Some Characterizations of Fuzzy Bi-ideals and Fuzzy Quasi-ideals of Semigroups

Pongpun Julath¹ and Manoj Siripitukdet^{1,2}

Abstract—The aims of this paper are to characterize fuzzy subsemigroups, fuzzy generalized bi-ideals, fuzzy bi-ideals and fuzzy quasi-ideals of semigroups. We define certain subsets of semigroups S, [0,1] and $S \times [0,1]$. The relationships between sets of fuzzy points and the certain subsets of the semigroup $S \times [0,1]$ are discussed. In the main results, characterizations of fuzzy subsemigroups, fuzzy generalized bi-ideals, fuzzy bi-ideals and fuzzy quasi-ideals of semigroups are investigated by using the certain subsets of semigroups S, [0,1] and $S \times [0,1]$.

Index Terms—fuzzy subsemigroups, fuzzy generalized biideals, fuzzy bi-ideals, fuzzy quasi-ideals, semigroups.

I. INTRODUCTION

T HE fundamental concepts of fuzzy sets have been proposed by Zadeh [24] since 1965. These concepts were applied in many areas such as: medical science, theoretical physics, robotics, computer science, control engineering, information science, measure theory. In 1971, the concepts of fuzzy sets were transferred to fuzzy groups by Rosenfeld [19]. The study of fuzzy subsystems of semigroups was introduced by Kuroki (see [10]-[15]). He investigated some properties of fuzzy subsemigroups, fuzzy ideals, fuzzy biideals, fuzzy generalized bi-ideals, fuzzy quasi-ideals of semigroups. After that many types of fuzzy algebraic structures have been introduced and investigated.

The fuzzy ideals and bi-ideals of semigroups have been applied in characterizing the duo semigroup, the simple semigroup and semilattices of subsemigroups [11]. He also investigated characterizations of regular semigroups and both intra-regular and left quasi-regular semigroups in terms of fuzzy generalized bi-ideals [13]. Completely regular semigroups and a semilattice of groups are characterized by using fuzzy semiprime quasi-ideals [15]. In [1], Ahsan et al. studied some properties of fuzzy quasi-ideals of semigroups and used their properties to characterize regular and intra-regular semigroups. Shabir et al. [22] introduced certain types of fuzzy bi-ideals, called prime, strongly prime, and semiprime fuzzy bi-ideals, and characterized semigroups in terms of their semiprime and strongly prime fuzzy bi-ideals. Concepts of fuzzy (generalized) bi-ideals and fuzzy quasi-ideals of semigroups play an important role in the study of types of semigroups. Some authors studied similar types of fuzzy subsets of other algebraic structures seen in [3]-[8], [17], [18], [20], [21] and [23].

This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

¹Department of Mathematics, Faculty of Science Naresuan University, Phitsanulok 65000, Thailand. e-mail manojs@nu.ac.th, pongpunjulatha@hotmail.com

²Research Center for Academic Excellence in Mathematics, Naresuan University, Thailand.

Corresponding author email: manojs@nu.ac.th (M. Siripitukdet)

Our propose of this work is to promote and develop fuzzy semigroup theory and related structures by using fuzzy subsemigroups, fuzzy (generalized) bi-ideals and fuzzy quasiideals. We define the certain subsets of S, [0, 1] and $S \times [0, 1]$ and investigate their properties. In particular, we define a certain subset $U(\mathcal{R}:\alpha)$ of S where \mathcal{R} is a subset of $S \times [0,1]$ and this set is a general concept of the upper level set of a fuzzy set. We also describe relationships between sets of fuzzy points and the certain subsets of $S \times [0, 1]$. In the main results of this paper, we characterize fuzzy subsemigroups, fuzzy generalized bi-ideals, fuzzy bi-ideals and fuzzy quasiideals of semigroups by using the certain subsets of S, [0, 1]and $S \times [0, 1]$. Moreover, we show that any fuzzy subset of S is a fuzzy bi-ideal (resp., a fuzzy generalized bi-ideal, a fuzzy quasi-ideal) if and only if there exists the unique chain of bi-ideals (resp., generalized bi-ideals, quasi-ideals) of Stogether with two special conditions.

II. PRELIMINARIES

In this section, we give some definitions, notations and results of semigroups and fuzzy semigroups.

Throughout this paper, S stand for a semigroup unless otherwise specified. A nonempty subset A of S is called a **subsemigroup** of S if $AA \subseteq A$. A nonempty subset G of S is called a **generalized bi-ideal** of S if $GSG \subseteq G$. A subsemigroup B of S is called a **bi-ideal** of S if $BSB \subseteq B$. Then a nonempty subset B of S is a bi-ideal of S if and only if B is both a subsemigroup and generalized bi-ideal of S. A nonempty subset Q of S is called a **quasi-ideal** of S if $QS \cap SQ \subseteq Q$.

A fuzzy subset f [24] of S is described as a function $f: S \to [0, 1]$ and its image is denoted by $Imf = \{f(x) \mid x \in S\}$. The set of all fuzzy subsets of S is denoted by F(S) and let $f, g \in F(S)$. We define the order relation " \leq " on F(S) as follows $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in S$. For $x \in S$, define

$$F_x = \{(y, z) \in S \times S \mid x = yz\}.$$

The fuzzy subsets $f \wedge g$ and $f \circ g$ of S are defined as follows:

$$(f \wedge g)(x) = \min\{f(x), g(x)\}$$

and

$$(f \circ g)(x) = \begin{cases} \sup\{\min\{f(y), g(z)\} \mid (y, z) \in F_x\}, \\ \text{if } F_x \neq \emptyset; \\ 0, \text{ otherwise} \end{cases}$$

for all $x \in S$. Then $(F(S), \circ)$ is a semigroup [16]. For any $\alpha \in (0, 1]$ and $x \in S$, a fuzzy subset x_{α} of S is called a **fuzzy point** [9] in S if for all $y \in S$

$$x_{\alpha}(y) = \begin{cases} \alpha, & \text{if } x = y; \\ 0, & \text{otherwise} \end{cases}$$

Then the set of all fuzzy points FP(S) of S is a subsemigroup of F(S) [9].

The following definitions are important types of fuzzy subsystems of semigroups which will be used in this paper.

Definition II.1. [10] A fuzzy subset f of S is called a **fuzzy** subsemigroup of S if $f(xy) \ge \min\{f(x), f(y)\}$ for all $x, y \in S$.

Definition II.2. [12] A fuzzy subset f of S is called a **fuzzy** generalized bi-ideal of S if $f(xyz) \ge \min\{f(x), f(z)\}$ for all $x, y, z \in S$.

