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Abstract—A class of C1 rational cubic/linear trigonometric
interpolation spline with two local parameters is proposed. Sim-
ple sufficient conditions for constructing positivity-preserving
interpolation curves are developed. By using the boolean sum
of quadratic trigonometric interpolating operators to blend
together the proposed rational cubic/linear trigonometric in-
terpolation splines as four boundary functions, a kind of C1

blending rational cubic/linear interpolation surface with four
families of local parameters is constructed. Simple sufficient
data dependent conditions are also deduced for generating
C1 positivity-preserving interpolation surfaces on rectangular
grids.

Index Terms—Data visualization, Trigonometric interpolation
spline, Positivity-preserving, Local parameter.

I. INTRODUCTION

SPline has a wide range of applications in Engineering,
such as data fitting [1], principal components analy-

sis [2], signal restoration [3] and so on. In visualizing
scientific data, when the data are arising from some complex
function or from some scientific phenomena, it becomes
crucial that the resulting spline can preserve the shape
features of the data. Positivity is one of the essential shape
features of data. Many physical situations have entities that
gain meaning only when their values are positive, such as a
probability distribution function, monthly rainfall amounts,
speed of winds at different intervals of time, and half-life of
a radioactive substance and so on. For given positive data,
ordinary interpolation spline methods such as the classical
cubic interpolation spline usually ignore positive charac-
teristic. Thus constructing positivity-preserving interpolation
spline is an essential problem and many methods have been
proposed, such as the cubic interpolation spline methods [4],
the rational polynomial interpolation spline methods [5], [6],
[7], [8], [9], [10], [11].

In the last years, for generating positivity-preserving in-
terpolation curves, some trigonometric interpolation spline
methods have been proposed, see for example [12], [13],
[14], [15], [16], [17], and the references quoted therein.
In [12], a kind of rational cubic/cubic trigonometric in-
terpolation spline with four families of parameters was
developed, and sufficient conditions were given for con-
structing positivity-preserving interpolation curves. In [13],
a positivity-preserving interpolation spline was presented by
using rational quadratic/quadratic trigonometric interpolation
spline with two families of parameters. Latter, in [14],
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the rational quadratic/quadratic trigonometric interpolation
spline with two families of parameters was further extended
to four families of parameters. In [16], a new rational
quadratic/quadratic trigonometric interpolation spline with
four families of parameters was constructed for generating
positivity-preserving interpolation curves. The smoothness
of the resulting positivity-preserving interpolation curves by
the above rational trigonometric interpolation spline methods
attains C1 continuity. Recently, in [15], [17], two kinds of
quadratic trigonometric interpolation splines were proposed
for generating GC1 continuous positivity-preserving interpo-
lation curves.

For constructing C1 positivity-preserving interpolation
surfaces, the well known Coons surface technique [18] has
been widely used, see for example [19], [20], [21], [22],
[23] and the references quoted therein. In [19], [20], by
exchanging the cubic Hermite blending functions used for
the classical bi-cubic Coons surface with two different kinds
of rational cubic blending functions, two classes of C1

rational bi-cubic were presented. And constrains concerning
the local free parameters were given for visualizing 3D
positive data on rectangular grids. Like the classical bi-cubic
Coons surface technique, these schemes need to provide
the twists on the grid lines for generating interpolation
surfaces. In [21], [22], [23], based upon the boolean sum of
cubic interpolating operators, by blending different rational
cubic interpolation splines as the boundary functions, simpler
schemes without making use of twists for constructing C1

positive interpolation of gridded data were given. These ra-
tional bi-cubic partially blended interpolation spline methods
are convenience since they are possible to control the shape
of the interpolation surfaces by using the boundary functions,
though they have to pay the price that the generated surfaces
have zero twist vectors at the data points.

The sufficient conditions for generating positivity-
preserving interpolation surfaces developed in [21], [22], [23]
were based on the claim given in [24]: bi-cubic partially
blended interpolation surface patch inherits all the properties
of network of boundary curves. Thus, these methods have a
common point that the positivity of the global interpolation
surfaces are determined by the positivity of the four boundary
curves of each local interpolation surface patch respectively.
However, as it was pointed out in [20] that, these methods
did not depict the positive surfaces due to the coon patches
because they conserved the shape of data only on the
boundaries of patch not inside the patch.

