



Abstract—Aiming at typical shortcomings including large

memory occupation of GA(Genetic Algorithm) in evolvable

hardware and poor searching capabilities of CGA(Compact

Genetic Algorithm) in solving complex problems, this paper

presents an improved compact genetic algorithm named

ne-TCGA(none-persistent elitism Compact Genetic Algorithm

with Tendency). This algorithm is combined with the analysis of

convergent trend on the basis of TCGA (Compact Genetic

Algorithm with Tendency) and it adopts the strategy of

temporary elitist preservation, which both ensure the adequate

selection pressure, and maintains the diversity of the population

in the evolutionary process. According to the experiment, it can

be concluded that the ne-TCGA applied in evolvable hardware

has better computational efficiency than other random search

algorithms.

Index Terms—evolvable hardware, genetic algorithm,

ne-TCGA System control, temporary elitist preservation

I. INTRODUCTION

ITH the development of fixed functional hardware and

the reconfigurable hardware, the self-configurable and

evolvable hardware will act the mainstream in near future.

They are endowed to solve large-scale and complex problems

by using the evolution patterns of biology [1]-[4], and can

make the system automatically adjust internal structures in

real time for adapting changes of internal and external

environments [5]. Therefore, evolvable hardware will have a

wide application prospect and considerable industrial,

commercial value in circuit design [6], [7], fault-tolerant

systems [8], pattern recognition [9], artificial intelligence [10],

[11], and other fields. However, the configuration of logic

circuits in evolvable hardware evolves according to the

evolutionary algorithm, so the evolvable result and efficiency

of the evolutionary algorithm to great extent decide whether

the evolvable hardware is able to achieve the desired function

or not. At present, the evolvable hardware technology is only

able to accomplish simple small-scale circuits. So there still

exist several problems in the process of its development, such

Manuscript received November 26, 2016; revised May 15, 2017. This

work is partially supported by National Natural Science Foundation of China

under Grant Nos. 51490660 and 51405362.

Jianwei Mi is a Associate Professor in Key Laboratory of Electronic

Equipment Structure Design, Ministry of Education of China, Xidian

University, Xi'an, Shaanxi, China(e-mail: jwmi@xidian.edu.cn).

Xiaoli Fang is a M.Sc. candidate at School of Mechanical and

Electrical Engineering, Xidian University, Xi'an, Shaanxi, China(e-mail:

xiaoli_fang@yeah.net).

Libin Fan is a M.Sc. candidate at School of Mechanical and Electrical

Engineering, Xidian University, Xi'an, Shaanxi, China(e-mail:

15129563686@163.com).

as the low speed of evolution, the low efficiency of evolution,

the weak robustness of evolvable circuit [12], [13]. In order to

tackle these problems, it is of particularly importance to

analyze the basic theoretical knowledge thoroughly and

propose an algorithm with favorable effect of convergence

and high efficiency of execution. Therefore, this paper

elaborates an improved genetic algorithm with tendency

named ne-TCGA (none-persistent elitism Compact Genetic

Algorithm with Tendency), which improves the convergent

efficiency of algorithm and achieves satisfactory performance

of application in hardware evolution.

II. THE FUNDAMENTAL CONCEPT OF NE-TCGA

The key technologies of evolvable hardware include

programmable logic device and evolutionary algorithm. It is

required that the corresponding devices can be configured

repeatedly because of the randomness of evolutionary process

and more evolutionary frequency. The dominant advantage of

FPGA is programmable on-line. Therefore, FPGA currently

becomes an ideal implementation device. GA (Genetic

Algorithm) which is a random search algorithm for the

simulation of natural evolution in biosphere by using a series

of encoded bit string to describe the population of candidate

solutions of the problem, is one of the most commonly used

algorithms in evolutionary algorithms. However, because it

needs to store large amounts of individual information in a

population, the required storage space is proportional to L•N

(where L represents the length of the chromosome bit string, N

represents the population size). That is to say that the GA

requires the storage unit of O(N) order of magnitude, thus

consuming a large amount of hardware resources and having

huge calculation in dealing with complex problems [14]. At

present, there are many ways and technologies to improve the

application of GA in FPGA [12], such as the CGA (Compact

Genetic Algorithm) [15]. The CGA uses the probability

vector to describe the population. Its evolutionary process is

that each generation can randomly produce two mutually

independent chromosomes according to the probability vector

and calculate fitness for them to update value of the

probability vector. The evolution process terminates and

makes the obtained probability vector as an optimal solution

for problems until every bit of probability vector converges to

"0" or "1." Therefore, CGA is very effective in application of

limited memory, such as evolvable hardware [12].