Definition II.3. [10] A fuzzy subsemigroup f of S is called a **fuzzy bi-ideal** of S if $f(xyz) \ge \min\{f(x), f(z)\}$ for all $x, y, z \in S$.

Then a fuzzy subset f of S is a fuzzy bi-ideal of S if and only if f is both a fuzzy generalized bi-ideal and a fuzzy subsemigroup of S.

Definition II.4. [11] A fuzzy subset f of S is called a **fuzzy quasi-ideal** of S if $(f \circ \chi_S) \land (\chi_S \circ f) \leq f$ where $\chi_S(x) = 1$ for all $x \in S$.

Define a binary operation "*" on $S \times [0,1]$ by for all $(x, \alpha), (y, \beta) \in S \times [0,1]$

$$(x,\alpha)*(y,\beta) = (xy,\min\{\alpha,\beta\}).$$

Then $(S \times [0, 1], *)$ is a semigroup [2].

Remark II.5. For every subsemigroup A of S and every nonempty subset Δ of [0,1], we have $(A \times \Delta, *)$ is a subsemigroup of $(S \times [0,1], *)$. In what follows, let $S \times \Delta$ denote the semigroup $(S \times \Delta, *)$ throughout this paper.

Let f be a fuzzy subset of S, $A \subseteq S$, $\alpha \in [0, 1]$, $\Delta \subseteq [0, 1]$ and $\mathcal{R} \subseteq S \times [0, 1]$. We define the the certain subsets of $S \times [0, 1]$, S and [0, 1], respectively as follows:

$$\begin{split} [A \times \Delta]^f &= \{(x, \alpha) \in A \times \Delta \mid f(x) \ge \alpha\}, \\ U(\mathcal{R} : \alpha) &= \{x \in S \mid (x, \beta) \in \mathcal{R} \text{ and } \alpha \le \beta \\ & \text{for some } \beta \in [0, 1]\}, \\ (Imf)_\alpha &= \{\beta \in Imf \mid \beta \ge \alpha\}. \end{split}$$

In particular, if \mathcal{R} is a fuzzy subset of S, then

$$U(\mathcal{R}:\alpha) = \{ x \in S \mid \mathcal{R}(x) \ge \alpha \}.$$

Thus $U(\mathcal{R} : \alpha)$ is a general concept of the upper level set of a fuzzy set. For $\alpha, \beta \in [0,1]$ with $\alpha \leq \beta$, we have $U(\mathcal{R} : \beta) \subseteq U(\mathcal{R} : \alpha)$. Hence $\{U(\mathcal{R} : \alpha) \mid \alpha \in [0,1]\}$ is a chain of subsets of S under the inclusion relation " \subseteq ".

The following propositions are easy to prove.

Proposition II.6. Let f be a fuzzy subset of a semigroup S. Then

(i) $(Imf)_{\alpha} \subseteq Imf \text{ for all } \alpha \in [0, 1].$

(*ii*)
$$U(f:\alpha) = \bigcup_{\gamma \in (Imf)_{\alpha}} f^{-1}(\gamma) = f^{-1}((Imf)_{\alpha})$$
 for
all $\alpha \in [0, 1]$.

(*iii*) $[S \times \Delta]^f = \bigcup_{\gamma \in \Delta} (U(f : \gamma) \times \{\gamma\})$ for every subset Δ of [0, 1].

(iv) If $\Delta \subseteq [0, 1]$ and $\mathcal{R} := [S \times \Delta]^f$, then $U(\mathcal{R} : \alpha) = U(f : \alpha)$ for all $\alpha \in \Delta$.

Proposition II.7. Let S be a semigroup and let Δ be a nonempty subset of [0,1]. If \mathcal{R} is a subsemigroup of $S \times \Delta$ and $\alpha \in \Delta$, then $U(\mathcal{R} : \alpha) \neq \emptyset$ is a subsemigroup of S.

Proposition II.8. Let S be a semigroup and let Δ be a nonempty subset of [0, 1]. If \mathcal{R} is a generalized bi-ideal of $S \times \Delta$ and $\alpha \in \Delta$, then $U(\mathcal{R} : \alpha) (\neq \emptyset)$ is a generalized bi-ideal of S.

Proposition II.9. Let S be a semigroup and let Δ be a nonempty subset of [0, 1]. If \mathcal{R} is a bi-ideal of $S \times \Delta$ and $\alpha \in \Delta$, then $U(\mathcal{R} : \alpha) \neq \emptyset$ is a bi-ideal of S.

Proposition II.10. Let S be a semigroup and let Δ be a nonempty subset of [0, 1]. If \mathcal{R} is a quasi-ideal of $S \times \Delta$ and $\alpha \in \Delta$, then $U(\mathcal{R} : \alpha) \neq \emptyset$ is a quasi-ideal of S.

III. FUZZY SUBSEMIGROUPS

In this section, we characterize fuzzy subsemigroups of a semigroup S by using the certain subsets of S, [0, 1], FP(S) and $S \times [0, 1]$.

For the following theorem, we investigate characterizations of fuzzy subsemigroups of S via the certain subsets of [0, 1] and $S \times [0, 1]$.

Theorem III.1. Let f be a fuzzy subset of a semigroup S. Then the following statements are equivalent.

- (i) f is a fuzzy subsemigroup of S.
- (ii) For every subsemigroup A of S and $\Delta \subseteq [0, 1]$, $[A \times \Delta]^f (\neq \emptyset)$ is a subsemigroup of $S \times \Delta$.
- (iii) $[S \times \Delta]^f$ is a subsemigroup of $S \times \Delta$ where $Imf \subseteq \Delta \subseteq [0, 1]$.
- (iv) $(Imf)_{f(ab)} \subseteq (Imf)_{f(a)} \cup (Imf)_{f(b)}$ for all $a, b \in S$.

Proof: $((i) \Rightarrow (ii))$ Let A be a subsemigroup of $S, \Delta \subseteq [0, 1]$ and $(a, \alpha), (b, \beta) \in [A \times \Delta]^f$. Then $f(a) \ge \alpha, f(b) \ge \beta$ and $\min\{\alpha, \beta\} \in \Delta$. Since f is a fuzzy subsemigroup of S and A is a subsemigroup of S, we have $ab \in A$ and

$$f(ab) \ge \min\{f(a), f(b)\} \ge \min\{\alpha, \beta\}.$$

Thus $(a, \alpha) * (b, \beta) \in [A \times \Delta]^f$. Hence $[A \times \Delta]^f$ is a subsemigroup of $S \times \Delta$.