There are also some positivity-preserving interpolation
surface schemes developed by using trigonometric inter-
polation spline methods. In [12], a kind of rational bi-
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cubic trigonometric interpolation spline was constructed for
generating C1 continuous positivity-preserving interpolation
surfaces. In [13], a class of rational bi-quadratic trigonomet-
ric interpolation spline was developed for constructing C1

continuous positivity-preserving interpolation surfaces. The
disadvantages of these two methods lie in that the parameters
do not have local control property for generating interpo-
lation surfaces. Recently, in [25], a kind of bi-quadratic
trigonometric interpolation spline was developed for gen-
erating GC1 continuous positivity-preserving interpolation
surfaces with local control parameters.

In this paper, we propose a kind of C1 rational cubic/linear
trigonometric interpolation spline with two local parame-
ters. By using the boolean sum of quadratic trigonomet-
ric interpolating operators to blend together the proposed
rational cubic/linear trigonometric interpolation splines as
four boundary functions, a class of C1 blending rational
cubic/linear interpolation surface with four families of local
parameters is constructed. Simple sufficient data dependent
conditions are also deduced for generating C1 positivity-
preserving interpolation curves and surfaces. The developed
schemes improve on the existing methods in some ways:
(1) The smoothness of bi-quadratic interpolant given in [8]
is C0 and the quadratic trigonometric interpolation splines
given in [15], [17], [25] are GC1 continuous while in this
paper it is C1.
(2) The rational trigonometric interpolation schemes devel-
oped in [12], [13] do not allow the designer to locally refine
the positive surface as per consumers demand. Whereas, the
given method is done by introducing local free parameters
which they are used in the description of interpolation curves
and surfaces.
(3) In [21], [22], [23], the authors claimed that the rational
bi-cubic partially blended functions (coon patches) generated
a positive surface but they conserved the shape of data
only on the boundaries of patch not inside the patch and
they did not provide proof that the conditions given [21],
[22], [23] will be always sufficient to generate positivity-
preserving interpolation surfaces everywhere in the domain.
In contrast, we develop new constrain conditions on the
boundary curves of each local interpolation surface patch
and the given conditions are sufficient to generate positivity-
preserving interpolation surfaces everywhere in the domain
with theory proving.

The rest of this paper is organized as follows. Section II
gives the construction of C1 rational cubic/linear interpo-
lation spline with two local free parameters. The sufficient
conditions for generating positivity-preserving interpolation
curves are discussed. In section III, a kind of C1 blending
rational cubic/linear interpolation surfaces with four families
of local free parameters is described. Simple sufficient data
dependent constraints are derived on the local free parameters
to preserve the shape of 3D positive data on rectangular grids.
Several numerical examples are also given to prove the worth
of the new developed schemes. Conclusion is given in the
section IV.

II. C1 POSITIVITY-PRESERVING INTERPOLATION CURVES

In this section, we firstly construct a new kind of C1

rational cubic/linear trigonometric interpolation spline with

two families of free parameters, and then we developed sim-
ple sufficient conditions for generating positivity-preserving
interpolation curves. Several numerical examples and com-
parisons are also given.

A. Rational cubic/linear trigonometric interpolation spline

Let fi ∈ R, i = 1, ..., n, be data given at the distinct knots
xi ∈ R, i = 1, ..., n, with interval spacing hi = xi+1 −
xi > 0, and let di ∈ R denote the first derivative values
defined at the knots. For x ∈ [xi, xi+1], a piecewise rational
cubic/linear trigonometric interpolation spline with two local
parameters αi and βi is defined as follows

T (x) = B0(t;αi)fi +B1(t;αi)
[
fi +

2hi

π(1+αi)
di

]
+B2(t;βi)

[
fi+1 − 2hi

π(1+βi)
di+1

]
+B3(t;βi)fi+1,

(1)
where t = π(x − xi)/(2hi), αi, βi ∈ [0,+∞), i =
1, 2, ..., n−1, and the four rational cubic/linear trigonometric
basis functions Bj(t;αi) and B3−j(t;βi), j = 0, 1 are given
by 

B0 (t;αi) =
1−sin t

1+αi sin t ,

B1 (t;αi) =
sin t(1−sin t)(1+αi+αi sin t)

1+αi sin t ,

B2 (t;βi) =
cos t(1−cos t)(1+βi+βi cos t)

1+βi cos t
,

B3 (t;βi) =
1−cos t

1+βi cos t
.