A. The Advent of ne-TCGA

Although CGA is more successful than GA in terms of

storage, and it has an explicit termination criterion, which is

The Hardware Evolution Based on New

ne-TCGA Algorithm

Jianwei Mi, Xiaoli Fang, and Libin Fan

W

Engineering Letters, 25:3, EL_25_3_09

(Advance online publication: 23 August 2017)

__

when every bit of probability vector converges to "0" or "1,"

the evolution terminates. However, because the CGA

achieves less information in the evaluation of chromosome

[16] and has weak ability to search and insufficient ability to

extract information of excellent individual, which

straightforward lead to the loss of excellent individual and

premature, and it can only be used to tackle certain simple

problems of first order. The implementation results often fail

to meet the actual application requirements for complex

problems and the execution speed is low. Aiming at these

shortcomings, the TCGA (Compact Genetic Algorithm with

Tendency) is proposed afterward. TCGA includes extra

judgment for trend from the current solution toward the

optimal solution in the algorithm, and introduces the strategy

of elitist preservation. But excessive elitist preservation may

lead to premature convergence, and high selection pressure

results in rapid convergence of the group. Thus it tends to fall

into local optima at the expense of diversity of the population.

So this paper proposes ne-TCGA, and introduces the

temporary strategy of elitist preservation and parameters α

which represents the maximum algebra of elitist preservation.

The elite individuals can be inherited to the next generation

within α-generations, but it will regenerate two chromosomes

by the probability vector more than α-generations. The

detailed process of ne-TCGA will be described as follows.

B. Detailed Process of ne-TCGA

1) Construct a probability vector P which has the same

encoding length L as chromosome and let each bit of

probability vector be equal to 0.5. Then generate two

chromosomes randomly according to the probability vector.

Each bit value of the probability vector represents the

probability of the corresponding bit in the newly generated

chromosome is equal to 1.

2) Calculate the fitness value of two generated

chromosomes separately and compare these two fitness

values. The chromosome with larger fitness value is treated as

"winner." On the contrary, the chromosome with smaller

fitness value is treated as "loser." Then compare each bit of

the "winner" and "loser," if the two corresponding numbers

are not equal to each other, then jump to step 3). Otherwise,

continue to compare the next bit.

3) Invert the bit of the "winner," and then, judge and

compare the fitness value between the inverted individual and

the original individual. If the inverted fitness increases, one

should judge the value of inverted bit. If its value is "1,"

update corresponding bit value of probability vector by

adding the 1/N step length. If its value is "0," update

corresponding bit value of probability vector by reducing the

1/N step length. The computational cost and storage in the

algorithm is dependent of N, which is defined as the

population size.

4) Determine whether it reaches the convergent conditions.

If it reached, then terminate the process. If it did not, then

proceed to the next step.

5) Perform the mutation operations on chromosomes.

Judge whether each bit of probability vector is greater than

0.5, if it is greater than 0.5, then continue to determine the

corresponding bit of the "winner" chromosome. If its value is

"1," then remain constant. If its value is "0," then invert the bit;

Otherwise, if the value of the corresponding bit of "winner" is

"1," then invert the bit. If it is "0," then remain constant. Judge

and compare the fitness value of generated chromosome with

the fitness value of original "winner" chromosome, and make

the chromosome with big fitness value as new "winner."

6) Judge the generation number of elitist preserving. If it is

not more than α, it will generate a new chromosome by the

probability vector and turn to step 2). If it is greater than α, it

will generate two new chromosomes by the probability vector

and turn to step 2).