 $((ii) \Rightarrow (iii))$ It is clear. $((iii) \Rightarrow (i))$ Let $Imf \subseteq \Delta \subseteq [0,1]$ and $a, b \in S$. Then $(a, f(a)), (b, f(b)) \in [S \times Imf]^f \subseteq [S \times \Delta]^f$. By assumption (iii), we have $[S \times \Delta]^f$ is a subsemigroup of $S \times \Delta$. Thus $(a, f(a)) * (b, f(b)) \in [S \times \Delta]^f$. Hence

 $f(ab) \ge \min\{f(a), f(b)\}.$ $((i) \Rightarrow (iv))$ Let $a, b \in S$ and $\alpha \in (Imf)_{f(ab)}.$ Then $\alpha \ge f(ab).$ By assumption (i), we have $\alpha \ge f(ab) \ge$ $\min\{f(a), f(b)\}.$ Thus $\alpha \ge f(a)$ or $\alpha \ge f(b).$ Hence $\alpha \in (Imf)_{f(a)}$ or $\alpha \in (Imf)_{f(b)}.$ Therefore

$$(Imf)_{f(ab)} \subseteq (Imf)_{f(a)} \cup (Imf)_{f(b)}$$

By applying Theorem III.1, we have Corollary III.2.

 $((iv) \Rightarrow (i))$ It is straightforward.

Corollary III.2. Let f be a fuzzy subset of a semigroup S. Then the following statements are equivalent.

- (i) f is a fuzzy subsemigroup of S.
- (ii) $[S \times (0,1]]^f \neq \emptyset$ is a subsemigroup of $S \times (0,1]$.
- (iii) $[S \times Imf]^f$ is a subsemigroup of $S \times Imf$.

(iv) $[S \times [0,1]]^f$ is a subsemigroup of $S \times [0,1]$.

Example III.3. Let $S = \{a, b, c, d\}$ and define a binary operation " \cdot " on S as follows :

•	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	b	a
d	a	a	b	b

Then (S, \cdot) is a semigroup (see [16]). Let f be a fuzzy subset of S such that

$$f(a) = f(b) = 0.8, \quad f(c) = 0.4, \quad f(d) = 0.3.$$

Thus, by routine calculations, we can check that $[S \times Imf]^f = \{(a, 0.8), (b, 0.8), (a, 0.4), (b, 0.4), (c, 0.4), (a, 0.3), (b, 0.3), (c, 0.3), (d, 0.3)\}$ is a subsemigroup of $S \times Imf$. By Corollary III.2, we have f is a fuzzy subsemigroup of S.

Next, we show a relation between the sets $[S \times (0, 1]]^f$ and $\underline{f} := \{x_{\alpha} \in FP(S) \mid f(x) \geq \alpha\}$ in Proposition III.4 whose proof is straightforward and omitted.

Proposition III.4. Let f be a fuzzy subset of a semigroup S. Then $[S \times (0,1]]^f$ is a subsemigroup of $S \times (0,1]$ if and only if f is a subsemigroup of FP(S).

By Corollary III.2 and Proposition III.4, we immediately get Corollary III.5.

Corollary III.5. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy subsemigroup of S if and only if $\underline{f}(\neq \emptyset)$ is a subsemigroup of FP(S).

In the following result, an equivalent condition for any fuzzy subsemigroup of a semigroup S is discussed via the chain of subsemigroups of S.

Theorem III.6. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy subsemigroup of S if and only if there exists the unique chain $\{A_{\alpha} \mid \alpha \in Imf\}$ of subsemigroups of S such that

i) $f^{-1}(\alpha) \subseteq A_{\alpha}$ for all $\alpha \in Imf$ and

ii) for all $\alpha, \beta \in Imf$, if $\alpha < \beta$ then $A_{\beta} \subset A_{\alpha}$ and $A_{\beta} \cap f^{-1}(\alpha) = \emptyset$.

Proof: (\Rightarrow) For each $\alpha \in Imf$, we choose $A_{\alpha} = U(f : \alpha)$. By Proposition II.6 (iv), Proposition II.7 and Theorem III.1, we obtain that $\{A_{\alpha} \mid \alpha \in Imf\}$ is a chain of subsemigroups of S. By Proposition II.6 (ii), we have the conditions i) and ii). Suppose that $\{B_{\alpha} \mid \alpha \in Imf\}$ is a chain of subsemigroups of S with the conditions i) and ii, and $\alpha \in Imf$.

Let $a \in B_{\alpha}$. If $f(a) < \alpha$ then by the condition ii), we have $B_{\alpha} \cap f^{-1}(f(a)) = \emptyset$. Since $a \in f^{-1}(f(a))$, we get $B_{\alpha} \cap f^{-1}(f(a)) \neq \emptyset$. This is a contradiction. Thus $f(a) \ge \alpha$ and so $a \in U(f : \alpha) = A_{\alpha}$. Hence $B_{\alpha} \subseteq A_{\alpha}$.

Let $a \in A_{\alpha}$. Then since $A_{\alpha} = U(f : \alpha)$, we get $f(a) \ge \alpha$. By the conditions i) and ii), we have

$$a \in f^{-1}(f(a)) \subseteq B_{f(a)} \subseteq B_{\alpha}$$

Hence $A_{\alpha} \subseteq B_{\alpha}$. Therefore $A_{\alpha} = B_{\alpha}$. (\Leftarrow) Let $(a, \alpha), (b, \beta) \in [S \times Imf]^f$. Then $f(a) \ge \alpha, f(b) \ge \alpha$ β and min $\{\alpha, \beta\} \in Imf$. By the conditions i) and ii), we have

$$a \in f^{-1}(f(a)) \subseteq A_{f(a)} \subseteq A_{\min\{\alpha,\beta\}}$$

and similarly $b \in A_{\min\{\alpha,\beta\}}$. Since $\{A_{\alpha} \mid \alpha \in Imf\}$ is a chain of subsemigroups of S, we get $ab \in A_{\min\{\alpha,\beta\}}$. If $f(ab) < \min\{\alpha,\beta\}$, then by the condition ii), we have $A_{\min\{\alpha,\beta\}} \cap f^{-1}(f(ab)) = \emptyset$ which contradicts with $ab \in A_{\min\{\alpha,\beta\}} \cap f^{-1}(f(ab))$. Thus $f(ab) \ge \min\{\alpha,\beta\}$. Hence $(a, \alpha) * (b, \beta) \in [S \times Imf]^f$. Therefore $[S \times Imf]^f$ is a subsemigroup of $S \times Imf$. By Corollary III.2, we have f is a fuzzy subsemigroup of S.

