(t)− cx2(t),

where a, b, c, and τ are positive constants, x(t) > 0 for
t ∈ [δ−(τ, 0), 0]T. Then
(i) if a > b, then lim

t→+∞
x(t) = a−b

c ;

(ii) if a < b, then lim
t→+∞

x(t) = 0.

Proof: Case (i) It is easy to show that x(t) is positive
and bounded for all t ∈ [0,+∞)T. Clearly, x∗ = a−b

c is the
unique positive equilibrium of the equation. Suppose that
x(t) is eventually monotonic, then lim

t→+∞
x(t) exists. Denote

L = lim
t→+∞

x(t), we show that L = x∗, otherwise, if L > x∗,
then

lim
t→+∞

x∆(t) = aL− bL− cL2 = cL(x∗ − L) < 0,

which implies lim
t→+∞

x(t) = −∞, a contradiction, therefore
L = x∗.

Now, suppose that x(t) is not eventually monotonic, since
x(t) is bounded, let η = lim sup

t→+∞
|x(t)−x∗|, then η is bound-

ed, we can show that η = 0, otherwise, if η > 0, then there
exists a sequence x(ti)(ti > ti−1, lim

i→+∞
ti = +∞) such that

lim
i→+∞

x(ti) = x∗ + η or lim
i→+∞

x(ti) = x∗ − η, (x∗ ≥ η).
Without loss of generalization, we only consider the first
case, then there exists an ε (0 < ε ≤ c(x∗+η)η

a+b+2c(x∗+η) ) such
that

a(x∗ + η + ε)− c(x∗ + η − ε)2 − b(x∗ + η − ε) < 0. (3)

For this ε, there exists a T = T (ε) > τ such that for ti ∈
(δ−(τ, T ),+∞)T, we have

x(ti) < x∗ + η + ε. (4)

We also know that there exists a ti ∈ (T,+∞)T such that
x∆(ti) = 0, x(ti)− x∗ > η − ε. This implies that

ax(δ−(τ, ti)) = cx2(ti) + bx(ti).

Thus

ax(δ−(τ, ti)) > c(x∗ + η − ε)2 + b(x∗ + η − ε).

By (3), we have

ax(δ−(τ, ti)) > a(x∗ + η + ε).

Hence

x(δ−(τ, ti)) > x∗ + η + ε,

a contradiction to (4), then η = 0, that is

lim
t→+∞

x(t) = x∗.

Case (ii) If x(t) is eventually monotonic, then lim
t→+∞

x(t)

exists. Denote L1 = lim
t→+∞

x(t), then L1 ≥ 0, we show that
L1 = 0, otherwise, if L1 > 0, then

lim
t→+∞

x∆(t) = aL1 − bL1 − cL2
1 < 0,

which implies lim
t→+∞

x(t) = −∞, a contradiction, therefore

lim
t→+∞

x(t) = 0.
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Now, suppose that x(t) is not eventually monotonic, we
can show that u = lim sup

t→+∞
x(t) = 0, otherwise, if u >

0, then there exists a sequence x(ti)(ti > ti−1, lim
i→+∞

ti =

+∞) such that lim
i→+∞

x(ti) = u. Since au− bu− cu2 < 0,
then there exists an ε > 0 such that

a(u+ ε)− c(u− ε)2 − b(u− ε) < 0. (5)

For this ε, there exists a T = T (ε) > τ such that for ti ∈
(δ−(τ, T ),+∞)T, we have

x(ti) < u+ ε. (6)

We also know that there exists a ti ∈ (T,+∞)T such that
x∆(ti) = 0, x(ti) > u− ε. This implies that

ax(δ−(τ, ti)) = cx2(ti) + bx(ti).

Thus

ax(δ−(τ, ti)) > c(u− ε)2 + b(u− ε).

By (5), we have

x(δ−(τ, ti)) > u+ ε,

a contradiction to (6), then u = 0, that is

lim
t→+∞

x(t) = 0.

This completes the proof.

III. PERMANENCE AND EXTINCTION

As an application, based on the results obtained in section
2 and [7], we shall discuss the permanence and the extinction
of system (1).

Definition 1. System (1) is said to be permanent if there exist
a compact region D ⊆ IntR4

+0, such that for any positive
solution (x1(t), y1(t), x2(t), y2(t)) of system (1) with initial
conditions (2) eventually enters and remains in region D.

Proposition 1. Assume that (x1(t), x2(t), y1(t), y2(t)) be a
positive solution of system (1) with initial conditions (2). If
−r1 ∈ R+, then there exists a T4 > 0 such that

xi(t) ≤M,yi(t) ≤M, i = 1, 2, t ∈ [T4,+∞)T.

where M is a constant and

M > max{M1,M2,M
∗},

M1 =
αM2

r1
(1− e−r1τ ) + ε,

M2 =
αe−r1τ

r3
+ ε,

M∗ =
α2

4Ar3
+

(A+D2 + β1)
2(M2 + k2)

4Aa2

+
(A+D1 + β2)

2

4Aa1
+ ε,

A = min{r1, r2}.