The spline given in (1) is a C1 interpolation spline as it
satisfies the following interpolation properties{

T (xi) = fi, T (xi+1) = fi+1,
T ′(xi) = di, T ′(xi+1) = di+1.

For any t ∈ [0, π/2] and αi, βi ∈ [0,+∞), it is easy to
check that the four rational cubic/linear trigonometric basis
functions possess the properties of partition of unity and
nonnegativity, that is{

B0 (t;αi) +B1 (t;αi) +B2 (t;βi) +B3 (t;βi) = 1,
Bi (t;αi) ≥ 0, B3−i (t;βi) ≥ 0, i = 0, 1.

From the expression of the interpolation spline T (x) given
in (1), we have

lim
αi,βi→+∞

T (x) = ficos
2t+ fi+1sin

2t

which implies that the parameters αi, βi serve as tension
parameters.

In applications, the first derivative values di, i =
1, 2, . . . , n are not known and should be specified in advance.
In this paper, they are computed by using the following
Arithmetic mean method

d1 = ∆1 − h1

h1+h2
(∆2 −∆1) ,

di =
∆i−1+∆i

2 , i = 2, 3, . . . , n− 1,

dn = ∆n−1 +
hn−1

hn−2+hn−1
(∆n−1 −∆n−2) ,

where ∆i = (fi+1−fi)/hi. This Arithmetic mean method is
the three-point difference approximation based on arithmetic
calculation, which is computationally economical and suit-
able for visualization of shaped data, see for example [21].

For convenience, in the following discussion, for x ∈
[xi, xi+1], we will also denote the interpolation spline T (x)
given in (1) as T (t; fi, fi+1; di, di+1;αi, βi).
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B. Positivity-preserving condition

For given positivity data set {(xi, fi), i = 1, 2, . . . , n},
since the four rational cubic/linear trigonometric basis func-
tions are nonnegative on [0, π/2] and strict positive in
(0, π/2), it is obvious that the interpolation spline T (x) given
in (1) is positive on each subinterval Ii = [xi, xi+1] if{

αi ≥ 0, βi ≥ 0,

fi +
2hidi

π(1+αi)
≥ 0, fi+1 − 2hidi+1

π(1+βi)
≥ 0.

From these, we can immediately obtain the following suffi-
cient conditions for T (x) (x ∈ [x1, xn]) preserving positivity αi = max

{
−1− 2hidi

πfi
, 0
}
+ ai, ai ≥ 0,

βi = max
{
−1 + 2hidi+1

πfi+1
, 0
}
+ bi, bi ≥ 0,

(2)

where i = 1, 2, . . . , n− 1 and ai, bi serve as free parameters
for the users to interactively adjust the shape of the obtained
positivity-preserving interpolation curves.

C. Numerical examples and comparisons

TABLE I
POSITIVE DATA SET GIVEN IN [21].

i 1 2 3 4 5 6 7
xi 0 2 4 10 28 30 32
fi 20.8 8.8 4.2 0.5 3.9 6.2 9.6

TABLE II
THE POSITIVE DATA SET GIVEN IN [19].

i 1 2 3 4 5 6 7
xi 2 3 7 8 9 13 14
fi 10 2 3 7 2 4 10

TABLE III
THE POSITIVE DATA SET GIVEN IN [14].

i 1 2 3 4 5 6 7 8
xi 0 0.04 0.05 0.06 0.07 0.08 0.12 0.13
fi 0.82 1.2 0.978 0.6 0.3 0.1 0.15 0.48

Fig. 1 shows the positivity-preserving interpolation curves
generated by using the conditions (2) with different free
parameters ai and bi for the positive data set given in Tab. I
and the graphics of their first derivatives, respectively. From
the results, we can see that the interpolation curves preserve
the shape of the positive data set given in Tab. I nicely and
they all achieve C1 continuity.