Remark III.7. In the proof of Theorem III.6, the unique chain of subsemigroups of S satisfying the conditions i) and ii) is $\{U(f : \alpha) \mid \alpha \in Imf\}$.

We use the consequence of Theorem III.6 and Remark III.7 to get a form of a fuzzy subsemigroup of a semigroup which its image is finite.

Corollary III.8. Let f be a fuzzy subset of a semigroup Sand $Imf = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ such that $\alpha_1 > \alpha_2 > ... > \alpha_n$. Then f is a fuzzy subsemigroup of S if and only if $\{U(f : \alpha_i) \mid i \in \{1, 2, ..., n\}\}$ is the chain of subsemigroups of Ssuch that

$$f(x) = \begin{cases} \alpha_n & \text{if } x \in U(f : \alpha_n) \setminus U(f : \alpha_{n-1}) \\ \alpha_{n-1} & \text{if } x \in U(f : \alpha_{n-1}) \setminus U(f : \alpha_{n-2}) \\ \vdots \\ \alpha_2 & \text{if } x \in U(f : \alpha_2) \setminus U(f : \alpha_1) \\ \alpha_1 & \text{if } x \in U(f : \alpha_1) \end{cases}$$

for all $x \in S$.

Corollary III.9. Let f be a fuzzy subset of a semigroup S and $Imf \subseteq \Delta \subseteq [0, 1]$. The following statements are equivalent.

- (i) f is a fuzzy subsemigroup of S.
- (*ii*) There exists a subsemigroup \mathcal{R} of $S \times \Delta$ such that $U(\mathcal{R}: \alpha) = U(f: \alpha)$ for all $\alpha \in \Delta$.
- (iii) $U(f:\alpha) \neq \emptyset$ is a subsemigroup of S for all $\alpha \in \Delta$.

Proof: $((i) \Rightarrow (ii))$ Choose $\mathcal{R} = [S \times \Delta]^f$ and use Theorem III.1 and Proposition II.6 (iv).

 $((ii) \Rightarrow (iii))$ It follows from Proposition II.7.

 $((iii) \Rightarrow (i))$ Apply Theorem III.6.

IV. FUZZY (GENERALIZED) BI-IDEALS

In this section, we characterize fuzzy generalized bi-ideals and fuzzy bi-ideals of a semigroup S by using the certain subsets of S, [0, 1], FP(S) and $S \times [0, 1]$.

For the following theorem, we investigate characterizations of fuzzy generalized bi-ideals of S via the certain subsets of [0, 1] and $S \times [0, 1]$.

Theorem IV.1. Let f be a fuzzy subset of a semigroup S. The following statements are equivalent.

- (i) f is a fuzzy generalized bi-ideal of S.
- (ii) For every generalized bi-ideal A of S and $\Delta \subseteq [0,1]$, $[A \times \Delta]^f (\neq \emptyset)$ is a generalized bi-ideal of $S \times \Delta$.
- (iii) $[S \times \Delta]^f$ is a generalized bi-ideal of $S \times \Delta$ where $Imf \subseteq \Delta \subseteq [0, 1]$.

(Advance online publication: 24 May 2017)

 $\begin{array}{rcl} (iv) & (Imf)_{f(axb)} \subseteq (Imf)_{f(a)} \cup (Imf)_{f(b)} \ for \ all \\ & a,b,x \in S. \end{array}$

Proof: $((i) \Rightarrow (ii))$ Let A be a generalized bi-ideal of $S, \Delta \subseteq [0,1], (x,\gamma) \in S \times \Delta$ and $(a,\alpha), (b,\beta) \in [A \times \Delta]^f$. Then $\min\{\alpha, \beta, \gamma\} \in \Delta$ and

$$\min\{f(a), f(b)\} \ge \min\{\alpha, \beta\} \ge \min\{\alpha, \beta, \gamma\}.$$

Since f is a fuzzy generalized bi-ideal of S and A is a generalized bi-ideal of S, we get $axb \in A$ and

$$f(axb) \ge \min\{f(a), f(b)\} \ge \min\{\alpha, \beta, \gamma\}.$$

Thus $(a, \alpha) * (x, \gamma) * (b, \beta) \in [A \times \Delta]^f$.

Hence $[A \times \Delta]^f$ is a generalized bi-ideal of $S \times \Delta$. ((*ii*) \Rightarrow (*iii*)) It is clear.

 $((iii) \Rightarrow (i))$ Let $Imf \subseteq \Delta \subseteq [0,1]$ and $a, b, x \in S$. Then $(x, f(a)) \in S \times \Delta$ and $(a, f(a)), (b, f(b)) \in [S \times \Delta]^f$. By assumption (iii), we have $(a, f(a)) * (x, f(a)) * (b, f(b)) \in [S \times \Delta]^f$. Thus $f(axb) \ge \min\{f(a), f(b)\}$.

 $((i) \Rightarrow (iv))$ Let $a, b, x \in S$ and $\alpha \in (Imf)_{f(axb)}$. Then $\alpha \geq f(axb)$. By assumption (i), we have $\alpha \geq f(axb) \geq \min\{f(a), f(b)\}$. Thus $\alpha \in (Imf)_{f(a)} \cup (Imf)_{f(b)}$. Hence

$$(Imf)_{f(axb)} \subseteq (Imf)_{f(a)} \cup (Imf)_{f(b)}.$$

 $((iv) \Rightarrow (i))$ It is straightforward.

By Theorem III.1 and Theorem IV.1, we immediately have the following theorem.

Theorem IV.2. Let f be a fuzzy subset of a semigroup S. Then the following statements are equivalent.

- (i) f is a fuzzy bi-ideal of S.
- (ii) For every bi-ideal A of S and $\Delta \subseteq [0, 1]$, $[A \times \Delta]^f (\neq \emptyset)$ is a bi-ideal of $S \times \Delta$.
- (*iii*) $[S \times \Delta]^f$ is a bi-ideal of $S \times \Delta$ where $Imf \subseteq \Delta \subseteq [0, 1]$.
- $\begin{array}{rcl} (iv) & (Imf)_{f(axb)} \ \cup \ (Imf)_{f(ab)} \ \subseteq \ (Imf)_{f(a)} \ \cup \\ & (Imf)_{f(b)} \ for \ all \ a, b, x \in S. \end{array}$

By using and applying Theorem IV.1 and Theorem IV.2, we have Corollary IV.3.

Corollary IV.3. Let f be a fuzzy subset of a semigroup S. Then the following statements are equivalent.

