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Abstract—Aiming at typical shortcomings including large 

memory occupation of GA(Genetic Algorithm) in evolvable 

hardware and poor searching capabilities of CGA(Compact 

Genetic Algorithm) in solving complex problems, this paper 

presents an improved compact genetic algorithm named 

ne-TCGA(none-persistent elitism Compact Genetic Algorithm 

with Tendency). This algorithm is combined with the analysis of 

convergent trend on the basis of TCGA (Compact Genetic 

Algorithm with Tendency) and it adopts the strategy of 

temporary elitist preservation, which both ensure the adequate 

selection pressure, and maintains the diversity of the population 

in the evolutionary process. According to the experiment, it can 

be concluded that the ne-TCGA applied in evolvable hardware 

has better computational efficiency than other random search 

algorithms. 

 
Index Terms—evolvable hardware, genetic algorithm, 

ne-TCGA System control, temporary elitist preservation 

 

I. INTRODUCTION 

ITH the development of fixed functional hardware and 

the reconfigurable hardware, the self-configurable and 

evolvable hardware will act the mainstream in near future. 

They are endowed to solve large-scale and complex problems 

by using the evolution patterns of biology [1]-[4], and can 

make the system automatically adjust internal structures in 

real time for adapting changes of internal and external 

environments [5]. Therefore, evolvable hardware will have a 

wide application prospect and considerable industrial, 

commercial value in circuit design [6], [7], fault-tolerant 

systems [8], pattern recognition [9], artificial intelligence [10], 

[11], and other fields. However, the configuration of logic 

circuits in evolvable hardware evolves according to the 

evolutionary algorithm, so the evolvable result and efficiency 

of the evolutionary algorithm to great extent decide whether 

the evolvable hardware is able to achieve the desired function 

or not. At present, the evolvable hardware technology is only 

able to accomplish simple small-scale circuits. So there still 

exist several problems in the process of its development, such 
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as the low speed of evolution, the low efficiency of evolution, 

the weak robustness of evolvable circuit [12], [13]. In order to 

tackle these problems, it is of particularly importance to 

analyze the basic theoretical knowledge thoroughly and 

propose an algorithm with favorable effect of convergence 

and high efficiency of execution. Therefore, this paper 

elaborates an improved genetic algorithm with tendency 

named ne-TCGA (none-persistent elitism Compact Genetic 

Algorithm with Tendency), which improves the convergent 

efficiency of algorithm and achieves satisfactory performance 

of application in hardware evolution. 

     

II. THE FUNDAMENTAL CONCEPT OF NE-TCGA 

The key technologies of evolvable hardware include 

programmable logic device and evolutionary algorithm. It is 

required that the corresponding devices can be configured 

repeatedly because of the randomness of evolutionary process 

and more evolutionary frequency. The dominant advantage of 

FPGA is programmable on-line. Therefore, FPGA currently 

becomes an ideal implementation device. GA (Genetic 

Algorithm) which is a random search algorithm for the 

simulation of natural evolution in biosphere by using a series 

of encoded bit string to describe the population of candidate 

solutions of the problem, is one of the most commonly used 

algorithms in evolutionary algorithms. However, because it 

needs to store large amounts of individual information in a 

population, the required storage space is proportional to L•N 

(where L represents the length of the chromosome bit string, N 

represents the population size). That is to say that the GA 

requires the storage unit of O(N) order of magnitude, thus 

consuming a large amount of hardware resources and having 

huge calculation in dealing with complex problems [14]. At 

present, there are many ways and technologies to improve the 

application of GA in FPGA [12], such as the CGA (Compact 

Genetic Algorithm) [15]. The CGA uses the probability 

vector to describe the population. Its evolutionary process is 

that each generation can randomly produce two mutually 

independent chromosomes according to the probability vector 

and calculate fitness for them to update value of the 

probability vector. The evolution process terminates and 

makes the obtained probability vector as an optimal solution 

for problems until every bit of probability vector converges to 

"0" or "1." Therefore, CGA is very effective in application of 

limited memory, such as evolvable hardware [12]. 

A. The Advent of ne-TCGA 

Although CGA is more successful than GA in terms of 

storage, and it has an explicit termination criterion, which is 
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when every bit of probability vector converges to "0" or "1," 

the evolution terminates. However, because the CGA 

achieves less information in the evaluation of chromosome 

[16] and has weak ability to search and insufficient ability to 

extract information of excellent individual, which 

straightforward lead to the loss of excellent individual and 

premature, and it can only be used to tackle certain simple 

problems of first order. The implementation results often fail 

to meet the actual application requirements for complex 

problems and the execution speed is low. Aiming at these 

shortcomings, the TCGA (Compact Genetic Algorithm with 

Tendency) is proposed afterward. TCGA includes extra 

judgment for trend from the current solution toward the 

optimal solution in the algorithm, and introduces the strategy 

of elitist preservation. But excessive elitist preservation may 

lead to premature convergence, and high selection pressure 

results in rapid convergence of the group. Thus it tends to fall 

into local optima at the expense of diversity of the population. 