The pseudo-code of ne-TCGA algorithm is as follows:

 Step.1 for i = 1 to L do P[i]=0.5;

 a=generate(P); b=generate(P);

Step.2 if fitness(a)>fitness(b) then

 winner=a; loser=b;

 else winner=b; loser=a;

 fwn=fitness(winner);

Step.3 for i = 1 to L do

 if winner[i] != lose[i] then

 if winner[i]==1 then

 { winner[i]=0;fw=fitness(winner);

 if fw>fwn then P[i]=P[i]-1/N;

 else P[i]=P[i]+1/N;}

 else{ winner[i]=1;fw=fitness(winner);

 if fw>fwn then P[i]= P[i]+1/N;

 else P[i]=P[i]-1/N;}

Step.4 for i = 1 to L do

 if P[i]>0&&P[i]<1 then goto Step.5

 else end all

Step.5 c=mutate(winner);

 if fitness(c)>fitness(winner) then winner=c;

Step.6 if z<α a=winner; b=generate(P);z++;

 else a=generate(P); b=generate(P);z=0;

III. COMPARISON OF EXPERIMENTAL RESULTS OF NE-TCGA,

CGA, AND TCGA

The ne-TCGA inherits the advantage of less storage space

of CGA, and has real-time judgments for trend toward the

optimal solution. It is therefore able to increase the search

ability of algorithm and quickly make the chromosome

individual converge to optimal solution. Then, in order to get

the better chromosome individual with maximum probability,

the improved mutation operation is introduced. Finally, by

controlling the generation number of elitist preserving, we

introduce the temporary elitist preserving strategy, so that it

could ensure the adequate selection pressure, and maintain the

diversity of the population because of the reasonable control

of elitist preservation at the same time. It has a considerable

advantage of successful control in premature convergence.

This paper employs three algorithms, including CGA, TCGA,

and ne-TCGA, to separately seek the maximums of the

following two functions and averages values in each

population size of every algorithm after running 10 times. The

curves of these functions are shown in Fig. 1 and Fig. 2

respectively. The results of comparison on performance and

required numbers of evolution are shown in Fig. 3, Fig. 4, Fig.

5, and Fig. 6.

Engineering Letters, 25:3, EL_25_3_09

(Advance online publication: 23 August 2017)

__

 

 

2

2
2

0.6 sin
1 , 100 100

3 0.002


    



x
y x

x

 （1）

   
22 2 22 1 3 53 1 e -10 e ,

5

 -3 x 3 , 3 3

     
    

 

    

x y x yx
z x x y

y

 （2）

Fig. 1. The curve of function（1）

Fig. 2. The curve of function（2）

Fig. 3. The evolution generation number of function (1)

Fig. 4. The maximum value of function (1)

Fig. 5. The evolution generation number of function (2)

Fig. 6. The maximum value of function (2)

As shown in these figures, the numbers of evolution of the

three algorithms are increasing when the population size

increases. But the ne-TCGA algorithm has the minimum

number of evolution and the best performance of solution in

the case of the same population size. Its evolutionary

generation number reduces by 30%-40% than TCGA.

Besides, it has the highest solving speed when the elitist

generation α is 50% of the total population size. When

seeking the maximum of function (1), although CGA once

ever achieved the maximum in domain of definition in the

Engineering Letters, 25:3, EL_25_3_09

(Advance online publication: 23 August 2017)

__

evolutionary process, the results always converged to local

optima and failed to get the maximum. Moreover, the final

results obtained from TCGA are not always the global optimal

solution. So we can conclude that the ne-TCGA algorithm has

more advantages over CGA and TCGA algorithms in problem

of seeking the maximum of functions.

IV. THE APPLICATION OF NE-TCGA IN THE EVOLVABLE

HARDWARE

The evolvable hardware is conducted by encoding

structures and parameters of circuit into chromosomes and

executing evolutionary operation. The classical genetic

algorithm occupies large memory and has large calculations

for extensive range searching. Therefore, in order to reduce

the storage and improve the efficiency of searching, we

develop the ne-TCGA algorithm proposed above. This paper

uses ne-TCGA, TCGA, and CGA algorithms and regards a

full adder as the evolutionary target. We chose the FPGA

development board which is EP2S30F484I4 in Altera's

Stratix II family to design the self-evolutionary system, and

compare the results in verification of the three algorithms. At

present, the implementation of evolvable hardware based on

FPGA can be divided into the evolution between boards, the

evolution of inter-chip on board-level and the evolution on

chip-level. And the evolution on chip-level which saves the

data communication time and is also the development trend of

evolutionary system, can implement the evolutionary process

on a single chip. So we select this method in this paper, and its

implementation procedure of hardware platform is shown in

Fig. 7.