Fig. 2 shows the positivity-preserving interpolation curves
generated by using the conditions (2) with different free
parameters ai and bi for the positive data set given in Tab. II
and the graphics of their first derivatives, respectively. In can
be seen from 2 that the interpolation curves clearly preserve
the shape of the positive data set given in Tab. II and they
all reach C1 continuity.

Fig. 3 and Fig. 4 show the positivity-preserving interpo-
lation curves generated by the methods given in [12], [13],
[14], [15], [16] and our method with a set of appropriate
parameters for the positive data sets given in Tab. III and

Tab. IV, respectively. From the results, it can be seen that our
piecewise rational cubic/linear trigonometric interpolation
spline describes the positive data set more fairly than the
methods given in [12], [13], [14], [15], [16].

III. C1 POSITIVITY-PRESERVING INTERPOLATION
SURFACES

In this section, by using the boolean sum of quadratic
trigonometric interpolating operators to blend together the
constructed rational cubic/linear trigonometric interpolation
splines as the four boundary functions, we shall construct
a class of C1 blending rational cubic/linear trigonometric
interpolation surface with four families of local parameters.
By developing new constrains on the boundary functions,
we will also theoretically deduce simple sufficient data
dependent conditions on the local parameters to generate C1

positivity-preserving interpolation surfaces for positive data
on rectangular grids.

A. Blending rational cubic/linear trigonometric interpola-
tion surfaces

Let {(xi, yi, Fij), i = 1, 2, . . . , n; j = 1, 2, . . . ,m} be a
given set of data points defined over the rectangular domain
D = [x1, xn] × [y1, ym], where πx : x1 < x2 < . . . < xn

is the partition of [x1, xn] and πy : y1 < y2 < . . . < ym is
the partition of [y1, ym]. For (x, y) ∈ [xi, xi+1]× [yj , yj+1],
by using the boolean sum of quadratic trigonometric inter-
polating operators to blend together the rational cubic/linear
trigonometric interpolation splines (1) as the boundary func-
tions, a new blending rational cubic/linear trigonometric
interpolation surface is given as follows

F (x, y) = −
[
−1 b0(t) b1(t)

]
H

 −1
b0(s)
b1(s)

 , (3)

where hx
i = xi+1 − xi, h

y
j = yj+1 − yj , t = π(x −

xi)/(2h
x
i ), s = π(y − yj)/(2h

y
j ) and

H =

 0 F (x, yj) F (x, yj+1)
F (xi, y) Fi,j Fi,j+1

F (xi+1, y) Fi+1,j Fi+1,j+1,


and

b0(z) := cos2z, b1(z) := sin2z,
F (x, yj) := T (t;Fi,j , Fi+1,j ;D

x
i,j , D

x
i+1,j ;α

x
i,j , β

x
i,j),

F (xi, y) := T (s;Fi,j , Fi,j+1;D
y
i,j , D

y
i,j+1;α

y
i,j , β

y
i,j).

Here, Dx
i,j , D

y
i,j are known as the first partial derivatives

at the grid point (xi, yj) and
(
αx
i,j

)
(n−1)×m

,
(
βx
i,j

)
(n−1)×m

,(
αy
i,j

)
n×(m−1)

,
(
βy
i,j

)
n×(m−1)

are called four families of
local parameters. From the interpolation surface T (x, y)
given in (1), we can see that the changes of a local parameter
αx
i,j will affect the shape of two neighboring patches F (x, y)

defined in the domain (x, y) ∈ (xi, xi+1) × (yj−1, yj+1).
And the changes of a local parameter αy

i,j will affect the
shape of two neighboring patches F (x, y) defined in the
domain (x, y) ∈ (xi−1, xi+1) × (yj , yj+1). And the local
parameters βx

i,j and βy
i,j have the same effect region on the

shape of the generated interpolation surface F (x, y) as that
of the local parameters αx