So this paper proposes ne-TCGA, and introduces the 

temporary strategy of elitist preservation and parameters α 

which represents the maximum algebra of elitist preservation. 

The elite individuals can be inherited to the next generation 

within α-generations, but it will regenerate two chromosomes 

by the probability vector more than α-generations. The 

detailed process of ne-TCGA will be described as follows. 

B. Detailed Process of ne-TCGA 

1) Construct a probability vector P which has the same 

encoding length L as chromosome and let each bit of 

probability vector be equal to 0.5. Then generate two 

chromosomes randomly according to the probability vector. 

Each bit value of the probability vector represents the 

probability of the corresponding bit in the newly generated 

chromosome is equal to 1. 

2) Calculate the fitness value of two generated 

chromosomes separately and compare these two fitness 

values. The chromosome with larger fitness value is treated as 

"winner." On the contrary, the chromosome with smaller 

fitness value is treated as "loser." Then compare each bit of 

the "winner" and "loser," if the two corresponding numbers 

are not equal to each other, then jump to step 3). Otherwise, 

continue to compare the next bit. 

3) Invert the bit of the "winner," and then, judge and 

compare the fitness value between the inverted individual and 

the original individual. If the inverted fitness increases, one 

should judge the value of inverted bit. If its value is "1," 

update corresponding bit value of probability vector by 

adding the 1/N step length. If its value is "0," update 

corresponding bit value of probability vector by reducing the 

1/N step length. The computational cost and storage in the 

algorithm is dependent of N, which is defined as the 

population size. 

4) Determine whether it reaches the convergent conditions. 

If it reached, then terminate the process. If it did not, then 

proceed to the next step. 

5) Perform the mutation operations on chromosomes. 

Judge whether each bit of probability vector is greater than 

0.5, if it is greater than 0.5, then continue to determine the 

corresponding bit of the "winner" chromosome. If its value is 

"1," then remain constant. If its value is "0," then invert the bit; 

Otherwise, if the value of the corresponding bit of "winner" is 

"1," then invert the bit. If it is "0," then remain constant. Judge 

and compare the fitness value of generated chromosome with 

the fitness value of original "winner" chromosome, and make 

the chromosome with big fitness value as new "winner." 

6) Judge the generation number of elitist preserving. If it is 

not more than α, it will generate a new chromosome by the 

probability vector and turn to step 2). If it is greater than α, it 

will generate two new chromosomes by the probability vector 

and turn to step 2).  

The pseudo-code of ne-TCGA algorithm is as follows: 

    Step.1     for i = 1 to L  do  P[i]=0.5; 

                   a=generate(P); b=generate(P); 

Step.2     if fitness(a)>fitness(b)  then 

                       winner=a; loser=b; 

                   else  winner=b; loser=a; 

                   fwn=fitness(winner); 

Step.3     for i = 1 to L  do 

                   if winner[i] != lose[i]  then 

                       if winner[i]==1  then 

                       { winner[i]=0;fw=fitness(winner); 

                         if fw>fwn then P[i]=P[i]-1/N; 

                         else P[i]=P[i]+1/N;} 

                       else{ winner[i]=1;fw=fitness(winner); 

                                 if fw>fwn then P[i]= P[i]+1/N; 

                                     else P[i]=P[i]-1/N;} 

Step.4     for i = 1 to L  do  

                   if P[i]>0&&P[i]<1  then goto Step.5 

                   else end all  

Step.5     c=mutate(winner); 

                   if fitness(c)>fitness(winner)  then winner=c; 

Step.6     if z<α a=winner; b=generate(P);z++; 

                       else a=generate(P); b=generate(P);z=0; 

  

III. COMPARISON OF EXPERIMENTAL RESULTS OF NE-TCGA, 

CGA, AND TCGA 

The ne-TCGA inherits the advantage of less storage space 

of CGA, and has real-time judgments for trend toward the 

optimal solution. It is therefore able to increase the search 

ability of algorithm and quickly make the chromosome 

individual converge to optimal solution. Then, in order to get 

the better chromosome individual with maximum probability, 

the improved mutation operation is introduced. Finally, by 

controlling the generation number of elitist preserving, we 

introduce the temporary elitist preserving strategy, so that it 

could ensure the adequate selection pressure, and maintain the 

diversity of the population because of the reasonable control 

of elitist preservation at the same time. It has a considerable 

advantage of successful control in premature convergence. 