ne-TCGA

Generate Configuration Command and Bit

Stream

Embedded Microprocessor

Fitness

Evaluation

Virtual

Reconfigurable

Circuits

FPGA

Data

Interface

Chromosome

Configuration

Bit Stream

Fig. 7. The implementation of evolvable hardware platform

A. Hardware Design of Self-evolutionary System

The newly designed self-evolutionary system contains the

virtual reconfigurable circuit-based IP core. The evolvable IP

core is actually an evolutionary circuit which is controlled by

evolutionary algorithm and is able to operate on the Nios II

soft-core. The IP core designed in this paper is a cell array

consisting of 40 cells [17], as shown in Fig. 8. The cell array

has 8 external inputs and 8 outputs.

DIN0

DIN1

DIN2

DIN3

DIN4

DIN5

DIN6

DIN7

DOUT0

DOUT1

DOUT2

DOUT3

DOUT4

DOUT5

DOUT6

DOUT7

·

·

·

·

·

·

· · ·

·

·

·

· · ·

· · ·

Fig. 8. Schematic diagram of the cell array

 The basic logic configuration cell designed in this paper is

shown in Fig. 9, which is composed of the look-up table (LUT)

and multiplexer. The LUT with 3 inputs is selected because

the evolvable circuit model of 3-input LUT has the top

efficiency [18]. Although the cell array has 8-bit external

input, the inputs of 8 cells in the first column are made up of

the external 8 inputs and the inversion of the same 8 inputs.

The inputs of 8 cells in the second column are constituted by

the external 8 inputs and 8 outputs of cells in the first column.

The inputs of cells in the third column and the subsequent

columns are made up of the outputs of the immediately

previous two columns. So every cell unit has 3 selectors of

16-to-1 and the output of selector is further considered as

control bit to determine the input of look-up table (LUT)

behind. Because each selector of 16-to-1 is configured by 4

chromosomes and LUT needs 8 chromosomes, it requires 20

chromosomes totally to configure a single cell. Since cell

array contains 40 cell units, it thus needs 800 chromosomes to

configure a cell array.

16to1

Mux

16to1

Mux

16to1

Mux

444 8

8x1bit

RAM

LUTMultiple Selector

DOUT

DIN

8

Configuration Memory

4bit 4bit 4bit 8bit

DINF

8

Fig. 9. Schematic diagram of internal structure in cell unit

The evolvable IP core has 8 external inputs and 8 outputs,

but a full adder only has 3 inputs and 2 outputs. So we just

take 8 combinations of low three places in 8 external inputs as

the inputs of full adder in this paper. This operation will be

achieved in the Nios II IDE by C language. After inputting the

test vectors, it operates the outputs of cell array "XNOR" the

true table of 8 combinations and achieves the matched signals.

Engineering Letters, 25:3, EL_25_3_09

(Advance online publication: 23 August 2017)

__

Furthermore, it designs a MASK register used to shield the

higher 6 bits of matched signals, because the full adder only

has 2 outputs. It puts the 0x3 into MASK register and operates

it "AND" matched signals. Then it outputs match-data and the

number of "1" in match-data is the fitness value. The

maximum of fitness value is 16, which represents an evolved

correctly full adder.

B. The Verification of Self-evolutionary System

The ne-TCGA, TCGA, and CGA algorithms used in this

paper are respectively programmed using C language in Nios

II soft-core. Then the program is downloaded to the

development board by the JTAG download cable to evolve a

full adder. The evolution results are shown in Fig. 10 and the

average evolution results of 10 runs in each population size of

every algorithm are shown in Table I. It can be seen from the

results that the TCGA and CGA algorithms both fall into local

optima, and only the ne-TCGA algorithm successfully

evolves a full adder in limited evolving generation number.