i,j and αy
i,j , respectively. Since the

four boundary functions F (x, yj), F (x, yj+1), F (xi, y) and
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Fig. 1. Positivity-preserving interpolation curves generated by using the conditions (2) with different free parameters ai and bi for the positive data set
given in Tab. I and the graphics of their first derivatives.
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Fig. 2. Positivity-preserving interpolation curves generated by using the conditions (2) with different free parameters ai and bi for the positive data set
given in Tab. II and the graphics of their first derivatives.
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Fig. 3. C1 positivity-preserving curves generated by different methods for the positive data set given in Tab. III. Their corresponding parameters for all
segments are set as method [12]: (w0

i = 0.2, w1
i = 0.6, w2

i = 0.3, w3
i = 0.1); method [13]: (µi = 4.1, ηi = 4.5); method [14]: (w0

i = 0.2, w1
i =

0.8, w2
i = 0.8, w3

i = 0.3); method [15]: (αi = 2, βi = 1.5); method [16]: (w0
i = 0.2, w1

i = 0.5, w2
i = 0.5, w3

i = 0.2); our method: (αi = 1, βi = 0).
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TABLE IV
THE POSITIVE DATA SET GIVEN IN [14].

i 1 2 3 4 5 6 7 8 9 10
xi 0 3.25 15 26.5 30 32 37 40 42.5 44
fi 8.8 3 0.025 3.1 6.2 9.6 20 22.5 21.519 20
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Fig. 4. C1 positivity-preserving curves generated by different methods for the positive data set given in Tab. IV. Their corresponding parameters for all
segments are set as method [12]: (w0

i = 0.5, w1
i = 4, w2

i = 4, w3
i = 0.5); method [13]: (µi = 3, ηi = 3); method [14]: (w0

i = 0.2, w1
i = 0.9, w2

i =
0.9, w3

i = 0.2); method [15]: (αi = 2, βi = 2); method [16]: (w0
i = 2, w1

i = 4, w2
i = 4, w3

i = 2); our method: (αi = 0.2, βi = 0.1).

F (xi+1, y) are all C1 continuous, we can easily conclude
that the given blending rational cubic/linear trigonometric
interpolation surface F (x, y) is global C1 continuous over
the rectangular domain [x1, xn]× [y1, ym].

In most applications, the first partial derivatives Dx
i,j and

Dy
i,j are not given and hence must be determined either from

given data or by some other means. In this paper, we use the
following arithmetic mean method to compute the first partial
derivatives

Dx
1,j = ∆x

1,j +
(
∆x

1,j −∆x
2,j

) hx
1

hx
1+hx

2
,

Dx
n,j = ∆x

n−1,j +
(
∆x

n−1,j −∆x
n−2,j

) hx
n−1

hx
n−2

+hx
n−1

,

Dx
i,j =

∆x
i−1,j+∆x

i,j

2 , i = 2, 3, . . . , n− 1; j = 1, 2, . . . ,m,

Dy
i,1 = ∆y

i,1 +
(
∆y

i,1 −∆y
i,2

) hy
1

hy
1+hy

2
,

Dy
i,m = ∆y

i,m−1 +
(
∆y

i,m−1 −∆y
i,m−2

) hy
m−1

hy
m−2

+hy
m−1

,

Dy
i,j =

∆y
i,j−1

+∆y
i,j

2 , i = 1, 2, . . . , n; j = 2, 3, . . . , n− 1,

where ∆x
i,j = (Fi+1,j − Fi,j)/h

x
i and ∆y

i,j =

(Fi,j+1 − Fi,j)
/
hy
j . This arithmetic mean method is

computationally economical and suitable for visualization
of shaped data [21].

B. Positivity-preserving conditions

In this subsection, we want to develop simply schemes so
that the C1 interpolation surface F (x, y) given in (3) can
preserve the shape of 3D positive data on rectangular grides.

Let {(xi, yi, Fi,j)} be a positive data set defined over the
rectangular grid [xi, xi+1] × [yj , yj+1], i = 1, 2, · · · , n − 1,
j = 1, 2, · · · ,m − 1 such that Fi,j > 0,∀i, j. The interpo-
lation surface F (x, y) given in (3) preserves the shape of
positive data if

F (x, y) > 0, ∀(x, y) ∈ [x1, xn]× [y1, ym].