This paper employs three algorithms, including CGA, TCGA, 

and ne-TCGA, to separately seek the maximums of the 

following two functions and averages values in each 

population size of every algorithm after running 10 times. The 

curves of these functions are shown in Fig. 1 and Fig. 2 

respectively. The results of comparison on performance and 

required numbers of evolution are shown in Fig. 3, Fig. 4, Fig. 

5, and Fig. 6. 
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Fig. 1.  The curve of function（1） 

 

 
Fig. 2.  The curve of function（2） 

 

 
Fig. 3.  The evolution generation number of function (1) 

 
Fig. 4.  The maximum value of function (1) 

 

 
Fig. 5.  The evolution generation number of function (2) 

 

 
Fig. 6.  The maximum value of function (2) 

 

As shown in these figures, the numbers of evolution of the 

three algorithms are increasing when the population size 

increases. But the ne-TCGA algorithm has the minimum 

number of evolution and the best performance of solution in 

the case of the same population size. Its evolutionary 

generation number reduces by 30%-40% than TCGA. 

Besides, it has the highest solving speed when the elitist 

generation α is 50% of the total population size. When 

seeking the maximum of function (1), although CGA once 

ever achieved the maximum in domain of definition in the 
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evolutionary process, the results always converged to local 

optima and failed to get the maximum. Moreover, the final 

results obtained from TCGA are not always the global optimal 

solution. So we can conclude that the ne-TCGA algorithm has 

more advantages over CGA and TCGA algorithms in problem 

of seeking the maximum of functions. 

 

IV. THE APPLICATION OF NE-TCGA IN THE EVOLVABLE 

HARDWARE 

The evolvable hardware is conducted by encoding 

structures and parameters of circuit into chromosomes and 

executing evolutionary operation. The classical genetic 

algorithm occupies large memory and has large calculations 

for extensive range searching. Therefore, in order to reduce 

the storage and improve the efficiency of searching, we 

develop the ne-TCGA algorithm proposed above. This paper 

uses ne-TCGA, TCGA, and CGA algorithms and regards a 

full adder as the evolutionary target. We chose the FPGA 

development board which is EP2S30F484I4 in Altera's 

Stratix II family to design the self-evolutionary system, and 

compare the results in verification of the three algorithms. At 

present, the implementation of evolvable hardware based on 

FPGA can be divided into the evolution between boards, the 

evolution of inter-chip on board-level and the evolution on 

chip-level. And the evolution on chip-level which saves the 

data communication time and is also the development trend of 

evolutionary system, can implement the evolutionary process 

on a single chip. So we select this method in this paper, and its 

implementation procedure of hardware platform is shown in 

Fig. 7. 

ne-TCGA
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Fig. 7.  The implementation of evolvable hardware platform 

 

A. Hardware Design of Self-evolutionary System 

The newly designed self-evolutionary system contains the 

virtual reconfigurable circuit-based IP core. The evolvable IP 

core is actually an evolutionary circuit which is controlled by 

evolutionary algorithm and is able to operate on the Nios II 

soft-core. The IP core designed in this paper is a cell array 

consisting of 40 cells [17], as shown in Fig. 8. The cell array 

has 8 external inputs and 8 outputs. 
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Fig. 8.  Schematic diagram of the cell array 

 

 The basic logic configuration cell designed in this paper is 

shown in Fig. 9, which is composed of the look-up table (LUT) 

and multiplexer. The LUT with 3 inputs is selected because 

the evolvable circuit model of 3-input LUT has the top 

efficiency [18]. Although the cell array has 8-bit external 

input, the inputs of 8 cells in the first column are made up of 

the external 8 inputs and the inversion of the same 8 inputs. 

The inputs of 8 cells in the second column are constituted by 

the external 8 inputs and 8 outputs of cells in the first column. 

The inputs of cells in the third column and the subsequent 

columns are made up of the outputs of the immediately 

previous two columns. So every cell unit has 3 selectors of 

16-to-1 and the output of selector is further considered as 

control bit to determine the input of look-up table (LUT) 

behind. Because each selector of 16-to-1 is configured by 4 

chromosomes and LUT needs 8 chromosomes, it requires 20 

chromosomes totally to configure a single cell. Since cell 

array contains 40 cell units, it thus needs 800 chromosomes to 

configure a cell array. 
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Fig. 9.  Schematic diagram of internal structure in cell unit 

 

The evolvable IP core has 8 external inputs and 8 outputs, 

but a full adder only has 3 inputs and 2 outputs. So we just 

take 8 combinations of low three places in 8 external inputs as 

the inputs of full adder in this paper. This operation will be 

achieved in the Nios II IDE by C language. After inputting the 

test vectors, it operates the outputs of cell array "XNOR" the 

true table of 8 combinations and achieves the matched signals. 
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Furthermore, it designs a MASK register used to shield the 

higher 6 bits of matched signals, because the full adder only 

has 2 outputs. It puts the 0x3 into MASK register and operates 

it "AND" matched signals. Then it outputs match-data and the 

number of "1" in match-data is the fitness value. The 

maximum of fitness value is 16, which represents an evolved 

correctly full adder. 