- (i) f is a fuzzy (generalized) bi-ideal of S.
- (ii) $[S \times (0,1]]^f \neq \emptyset$ is a (generalized) bi-ideal of $S \times (0,1]$.
- (*iii*) $[S \times Imf]^f$ is a (generalized) bi-ideal of $S \times Imf$.
- (iv) $[S \times [0,1]]^f$ is a (generalized) bi-ideal of $S \times [0,1]$.

Example IV.4. Let $S = \{a, b, c, d\}$ be a semigroup under the same binary operation in Example III.3.

(i) Let f be a fuzzy subset of S such that f(a) = 0.7, f(b) = 0.5, f(c) = 0.6, f(d) = 0.4.By routine calculations, we can check that

$$[S \times Imf]^f = \{(a, 0.7), (a, 0.6), (a, 0.5), (a, 0.4), (b, 0.5), (b, 0.4), (c, 0.6), (c, 0.5), (c, 0.4), (d, 0.4)\}$$

is a generalized bi-ideal of $S \times Imf$, but it is not a bi-ideal of $S \times Imf$ because

$$(c, 0.6) * (c, 0.6) = (b, 0.6) \notin [S \times Imf]^f,$$

that is, $[S \times Imf]^f$ is not a subsemigroup of $S \times Imf$. By Corollary IV.3, we get f is a fuzzy generalized bi-ideal of S but not a fuzzy bi-ideal of S.

(ii) Let g be a fuzzy subset of S such that g(a) = 0.9, g(b) = g(c) = 0.3, g(d) = 0.1. Thus $[S \times Img]^g = \{(a, 0.9), (a, 0.3), (a, 0.1), (b, 0.3), (b, 0.1), (c, 0.3), (c, 0.1), (d, 0.1)\}$ is a bi-ideal of $S \times Img$. By Corollary IV.3, we have g is a fuzzy bi-ideal of S.

By Theorem III.1 and Theorem IV.1, the following corollary holds:

Corollary IV.5. Let f be a fuzzy bi-ideal of a semigroup S, $A \subseteq S$ and $\Delta \subseteq [0,1]$ such that $[A \times \Delta]^f \neq \emptyset$. Then the following statements hold.

- (i) If A is a subsemigroup of S, then $[A \times \Delta]^f$ is a subsemigroup of $S \times \Delta$.
- (*ii*) If A is a generalized bi-ideal of S, then $[A \times \Delta]^f$ is a generalized bi-ideal of $S \times \Delta$.

Next, we give a relation between a (generalized) biideal $[S \times (0,1]]^f$ of $S \times (0,1]$ and a (generalized) biideal <u>f</u> of FP(S) in the following proposition. Its proof is straightforward and omitted.

Proposition IV.6. Let f be a fuzzy subset of a semigroup S. Then $[S \times (0,1]]^f$ is a (generalized) bi-ideal of $S \times (0,1]$ if and only if f is a (generalized) bi-ideal of FP(S).

Corollary IV.7. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy (generalized) bi-ideal of S if and only if $f(\neq \emptyset)$ is a (generalized) bi-ideal of FP(S).

In the following theorem, we characterize a fuzzy generalized bi-ideal of a semigroup S by the chain of generalized bi-ideals of S.

Theorem IV.8. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy generalized bi-ideal of S if and only if there exists the unique chain $\{A_{\alpha} \mid \alpha \in Imf\}$ of generalized biideals of S such that

- i) $f^{-1}(\alpha) \subseteq A_{\alpha}$ for all $\alpha \in Imf$ and
- *ii)* for all $\alpha, \beta \in Imf$, if $\alpha < \beta$ then $A_{\beta} \subset A_{\alpha}$ and $A_{\beta} \cap f^{-1}(\alpha) = \emptyset$.

Proof: (\Rightarrow) Choose $A_{\alpha} = U(f : \alpha)$ for all $\alpha \in Imf$. By Proposition II.6 (iv), Proposition II.8 and Theorem IV.1, we get that $\{A_{\alpha} \mid \alpha \in Imf\}$ is a chain of generalized biideals of S satisfying the conditions i) and ii). For the proof of uniqueness, it is similar to the proof of uniqueness of Theorem III.6.

 $(\Leftarrow) \text{ Let } (a, \alpha), (b, \beta) \in [S \times Imf]^f \text{ and } (x, \gamma) \in S \times Imf.$ Then $\min\{\alpha, \beta, \gamma\} \in Imf$ and

$$\min\{f(a), f(b)\} \ge \min\{\alpha, \beta\} \ge \min\{\alpha, \beta, \gamma\}.$$

By the conditions i) and ii), we have

$$a \in f^{-1}(f(a)) \subseteq A_{f(a)} \subseteq A_{\min\{\alpha,\beta,\gamma\}}.$$

Similarly, we have $b \in A_{\min\{\alpha,\beta,\gamma\}}$. Since $A_{\min\{\alpha,\beta,\gamma\}}$ is a generalized bi-ideal of S, we have $axb \in A_{\min\{\alpha,\beta,\gamma\}}$. If $f(axb) < \min\{\alpha,\beta,\gamma\}$, then by the condition ii, we have $A_{\min\{\alpha,\beta,\gamma\}} \cap f^{-1}(f(axb)) = \emptyset$ which contradicts

(Advance online publication: 24 May 2017)

with $axb \in A_{\min\{\alpha,\beta,\gamma\}} \cap f^{-1}(f(axb))$. Thus $f(axb) \ge \min\{\alpha,\beta,\gamma\}$. Hence $(a,\alpha) * (x,\gamma) * (b,\beta) \in [S \times Imf]^f$. Therefore $[S \times Imf]^f$ is a generalized bi-ideal of $S \times Imf$. By Corollary IV.3, we get f is a fuzzy generalized bi-ideal of S.

In the following corollary, we show a form of a fuzzy generalized bi-ideal f of a semigroup where Imf is finite.

Corollary IV.9. Let f be a fuzzy subset of a semigroup Sand $Imf = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ such that $\alpha_1 > \alpha_2 > ... > \alpha_n$. Then f is a fuzzy generalized bi-ideal of S if and only if $\{U(f : \alpha_i) \mid i \in \{1, 2, ..., n\}\}$ is the chain of generalized bi-ideals of S such that

$$f(x) = \begin{cases} \alpha_n & \text{if } x \in U(f : \alpha_n) \setminus U(f : \alpha_{n-1}) \\ \alpha_{n-1} & \text{if } x \in U(f : \alpha_{n-1}) \setminus U(f : \alpha_{n-2}) \\ \vdots \\ \alpha_2 & \text{if } x \in U(f : \alpha_2) \setminus U(f : \alpha_1) \\ \alpha_1 & \text{if } x \in U(f : \alpha_1) \end{cases}$$

for all $x \in S$.