For (x, y) ∈ [xi, xi+1]× [yj , yj+1], we want to rewrite the
expression of the interpolation surface F (x, y) given in 3 as
the following form

F (x, y) = b0(s)F (x, yj) + b1(s)F (x, yj+1) + b0(t)F (xi, y)
+b1(t)F (xi+1, y)− b0(t)b0(s)Fi,j − b0(t)b1(s)Fi,j+1

−b1(t)b0(s)Fi+1,j − b1(t)b1(s)Fi+1,j+1

= b0(s)
[
F (x, yj)− 1

2b0(t)Fi,j − 1
2b1(t)Fi+1,j

]
+b1(s)

[
F (x, yj+1)− 1

2b0(t)Fi,j+1 − 1
2b1(t)Fi+1,j+1

]
+b0(t)

[
F (xi, y)− 1

2b0(s)Fi,j − 1
2b1(s)Fi,j+1

]
+b1(t)

[
F (xi+1, y)− 1

2b0(s)Fi+1,j − 1
2b1(s)Fi+1,j+1

]
.
(4)

Without loss of generality, for any (x, y) ∈ [xi, xi+1] ×
[yj , yj+1], since b0(z) and b1(z) are strict positive for any
z ∈ (0, 1), from (4), we can see that the interpolation surface
F (x, y) is positive everywhere in the domain [xi, xi+1] ×
[yj , yj+1] if the following constrains hold

F (x, yj)− 1
2b0(t)Fi,j − 1

2b1(t)Fi+1,j > 0,
F (x, yj+1)− 1

2b0(t)Fi,j+1 − 1
2b1(t)Fi+1,j+1 > 0,

F (xi, y)− 1
2b0(s)Fi,j − 1

2b1(s)Fi,j+1 > 0,
F (xi+1, y)− 1

2b0(s)Fi+1,j − 1
2b1(s)Fi+1,j+1 > 0.

(5)
For F (x, yj) − 1

2b0(t)Fi,j − 1
2b1(t)Fi+1,j , notice that

B0(t;α
x
i,j) + B1(t;α

x
i,j) = b0(t) and B2(t;β

x
i,j) +

B3(t;β
x
i,j) = b1(t), from (1), we have

F (x, yj)− 1
2b0(t)Fi,j − 1

2b1(t)Fi+1,j

= 1
2B0(t;α

x
i,j)Fi,j +B1(t;α

x
i,j)

[
Fi,j

2 +
2hx

i

π(1+αx
i,j)

Dx
i,j

]
+B2(t;β

x
i,j)

[
Fi+1,j

2 − 2hx
i

π(1+βx
i,j)

Dx
i+1,j

]
+1

2B3(t;β
x
i,j)Fi+1,j ,

Thus we can see that the following constrains are sufficient
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to ensure F (x, yj)− 1
2b0(t)Fi,j − 1

2b1(t)Fi+1,j > 0{
αx
i,j ≥ 0, βx

i,j ≥ 0,
Fi,j

2 +
2hx

i

π(1+αx
i,j)

Dx
i,j ≥ 0,

Fi+1,j

2 − 2hx
i

π(1+βx
i,j)

Dx
i+1,j ≥ 0,

which bring forth the following sufficient conditions αx
i,j ≥ max

{
−1− 4hx

i D
x
i,j

πFi,j
, 0
}
,

βx
i,j ≥ max

{
−1 +

4hx
i D

x
i+1,j

πFi+1,j
, 0
}
,

(6)

In the same manner, we can also derive similar sufficient
conditions for F (x, yj+1)− 1

2b0(t)Fi,j+1− 1
2b1(t)Fi+1,j+1 >

0, F (xi, y) − 1
2b0(s)Fi,j − 1

2b1(s)Fi,j+1 > 0 and
F (xi+1, y)− 1

2b0(s)Fi+1,j− 1
2b1(s)Fi+1,j+1 > 0. In conclu-

sion, for a positive data set, we can obtain the following suffi-
cient conditions for F (x, y) > 0,∀(x, y) ∈ [x1, xn]×[y1, yn]

αx
i,j = max

{
−1− 4hx

i D
x
i,j

πFi,j
, 0
}
+ axi,j ,

βx
i,j = max

{
−1 +

4hx
i D

x
i+1,j

πFi+1,j
, 0
}
+ bxi,j ,

αy
i,j = max

{
−1− 4hy

j
Dy

i,j

πFi,j
, 0
}
+ ayi,j ,

βy
i,j = max

{
−1 +

4hy
j
Dy

i,j+1

πFi,j+1
, 0
}
+ byi,j ,

(7)

where i = 1, 2, · · · , n − 1, j = 1, 2, · · · ,m − 1 and
axi,j ,ayi,j ,bxi,j and byi,j are arbitrary nonnegative real numbers
and serve as free parameters.