B. The Verification of Self-evolutionary System 

The ne-TCGA, TCGA, and CGA algorithms used in this 

paper are respectively programmed using C language in Nios 

II soft-core. Then the program is downloaded to the 

development board by the JTAG download cable to evolve a 

full adder. The evolution results are shown in Fig. 10 and the 

average evolution results of 10 runs in each population size of 

every algorithm are shown in Table I. It can be seen from the 

results that the TCGA and CGA algorithms both fall into local 

optima, and only the ne-TCGA algorithm successfully 

evolves a full adder in limited evolving generation number. 

 
(a)The evolution generation number 

 
(b)The colony adaptation degree 

Fig. 10.  The evolution results of 1-bit full adder 

 
TABLE I 

THE AVERAGE EVOLUTION RESULTS OF 1-BIT FULL ADDER 

Population Size 11 21 31 41 51 61 

Evolution 

Generation 

Number 

CGA 498 1437 3596 6716 10563 13272 

TCGA 211 362 775 800 951 1146 
ne-TCGA 536 1574 3178 4746 8093 10867 

Colony 

Adaptation 

Degree 

CGA 11 12 13 14 14 14 

TCGA 12 13 14 15 15 15 
ne-TCGA 13 15 16 16 16 16 

                                                 

The following is an example of the evolution of 2-bit 

multiplier circuits to further validate the application of 

ne-TCGA, TCGA and CGA algorithms in self-evolutionary 

system. The designs of 2-bit multiplier and 1-bit full adder are 

similar. Because 2-bit multiplier has 4 inputs and 4 outputs, 

we just take 16 combinations of low 4 places in 8 external 

inputs of the evolvable IP core as the inputs of 2-bit multiplier, 

then we operate the outputs of cell array "XNOR" the true 

table to achieve the matched signals, and put the 0xF into 

MASK register used to shield the higher 4 bits of matched 

signals. The maximum of fitness value is 64. The evolution 

results of evolving 2-bit multiplier using the ne-TCGA, 

TCGA, and CGA algorithms are shown in Fig. 11 and the 

average evolution results of 10 runs in each population size of 

every algorithm are shown in Table II. 

 
(a)The evolution generation number 

 
(b)The colony adaptation degree 

Fig. 11.  The evolution results of 2-bit multiplier 

 
TABLE II 

THE AVERAGE EVOLUTION RESULTS OF 2-BIT MULTIPLIER 

Population Size 11 21 31 41 51 61 

Evolution 

Generation 

Number 

CGA 560 1510 4890 7535 11077 14375 

TCGA 389 795 1456 2033 3589 4728 
ne-TCGA 630 1868 3329 5040 8711 12040 

Colony 

Adaptation 

Degree 

CGA 47 48 49 51 53 55 

TCGA 50 51 52 55 58 60 
ne-TCGA 51 53 55 58 62 64 

                                                 

As seen from Fig. 10, Fig. 11, Table I, and Table II, the 

evolution results of evolving 1-bit full adder and 2-bit 

multiplier using the ne-TCGA, TCGA, and CGA algorithms 

are similar. CGA has the lowest evolution efficiency relative 
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to the other two algorithms. Although TCGA has the least 

evolving algebra, it fails to evolve a required circuit. The 

ne-TCGA algorithm can successfully evolve 1-bit full adder 

and 2-bit multiplier in limited evolving generation number, 

which shows that the ne-TCGA algorithm is efficient in 

applications of hardware evolution. 

 

V. CONCLUSION 

This paper proposes the ne-TCGA algorithm which adds 

the temporary elitist preserving strategy on the basis of TCGA 

algorithm, thereby in the case of inheriting advantages of 

TCGA algorithm, such as the less storage space occupied, the 

definite condition of convergence termination, the strong 

searching capabilities. In addition, the algorithm also 

provides some new features: 

 1) It reduces the possibility of falling into local optimal 

solution and displays better convergence and searching 

capability than TCGA. At the same time, its running results 

are more accurate and the evolutionary generation number 

reduces by 30%-40% than TCGA. 

 2) By applying the ne-TCGA, TCGA, and CGA 

algorithms to the self-evolutionary system in order to evolve a 

full adder and 2-bit multiplier, by comparison one can 

conclude that the ne-TCGA algorithm in circuit evolution is 

effective, and its occupied resources are greatly reduced. 

 The ne-TCGA algorithm will have considerable potential 

in hardware evolution by its simple implementation methods 

and advantage of less storage space occupied in hardware.  
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