Corollary IV.10. Let f be a fuzzy subset of a semigroup S and $Imf \subseteq \Delta \subseteq [0,1]$. The following statements are equivalent.

- (i) f is a fuzzy generalized bi-ideal of S.
- (*ii*) There exists a generalized bi-ideal \mathcal{R} of $S \times \Delta$ such that $U(\mathcal{R} : \alpha) = U(f : \alpha)$ for all $\alpha \in \Delta$.
- (iii) $U(f:\alpha) \neq \emptyset$ is a generalized bi-ideal of S for all $\alpha \in \Delta$.

Proof: $((i) \Rightarrow (ii))$ Choose $\mathcal{R} = [S \times \Delta]^f$ and use Theorem IV.1 and Proposition II.6 (iv).

 $((ii) \Rightarrow (iii))$ It follows from Proposition II.8.

 $((iii) \Rightarrow (i))$ Apply Theorem IV.8.

In the following three results, we characterize fuzzy biideals of semigroups.

Theorem IV.11. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy bi-ideal of S if and only if there exists the unique chain $\{A_{\alpha} \mid \alpha \in Imf\}$ of bi-ideals of S such that

- i) $f^{-1}(\alpha) \subseteq A_{\alpha}$ for all $\alpha \in Imf$ and
- ii) for all $\alpha, \beta \in Imf$, if $\alpha < \beta$ then $A_{\beta} \subset A_{\alpha}$ and $A_{\beta} \cap f^{-1}(\alpha) = \emptyset$.

Proof: It follows from Theorem III.6 and Theorem IV.8.

Corollary IV.12. Let f be a fuzzy subset of a semigroup Sand $Imf = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ such that $\alpha_1 > \alpha_2 > ... > \alpha_n$. Then f is a fuzzy bi-ideal of S if and only if $\{U(f : \alpha_i) \mid i \in \{1, 2, ..., n\}\}$ is the chain of bi-ideals of S such that

$$f(x) = \begin{cases} \alpha_n & \text{if } x \in U(f : \alpha_n) \setminus U(f : \alpha_{n-1}) \\ \alpha_{n-1} & \text{if } x \in U(f : \alpha_{n-1}) \setminus U(f : \alpha_{n-2}) \\ \vdots \\ \alpha_2 & \text{if } x \in U(f : \alpha_2) \setminus U(f : \alpha_1) \\ \alpha_1 & \text{if } x \in U(f : \alpha_1) \end{cases}$$

for all $x \in S$.

Proof: It follows from Corollary III.8 and Corollary IV.9.

Corollary IV.13. Let f be a fuzzy subset of a semigroup S and $Imf \subseteq \Delta \subseteq [0,1]$. The following statements are equivalent.

- (i) f is a fuzzy bi-ideal of S.
- (*ii*) There exists a bi-ideal \mathcal{R} of $S \times \Delta$ such that $U(\mathcal{R}: \alpha) = U(f: \alpha)$ for all $\alpha \in \Delta$.

(*iii*) $U(f:\alpha) \neq \emptyset$ is a bi-ideal of S for all $\alpha \in \Delta$.

Proof: It follows from Corollary III.9 and Corollary IV.10.

V. FUZZY QUASI-IDEALS OF SEMIGROUPS

In this section, characterizations of fuzzy quasi-ideals of a semigroup S are studied by using the certain subsets of S, [0, 1], FP(S) and $S \times [0, 1]$.

In Theorem V.1, we characterize fuzzy quasi-ideals of S via the certain subsets of [0,1] and $S \times [0,1]$.

Theorem V.1. Let f be a fuzzy subset of a semigroup S. Then the following statements are equivalent.

(i) f is a fuzzy quasi-ideal of S.

or

- (ii) For every quasi-ideal A of S and $\Delta \subseteq [0, 1]$, $[A \times \Delta]^f (\neq \emptyset)$ is a quasi-ideal of $S \times \Delta$.
- (*iii*) $[S \times \Delta]^f$ is a quasi-ideal of $S \times \Delta$ where $Imf \subseteq \Delta \subseteq [0, 1]$.

(iv) For all
$$a \in S$$
 such that $F_a \neq \emptyset$, we have

$$(Imf)_{f(a)} \subseteq \bigcap_{(x,y)\in F_a} (Imf)_{f(x)}$$

$$(Imf)_{f(a)} \subseteq \bigcap_{(x,y)\in F_a} (Imf)_{f(y)}.$$

 $\begin{array}{l} \textit{Proof:} \ ((i) \Rightarrow (ii)) \ \text{Let} \ A \ \text{be a quasi-ideal of} \ S, \\ \Delta \subseteq [0,1] \ \text{and} \end{array}$

$$(a,\alpha)\in (S\times\Delta\ast[A\times\Delta]^f)\cap ([A\times\Delta]^f\ast S\times\Delta).$$

Then there exist $(x_1, \beta_1), (x_2, \beta_2) \in S \times \Delta$ and $(a_1, \gamma_1), (a_2, \gamma_2) \in [A \times \Delta]^f$ such that

$$(a, \alpha) = (x_1, \beta_1) * (a_1, \gamma_1) = (a_2, \beta_2) * (x_2, \gamma_2).$$

Thus $f(a_1) \ge \gamma_1 \ge \min\{\gamma_1, \beta_1\} = \alpha$ and $f(a_2) \ge \gamma_2 \ge \min\{\gamma_2, \beta_2\} = \alpha$. Since A is a quasi-ideal of S, we have $a \in A$. Consider

$$\begin{aligned} (\chi_S \circ f)(a) &= \sup\{\min\{\chi_S(x), f(y)\} \mid (x, y) \in F_a\} \\ &\geq \min\{\chi_S(x_1), f(a_1)\} \\ &= f(a_1) \\ &\geq \alpha. \end{aligned}$$

Similarly, $(f \circ \chi_S)(a) \ge \min\{f(a_2), \chi_S(x_2)\} \ge \alpha$. By assumption (i), we get

$$f(a) \geq ((\chi_S \circ f) \land (f \circ \chi_S))(a) \geq \alpha.$$

Hence $(a, \alpha) \in [A \times \Delta]^f$. Therefore $[A \times \Delta]^f$ is a quasi-ideal of $S \times \Delta$.

 $((ii) \Rightarrow (iii))$ It is clear.