(a)The evolution generation number

(b)The colony adaptation degree

Fig. 10. The evolution results of 1-bit full adder

TABLE I

THE AVERAGE EVOLUTION RESULTS OF 1-BIT FULL ADDER

Population Size 11 21 31 41 51 61

Evolution

Generation

Number

CGA 498 1437 3596 6716 10563 13272

TCGA 211 362 775 800 951 1146
ne-TCGA 536 1574 3178 4746 8093 10867

Colony

Adaptation

Degree

CGA 11 12 13 14 14 14

TCGA 12 13 14 15 15 15
ne-TCGA 13 15 16 16 16 16

The following is an example of the evolution of 2-bit

multiplier circuits to further validate the application of

ne-TCGA, TCGA and CGA algorithms in self-evolutionary

system. The designs of 2-bit multiplier and 1-bit full adder are

similar. Because 2-bit multiplier has 4 inputs and 4 outputs,

we just take 16 combinations of low 4 places in 8 external

inputs of the evolvable IP core as the inputs of 2-bit multiplier,

then we operate the outputs of cell array "XNOR" the true

table to achieve the matched signals, and put the 0xF into

MASK register used to shield the higher 4 bits of matched

signals. The maximum of fitness value is 64. The evolution

results of evolving 2-bit multiplier using the ne-TCGA,

TCGA, and CGA algorithms are shown in Fig. 11 and the

average evolution results of 10 runs in each population size of

every algorithm are shown in Table II.

(a)The evolution generation number

(b)The colony adaptation degree

Fig. 11. The evolution results of 2-bit multiplier

TABLE II

THE AVERAGE EVOLUTION RESULTS OF 2-BIT MULTIPLIER

Population Size 11 21 31 41 51 61

Evolution

Generation

Number

CGA 560 1510 4890 7535 11077 14375

TCGA 389 795 1456 2033 3589 4728
ne-TCGA 630 1868 3329 5040 8711 12040

Colony

Adaptation

Degree

CGA 47 48 49 51 53 55

TCGA 50 51 52 55 58 60
ne-TCGA 51 53 55 58 62 64

As seen from Fig. 10, Fig. 11, Table I, and Table II, the

evolution results of evolving 1-bit full adder and 2-bit

multiplier using the ne-TCGA, TCGA, and CGA algorithms

are similar. CGA has the lowest evolution efficiency relative

Engineering Letters, 25:3, EL_25_3_09

(Advance online publication: 23 August 2017)

__

to the other two algorithms. Although TCGA has the least

evolving algebra, it fails to evolve a required circuit. The

ne-TCGA algorithm can successfully evolve 1-bit full adder

and 2-bit multiplier in limited evolving generation number,

which shows that the ne-TCGA algorithm is efficient in

applications of hardware evolution.

V. CONCLUSION

This paper proposes the ne-TCGA algorithm which adds

the temporary elitist preserving strategy on the basis of TCGA

algorithm, thereby in the case of inheriting advantages of

TCGA algorithm, such as the less storage space occupied, the

definite condition of convergence termination, the strong

searching capabilities. In addition, the algorithm also

provides some new features:

 1) It reduces the possibility of falling into local optimal

solution and displays better convergence and searching

capability than TCGA. At the same time, its running results

are more accurate and the evolutionary generation number

reduces by 30%-40% than TCGA.

 2) By applying the ne-TCGA, TCGA, and CGA

algorithms to the self-evolutionary system in order to evolve a

full adder and 2-bit multiplier, by comparison one can

conclude that the ne-TCGA algorithm in circuit evolution is

effective, and its occupied resources are greatly reduced.

 The ne-TCGA algorithm will have considerable potential

in hardware evolution by its simple implementation methods

and advantage of less storage space occupied in hardware.

ACKNOWLEDGMENT

The authors gratefully acknowledge the helpful comments

and suggestions of the reviewers, who have improved the

presentation.

REFERENCES

[1] A. N. Al-Rabadi and M. A. Barghash, “Fuzzy-PID Control via Genetic

Algorithm-Based Settings for the Intelligent DC-to-DC Step-Down

Buck Regulation,” Engineering Letters, vol.20, no.2, pp. 176-195,

2012.

[2] X. Tian, K. Benkrid, and X. Gu, “High Performance Monte-Carlo

Based Option Pricing on FPGAs,” Engineering Letters, vol.16, no.3,

pp. 434-442, 2008.

[3] G. Mohammed, J. El-Miloud, and M. El-Bekkaye, “A Genetic

Algorithm Approach for an Equitable Treatment of Objective

Functions in Multi-objective Optimization Problems,” IAENG

International Journal of Computer Science, vol.41, no.2, pp.102-111,

2014.