Proof: Assume that (x1(t), x2(t), y1(t), y2(t)) be any
positive solution of system (1) with initial conditions (2).
It follows from the second equation of system (1) that for
t ∈ [τ,+∞)T,

x∆2 (t) ≤ αe−r1τx2(δ−(τ, t))− r3x
2
2(t).

Consider the following auxiliary equation:

u∆(t) = αe−r1τu(δ−(τ, t))− r3u
2(t),

by Lemma 3, we can get

lim
t→+∞

u(t) =
αe−r1τ

r3
.

According to the comparison principle, it follows that

lim sup
t→+∞

x2(t) ≤
αe−r1τ

r3
.

Therefore, for arbitrary small ε > 0, there exists a T1 > τ
such that

x2(t) ≤
αe−r1τ

r3
+ ε :=M2, t ∈ [T1,+∞)T. (7)

Setting T2 = T1 + τ , from the first equation of system (1)
and (7), for t ∈ [T2,+∞)T,

x∆1 (t) ≤ α(1− e−r1τ )M2 − r1x1(t),

by Lemma 2, for arbitrary small ε > 0, there exists a T3 > T2
such that

x1(t) ≤
αM2

r1
(1− e−r1τ ) + ε :=M1, t ∈ [T3,+∞)T.

Define

v(t) = x1(t) + x2(t) + y1(t) + y2(t), t ∈ [T3,+∞)T,

calculating the derivative of v(t) along the solutions of (1),
we have

v∆(t) ≤ −Av(t) + α2

4Ar3
+

(A+D2 + β1)
2(M2 + k2)

4Aa2

+
(A+D1 + β2)

2

4Aa1
, (8)

where A = min{r1, r2}.
By Lemma 2, there exists a T4 > T3, it follows from (8)

that, for t ∈ [T4,+∞)T,

v(t) ≤ α2

4Ar3
+

(A+D2 + β1)
2(M2 + k2)

4Aa2

+
(A+D1 + β2)

2

4Aa1
+ ε :=M∗. (9)

Let M > max{M1,M2,M
∗}, then

xi(t) ≤M,yi(t) ≤M, i = 1, 2, t ∈ [T4,+∞)T.

This completes the proof.

Proposition 2. Assume that (x1(t), x2(t), y1(t), y2(t)) be a
positive solution of system (1) with initial conditions (2). If
αe−r1τ > r2 +

a1M
k1

, where M is defined in Proposition 1,
then there exists a T8 > 0 such that

xi(t) ≥ m, yi(t) ≥ m, i = 1, 2, t ∈ [T8,+∞)T.

where m is a constant and

0 < m < min{m1,m2,m3},
m1 =

αm2

r1
(1− e−r1τ )− ε,

m2 =
αe−r1τ − r2 − a1M/k1

r3
− ε,

m3 = m∗
3 − ε,

m∗
3 = min

{
β1(m2 + k2)

a2
,
β2
r4

}
.
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Proof: Assume that (x1(t), y1(t), x2(t), y2(t)) be any
positive solution of system (1) with initial conditions (2).
It follows from the second equation of system (1) that for
t ∈ [T4,+∞)T,

x∆2 (t) ≥ αe−r1τx2(δ−(τ, t))−
(
r2 +

a1M

k1

)
x2(t)

−r3x22(t).

Consider the following auxiliary equation:

u∆(t) = αe−r1τu(δ−(τ, t))−
(
r2 +

a1M

k1

)
u(t)

−r3u2(t),

by Lemma 3, we can get

lim
t→+∞

u(t) =
αe−r1τ − r2 − a1M/k1

r3
.

According to the comparison principle, it follows that

lim inf
t→+∞

x2(t) ≥
αe−r1τ − r2 − a1M/k1

r3
.

Therefore, for arbitrary small ε > 0, there exists a T5 > T4
such that

x2(t) ≥
αe−r1τ − r2 − a1M/k1

r3
− ε := m2, (10)

for t ∈ [T5,+∞)T.
By the third and forth equation of system (1), we have{
y∆1 (t) ≥

(
β1 − a2y1(t)

m2+k2

)
y1(t) +D1(y2(t)− y1(t)),

y∆2 (t) = (β2 − r4y2(t))y2(t) +D2(y1(t)− y2(t)),

for t ∈ [T5,+∞)T.
Consider the following auxiliary equation:{
u∆1 (t) =

(
β1 − a2u1(t)

m2+k2

)
u1(t) +D1(u2(t)− u1(t)),

u∆2 (t) = (β2 − r4u2(t))u2(t) +D2(u1(t)− u2(t)),

for t ∈ [T5,+∞)T.
Define

v(t) = min{u1(t), u2(t)}.

Using a similar argument in the proof of [14, Lemma 2.1],
we can obtain

lim inf
t→+∞

v(t) ≥ min

{
β1(m2 + k2)

a2
,
β2
r4

}
:= m∗

3.