 $((iii) \Rightarrow (i))$ Let $Imf \subseteq \Delta \subseteq [0, 1]$. Suppose that $((\chi_S \circ f) \land (f \circ \chi_S))(a) > f(a)$ for some $a \in S$. Thus

$$\sup\{f(x) \mid (x, y) \in F_a\} > f(a), \\ \sup\{f(y) \mid (x, y) \in F_a\} > f(a).$$

(Advance online publication: 24 May 2017)

Hence $f(x_1) > f(a)$ and $f(y_2) > f(a)$ for some (x_1, y_1) , $(x_2, y_2) \in F_a$. Clearly, $(x_1, f(x_1)), (y_2, f(y_2)) \in [S \times \Delta]^f$ and $(y_1, f(y_2)), (x_2, f(x_1)) \in S \times \Delta$. Then,

$$(a, \min\{f(x_1), f(y_2)\}) = (x_1, f(x_1)) * (y_1, f(y_2)) = (x_2, f(x_1)) * (y_2, f(y_2)).$$

By assumption (*iii*), we have

$$(a, \min\{f(x_1), f(y_2)\}) \in [S \times \Delta]^f.$$

Therefore $f(a) \ge f(x_1)$ or $f(a) \ge f(y_2)$. It is a contradiction. Hence $((\chi_S \circ f) \land (f \circ \chi_S))(a) \le f(a)$ for all $a \in S$, that is f is a fuzzy quasi-ideal of S.

$$((i) \Rightarrow (iv)) \text{ Let } a \in S \text{ and } F_a \neq \emptyset. \text{ Then for all } (x, y) \in F_a$$
$$(f \circ \chi_S)(a) = \sup\{\min\{f(x), \chi_S(y)\} \mid (x, y) \in F_a\}$$
$$\geq f(x).$$

Similarly, we have that $(\chi_S \circ f)(a) \ge f(y)$ for all $(x, y) \in F_a$. By assumption (i), we have

$$f(a) \ge \min\{(f \circ \chi_S)(a), (\chi_S \circ f)(a)\}.$$

Consider the following cases:

Case 1: $f(a) \ge (f \circ \chi_S)(a)$. Then $f(a) \ge f(x)$ for all $(x, y) \in F_a$. Thus $(Imf)_{f(a)} \subseteq (Imf)_{f(x)}$ for all $(x, y) \in F_a$. Hence $(Imf)_{f(a)} \subseteq \bigcap_{(x,y)\in F_a} (Imf)_{f(x)}$.

Case 2: $f(a) \ge (\chi_S \circ f)(a)$. Its proof is similar to the proof of Case 1.

Therefore, $(Imf)_{f(a)} \subseteq \bigcap_{(x,y)\in F_a} (Imf)_{f(y)}.$

 $((iv) \Rightarrow (i))$ It is straightforward.

By Theorem V.1, we get Corollary V.2.

Corollary V.2. Let f be a fuzzy subset of a semigroup S. Then the following statements are equivalent.

- (i) f is a fuzzy quasi-ideal of S.
- (ii) $[S \times (0,1]]^f \neq \emptyset$ is a quasi-ideal of $S \times (0,1]$.
- (*iii*) $[S \times Imf]^f$ is a quasi-ideal of $S \times Imf$.
- (iv) $[S \times [0,1]]^f$ is a quasi-ideal of $S \times [0,1]$.

Example V.3. Let $S = \{0, a, b, c\}$ be a semigroup with the following multiplication table:

Let f be a fuzzy subset of S such that

$$f(0) = f(a) = 0.8, \quad f(b) = f(c) = 0.3.$$

Thus $[S \times Imf]^f = \{(0,0.8), (a,0.8), (0,0.3), (a,0.3), (b,0.3), (c,0.3)\}$ is a quasi-ideal of $S \times Imf$. By Corollary V2, we get f is a fuzzy quasi-ideal of S.

Proposition V.4. Let f be a fuzzy subset of a semigroup S. Then $[S \times (0,1]]^f$ is a quasi-ideal of $S \times (0,1]$ if and only if f is a quasi-ideal of FP(S).

Proof: It is straightforward.

Corollary V.5. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy quasi-ideal of S if and only if $\underline{f}(\neq \emptyset)$ is a quasi-ideal of FP(S). *Proof:* It follows from Corollary V.2 and Proposition V.4.

In Theorem V.6, we give a characterization of a fuzzy quasi-ideal of a semigroup S by the chain of quasi-ideals of S.

Theorem V.6. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy quasi-ideal of S if and only if there exists the unique chain $\{A_{\alpha} \mid \alpha \in Imf\}$ of quasi-ideals of S such that

- i) $f^{-1}(\alpha) \subseteq A_{\alpha}$ for all $\alpha \in Imf$ and
- *ii)* for all $\alpha, \beta \in Imf$, if $\alpha < \beta$ then $A_{\beta} \subset A_{\alpha}$ and $A_{\beta} \cap f^{-1}(\alpha) = \emptyset$.

Proof: (\Rightarrow) Choose $A_{\alpha} = U(f : \alpha)$ for all $\alpha \in Imf$. By Proposition II.10, Proposition II.6 (iv) and Theorem V.1, we get $\{A_{\alpha} \mid \alpha \in Imf\}$ is a chain of quasi-ideals of S satisfying the conditions i) and ii). For the proof of uniqueness, it is similar to the proof of uniqueness of Theorem III.6.

(⇐) Let $(a, \alpha) \in (S \times Imf * [S \times Imf]^f) \cap ([S \times Imf]^f * S \times Imf)$. Then

$$(a, \alpha) = (x_1, \beta_1) * (a_1, \gamma_1) = (a_2, \beta_2) * (x_2, \gamma_2)$$

for some $(a_1, \gamma_1), (a_2, \gamma_2) \in [S \times Imf]^f$ and $(x_1, \beta_1), (x_2, \beta_2) \in S \times Imf$. Thus

$$f(x_1) \ge \gamma_1 \ge \alpha$$
 and $f(x_2) \ge \gamma_2 \ge \alpha$.

By the conditions i) and ii), we see that

$$x_1 \in f^{-1}(f(x_1)) \subseteq A_{f(x_1)} \subseteq A_{d}$$

and similarly $x_2 \in A_\alpha$. Since A_α is a quasi-ideal of S, we have $a \in A_\alpha$. Thus $f(a) \ge \alpha$. Indeed, if $f(a) < \alpha$ then by the condition *ii*), we get $A_\alpha \cap f^{-1}(f(a)) = \emptyset$ which is a contradiction with $a \in A_\alpha \cap f^{-1}(f(a))$. Therefore $(a, \alpha) \in [S \times Imf]^f$. Consequently, $[S \times Imf]^f$ is a quasi-ideal of $S \times Imf$. By Corollary V.2, we have f is a fuzzy quasi-ideal of S.