[4] J. Lohn and G. Hornby, “Evolvable hardware using evolutionary

computation to design and optimize hardware systems,” IEEE

Computational Intelligence Magazine, vol.1, no.1, pp.19-27, 2006.

[5] T. A. El-Mihoub, A. A. Hopgood, L. Nolle, A. Battersby, “Hybrid

Genetic Algorithms: A Review,” Engineering Letters, vol.13, no.2, pp.

124-137, 2006.

[6] V. Parthasarathy, P. Anandakumar, V. Rajamani, “Design, Simulation

and FPGA Implementation of a Novel Router for Bulk Flow TCP in

Optical IP Networks,” IAENG International Journal of Computer

Science, vol.38, no.4, pp.343-349, 2011.

[7] H. Liu, J. Miller, and A. Tyrrel, “Intrinsic evolvable hardware

implementation of a robust biological development model for digital

systems,” Proc. of 2005 NASA/DoD Conference on Evolvable

Hardware, Washington DC, USA, pp.87-92, 2005.

[8] R. J. Terrile, H. Aghazarian, M. I. Ferguson, W. Fink, “Evolutionary

computation technologies for the automated design of space systems,”

Proc. of the 2005 NASA/DoD Conference of Evolution Hardware,

Washington DC,USA, pp. 131-138,2005.

[9] J. Wang, B. B. Tang, C. H. Piao, G. H. Lei, “Statistical method-based

evolvable character recognition system,” Proc. of the IEEE

International Symposium Industrial Electronics, Seoul, Korea,

pp.804-808, 2009.

[10] H. D. Garis, M. Korkin, F. Gers, M. Hough, “ATR’s artificial brain

(CAM-brain) project: a sample of what individual CoDi-1 Bit model

evolved neural net modules can do,” Proc. of the IEEE Congress on

Evolutionary Computation (CEC), Washington DC, USA,

pp.1979-1987, 1999.

[11] N. Feamster, L. gao, and J. Rexford, “How to lease the Internet in your

spare time,” Acm Sigcomm Computer Communications Review,

vol.37, no.1, pp.61-64, 2007.

[12] P. R. Fernando, S. Katkoori, and D. Keymeulen, “Customizable FPGA

IP core implementation of a general-purpose genetic algorithm

engine,” IEEE Trans. on Evol. Comput., vol.14, no.1, pp.133-149,

2010.

[13] J. Yutana and C. Prabhas, “A parallel genetic algorithm for adaptive

hardware and its application to ECG signal classification,” Neural

Comput & Applic, vol. 22, no.7, pp.1609-1626, 2013,

[14] M. A. Moreno-Armendáriz, N. Cruz-Cortés, C. A. Duchanoy, A.

León-Javier, R. Quintero, “Hardware implementation of the elitist

compact Genetic Algorithm using Cellular Automata pseudo-random

number generator,” Computers and Electrical Engineering, vol.39,

no.4, pp.1367-1379, 2013.

[15] G. R. Harik, “The compact genetic algorithm,” IEEE Trans. on Evol.

Comput., vol.3, no.4, pp.287-297, 1999.

[16] F. Cupertino, E. Mininno, and D. Naso, “Compact genetic algorithms

for the optimization of induction motor cascaded control,” Electric

machines & drives conference, Antalya, Turkey, pp.82-87, 2007.

[17] J. L. Liu and R. Yao, “The implementation of self-evolutionary

hardware,” Journal of Jiamusi University, vol.30, no.2, pp.109-212,

2012.

[18] H. X. Bu, L. G. Chen, and J. M. Lai, “A LUT-based VRC model for

random logic function evolution,” Proc. of IEEE International

Conference on ASIC, Changsha, China, pp.1-5, 2009.

Engineering Letters, 25:3, EL_25_3_09

(Advance online publication: 23 August 2017)

__

	I. Introduction
	II. The Fundamental Concept of ne-TCGA
	A. The Advent of ne-TCGA
	B. Detailed Process of ne-TCGA

	III. Comparison of Experimental Results of ne-TCGA, CGA, and TCGA
	IV. The Application of ne-TCGA in the Evolvable Hardware
	A. Hardware Design of Self-evolutionary System
	B. The Verification of Self-evolutionary System

	V. Conclusion
	Acknowledgment
	References
	Word 书签
	PointTmp
	OLE_LINK3
	OLE_LINK4