Therefore, for arbitrary small ε > 0, there exists a T6 > T5
such that

y1(t) ≥ m∗
3 − ε := m3, y2(t) ≥ m∗

3 − ε := m3.

Setting T7 = T6 + τ , from the first equation of system (1)
and (10), for t ∈ [T7,+∞)T,

x∆1 (t) ≥ α(1− e−r1τ )m2 − r1x1(t),

by Lemma 2, for arbitrary small ε > 0, there exists a T8 > T7
such that

x1(t) ≥
αm2

r1
(1− e−r1τ )− ε := m1, t ∈ [T8,+∞)T.

Let 0 < m < min{m1,m2,m3} then

xi(t) ≥ m, yi(t) ≥ m, i = 1, 2, t ∈ [T8,+∞)T.

This completes the proof.

Together with Propositions 1 and 2, we can obtain the
following theorem.

Theorem 1. If conditions in Propositions 1 and 2 hold, then
system (1) is permanent.

Theorem 2. If αe−r1τ < r2, then the mature and immature
prey population in system (1) will go to extinction.

Proof: Assume that (x1(t), x2(t), y1(t), y2(t)) be any
positive solution of system (1) with initial conditions (2). It
follows from the second equation of system (1) that

x∆2 (t) ≤ αe−r1τx2(δ−(τ, t))− r2x2(t)− r3x
2
2(t).

Consider the following auxiliary equation:

u∆(t) = αe−r1τu(δ−(τ, t))− r2u(t)− r3u
2(t),

by Lemma 3, we can get

lim
t→+∞

u(t) = 0.

A standard comparison argument shows that

lim
t→+∞

x2(t) = 0.

Therefore, for arbitrary small ε > 0, there exists a T9 > τ
such that

0 < x2(t) <
r1ε

2α(1− e−r1τ )
, t ∈ [T9,+∞)T. (11)

Setting T10 = T9 + τ , from the first equation of system (1)
and (11), for t ∈ [T10,+∞)T,

x∆1 (t) ≤ r1ε− r1x1(t),

by Lemma 2, there exists a T11 > T10 such that

x1(t) ≤
ε

2
+
ε

2
= ε, t ∈ [T11,+∞)T,

that is

lim
t→+∞

x1(t) = 0.

This completes the proof.

IV. NUMERICAL EXAMPLE AND SIMULATIONS

Consider the following system on time scales

x∆1 (t) = 5x2(t)− 0.5x1(t)
−5e−0.5τx2(δ−(τ, t)),

x∆2 (t) = 5e−0.5τx2(δ−(τ, t))− r2x2(t)

−3x22(t)−
0.8y1(t)x2(t)

x2(t)+8 ,

y∆1 (t) =
(
0.2− 1.5y1(t)

x2(t)+1.5

)
y1(t)

+0.5(y2(t)− y1(t)),
y∆2 (t) = (1.5− y2(t))y2(t)

+0.5(y1(t)− y2(t)),

(12)

that is α = 5, r1 = 0.5, r3 = 3, r4 = 1, a1 = 0.8, a2 =
1.5, k1 = 8, k2 = 1.5, β1 = 0.2, β2 = 1.5, D1 = 0.5, D2 =
0.5, τ is a positive constant.

Consider system (12) on T = R and T = Z with t0 = 0.
Obviously, −r1 ∈ R+. Let τ = 1, then δ−(τ, t) = t− 1.

Case 1. Let r2 = 1.2 in (12), by a direct calculation, we
can get αe−r1τ = 3.0327, r2 + a1M

k1
= 2.3622. Therefore,

all conditions in Propositions 1 and 2 hold, by Theorem 1,
system (12) is permanent, see Figures 1 and 2.

Case 2. Let r2 = 4 in (12), by a direct calculation, we can
get αe−r1τ = 3.0327 < 4 = r2. The condition in Theorem
2 holds, then the mature and immature prey population in
system (12) will go to extinction, see Figures 3 and 4.
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Fig. 1. T = R. Dynamics behavior of system (12) with initial
conditions x1(0) = 2.3, x2(0) = 0.58, y1(0) = 0.76, y2(0) = 1.3.
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Fig. 2. T = Z. Dynamics behavior of system (12) with initial
conditions x1(1) = 0.8, x2(1) = 0.5, y1(1) = 1, y2(1) = 0.5.
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Fig. 3. T = R. Dynamics behavior of system (12) with initial
conditions x1(0) = 2.3, x2(0) = 0.58, y1(0) = 0.76, y2(0) = 1.3.
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Fig. 4. T = Z. Dynamics behavior of system (12) with initial
conditions x1(1) = 0.6, x2(1) = 0.2, y1(1) = 1, y2(1) = 0.5.

V. CONCLUSION

Two problems for a delayed Leslie-Gower predator-prey
system with stage-structure on time scales have been studied,

namely, permanence and extinction. It is important to notice
that the methods used in this paper can be extended to
other types of biological models [15-17]. Future work will
include biological or epidemic dynamic systems modeling
and analysis on time scales.
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