C. Numerical examples and comparisons

We shall give several numerical examples to show that the
proposed C1 interpolation surface F (x, y) given in (3) can
be used to nicely visualize the shape of 3D positive data
on rectangular grids. In the following figures, the given data
points have been marked with solid black dots.

Fig. 5 shows the positivity-preserving interpolation sur-
faces F1(x, y) and F2(x, y) for the 3D positive data set given
in Tab. V. From the results, we can see that both the two
visually pleasing interpolation surfaces preserve the shape of
the 3D positive data set given in Tab. V genially.

Fig. 6 shows the positivity-preserving interpolation sur-
faces F3(x, y) and F4(x, y) for the 3D positive data set
given in Tab. VI. As can be seen from Fig. 6, both the two
interpolation surfaces visualize the shape of the 3D positive
data set given in Tab. IV well.

Fig. 7 shows the positivity-preserving interpolation sur-
faces F5(x, y) and F6(x, y) for the 3D positive data set given
in Tab. VII. As can be seen from the Fig. 7, both the two
interpolation surfaces visualize the positive shape of the data
given in Tab. VII nicely and the shape of the interpolation
surfaces can be adjusted conveniently by using the local free
parameters.

Fig. 8 show the positivity-preserving interpolation surfaces
generated by the method given in [12] and our method with a
set of appropriate parameters for the positive data sets given
in Tab. VIII. From the results, it can be seen that our blending
cubci/linear trigonometric interpolation spline describes the
positive data set more fairly than the method given in [12].

IV. CONCLUSION

As stated above, the constructed C1 rational cubic/linear
trigonometric interpolation spline is suitable for constructing
positivity-preserving interpolation curves. To demonstrate

TABLE VII
THE 3D POSITIVE DATA SET GIVEN IN [19].

y/x −3 −2 −1 1 2 3
−3 0.0124 0.0238 0.0404 0.0404 0.0238 0.0124
−2 0.0238 0.0635 0.1667 0.1667 0.0635 0.0238
−1 0.0404 0.1667 1.3333 1.3333 0.1667 0.0404
1 0.0404 0.1667 1.333 1.3333 0.1667 0.0404
2 0.0238 0.0635 0.1667 0.1667 0.0635 0.0238
3 0.0124 0.0238 0.0404 0.0404 0.0238 0.0124

TABLE VIII
THE 3D POSITIVE DATA SET GIVEN IN [12].

y/x −3 −2 −1 0 1 2 3
−3 18 13 10 9 10 13 18
−2 13 8 5 4 5 8 13
−1 10 5 2 1 2 5 10
0 9 4 1 0 1 4 9
1 10 5 2 1 2 5 10
2 13 8 5 4 5 8 13
3 18 13 10 9 10 13 18

our method, comparisons with the existing methods [12],
[13], [14], [15], [16] are provided. The proposed blending
rational cubic/linear trigonometric interpolation surfaces with
four families of local free parameters can be C1 continuous
without making use of the first mixed partial derivatives at
the data points. For 3D positive data on rectangular grids, by
developing new constrain conditions on the boundary curves
of each local interpolation surface patch, we theoretically
deduce simple sufficient data dependent conditions on the
local free parameters to generate positivity-preserving inter-
polation surfaces everywhere in the domains. The developed
positivity-preserving schemes are not only local and compu-
tationally economical but also visually pleasant. The given
method also allows extensions to generate C1 positivity-
preserving interpolation surfaces for 3D non-gridded data.
These will be our future work.
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Fig. 7. C1 positivity-preserving interpolation surfaces for the 3D positive data set given in Tab. VII.
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