In the proof of Theorem V.6, the unique chain of quasiideals of S satisfying the conditions i) and ii) is $\{U(f : \alpha) \mid \alpha \in Imf\}$. Then we get a form of a fuzzy quasi-ideal of S which its image is finite.

Corollary V.7. Let f be a fuzzy subset of a semigroup Sand $Imf = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ such that $\alpha_1 > \alpha_2 > ... > \alpha_n$. Then f is a fuzzy quasi-ideal of S if and only if $\{U(f : \alpha_i) \mid i \in \{1, 2, ..., n\}\}$ is the chain of quasi-ideals of S such that

$$f(x) = \begin{cases} \alpha_n & \text{if } x \in U(f : \alpha_n) \setminus U(f : \alpha_{n-1}) \\ \alpha_{n-1} & \text{if } x \in U(f : \alpha_{n-1}) \setminus U(f : \alpha_{n-2}) \\ \vdots \\ \alpha_2 & \text{if } x \in U(f : \alpha_2) \setminus U(f : \alpha_1) \\ \alpha_1 & \text{if } x \in U(f : \alpha_1) \end{cases}$$

for all $x \in S$.

Corollary V.8. Let f be a fuzzy subset of a semigroup S and $Imf \subseteq \Delta \subseteq [0, 1]$. The following statements are equivalent.

- (i) f is a fuzzy quasi-ideal of S.
- (*ii*) There exists a quasi-ideal \mathcal{R} of $S \times \Delta$ such that $U(\mathcal{R}:\alpha) = U(f:\alpha)$ for all $\alpha \in \Delta$.
- (*iii*) $U(f:\alpha) \neq \emptyset$ is a quasi-ideal of S for all $\alpha \in \Delta$.

Proof: $((i) \Rightarrow (ii))$ Choose $\mathcal{R} = [S \times \Delta]^f$ and use Theorem V.1 and Proposition II.6 (iv). $((ii) \Rightarrow (iii))$ It follows from Proposition II.10. $((iii) \Rightarrow (i))$ Apply Theorem V.6.

ACKNOWLEDGMENT

This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

REFERENCES

- [1] J. Ahsan, R.M. Latif, M. Shabir, "Fuzzy quasi-ideals in semigroups," The Journal of Fuzzy Mathematics, vol. 9, no. 2, pp 259-270, 2001
- [2] Y.B. Jun, S.Z. Song, "Generalized fuzzy interior ideals in semigroups," Information Sciences, vol. 176, no. 20, pp 3079-3093, 2006
- [3] S. Kar, P. Sarkar, "Fuzzy quasi-ideals and fuzzy bi-ideals of ternary semigroups," Annals of Fuzzy Mathematics and Informatics, vol. 4, no. 2, pp 407-423, 2012
- [4] J. Kavikumar, A. Khamis, Y.B. Jun, "Fuzzy bi-ideals in ternary semirings," International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, vol. 3, no. 7, pp 542-546, 2009
- N. Kehayopulu, M. Tsingelis, "Fuzzy bi-ideals in ordered semigroups," [5] Information Sciences, vol. 171, no. 1-3, pp 13-28, 2005
- [6] N. Kehayopulu, M. Tsingelis, "Fuzzy right, left, quasi-ideals, bi-ideals in ordered semigroups," Lobachevskii Journal of Mathematics, vol. 30, no. 1, pp 17-22, 2009
- [7] N. Kehayopulu, M. Tsingelis, "Regular ordered semigroups in terms of fuzzy subsets," Information Sciences, vol. 176, no. 24, pp 3675-3693, 2006
- [8] A. Khan, M. Shabir, "Fuzzy quasi-ideals of ordered semigroups," Bulletin of the Malaysian Mathematical Sciences Society, vol. 34, no. 1. pp 87-102. 2011
- K.H. Kim, "On fuzzy point in semigroups," International Journal of [9] Mathematics and Mathematical Sciences, vol. 26, no. 11, pp 707-712, 2001
- [10] N. Kuroki, "Fuzzy bi-ideals in semigroups," Commentarii Mathematici Universitatis Sancti Pauli, vol. 28, no. 1, pp 17-21, 1979
- [11] N. Kuroki, "On fuzzy ideals and fuzzy bi-ideals in semigroups," Fuzzy Sets and Systems, vol. 5, no. 2, pp 203-215, 1981
- [12] N. Kuroki, "Fuzzy semiprime ideals in semigroups," Fuzzy Sets and Systems, vol. 8, no. 1, pp 71-79, 1982
- [13] N. Kuroki, "On fuzzy semigroups," Information Sciences, vol. 53, no. 3, pp 203-236, 1991
- [14] N. Kuroki, "Fuzzy generalized bi-ideals in semigroups," Information Sciences, vol. 66, no. 3, pp 235-243, 1992
- [15] N. Kuroki, "Fuzzy semiprime quasi-ideals in semigroups," Information Sciences, vol. 75, no. 3, pp 201-211, 1993
- [16] N. Kuroki, D.S. Malik, J.N. Mordeson, "Fuzzy semigroups," Germany: Springer-Verlag Berlin Heidelberg 2003 [17] S.K. Majumder, M. Mandal, "Fuzzy generalized bi-ideals of Γ -
- semigroups," Fuzzy Information and Engineering, vol. 4, no. 4, pp 389-399, 2012
- [18] T.K. Mukherjee, M.K. Sen, "Prime fuzzy ideals in rings," Fuzzy Sets and Systems vol. 32, no. 3, pp 337-341, 1989 [19] A. Rosenfeld, "Fuzzy groups," Journal of Mathematical Analysis and
- Applications, vol. 35, no. 3, pp 512-517, 1971
- [20] S. Saelee, R. Chinram, "A study on rough, fuzzy and rough fuzzy biideals of ternary semigroups," IAENG International of Applied Mathematics, vol. 41, no. 3, pp 172-176, 2011
- [21] M. Shabir, M. Bano, "Prime bi-ideals in ternary semigroups," Qasigroups and Related Systems, vol. 16, no. 2, pp 239-256, 2008
- [22] M. Shabir, Y.B. Jun, M. Bano, "On prime fuzzy bi-ideals of semigroups," Iranain Journal of Fuzzy Systems, vol. 7, no. 3, pp 115-128, 2010
- [23] M. Shabir, A. Khan, "Characterizations of ordered semigroups by the properties of their fuzzy ideals," Computers and Mathematics with applications, vol. 59, no. 1, pp 539-549, 2010 [24] L.A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp
- 338-353, 1965