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Abstract—This paper is concerned with a BAM neural net-
works with nabla derivatives on time scales. Several sufficient
conditions are obtained ensuring the existence and global
exponential stability of almost periodic solution for the networks
based on M-matrix theory and almost periodic functional hull
theory. Some previous results are improved and extended in
this paper and numerical examples are presented to illustrate
the feasibility and effectiveness of the results.

Index Terms—BAM neural networks; exponential stability;
almost periodic solution; hull theory; time scale.

I. INTRODUCTION

IN recent years, both continuous and discrete BAM neural
networks with almost periodic coefficients have been ex-

tensively studied and applied in many different fields such as
signal processing, pattern recognition, solving optimization
problems, automatic control engineering and so on, one may
see [1-6] and the references therein.

However, in applications, there are many neural networks
whose development processes are more than just continuous
or discrete. Hence, using the only differential equation or
difference equation can’t accurately describe the law of
their developments. Therefore, there is a need to establish
correspondent dynamic models on new time scales.

A time scale is a nonempty arbitrary closed subset of
reals. The theory of calculus on time scales was initiated
by S. Hilger in his Ph.D. thesis in 1988 [7] in order to unify
continuous and discrete analysis. The time scales approach
not only unifies differential and difference equations, but also
solves some other problems such as a mix of stop-start and
continuous behaviors [8-10] powerfully.

Nowadays there have been some results on almost peri-
odic solutions for neural networks on time scales, see, for
example, [11-13]. But there are also many problems have not
been solved well such as almost periodic solutions for some
neural networks with nabla derivatives. Therefore, the study
of existence and stability of almost periodic solution for
neural networks on time scales need to be explored further.

Motivated by the statements above, in this paper, we shall
study the following BAM neural networks on time scales:

x∇i (t)=−ai(t)xi(t) +
m∑
j=1

pji(t)fj(yj(t− τji(t)))

+Ii(t), t ∈ T, i = 1, 2, · · · , n,

y∇j (t)=−bj(t)yj(t) +
n∑

i=1

qij(t)gi(xi(t− ϑij(t)))

+Lj(t), t ∈ T, j = 1, 2, · · · ,m,

(1)
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where T is a time scale, xi(t) and yj(t) are the activations of
the ith neuron and the jth neuron, respectively. pji, qij are
the connection weights at time t, Ii(t) and Lj(t) denote the
external inputs at time t. gi, fj are the input-output func-
tions (the activation functions). Time delays τji(t), ϑij(t)
correspond to finite speed of axonal transmission, ai(t), bj(t)
represent the rate with which the ith neuron and jth neuron
will reset their potential to the resting state in isolation when
they are disconnected from the network and the external
inputs at time t. m,n correspond to the number of neurons
in layers.

The initial conditions of system (1) are of the form
xi(s) = ϕi(s), s ∈ [−ϑ, 0] ∩ T,
ϑ = max

1≤i≤n,1≤j≤m
sup
t∈T

{
ϑij(t)

}
, i = 1, 2, · · · , n,

yj(s) = φj(s), s ∈ [−τ̂ , 0] ∩ T,
τ̂ = max

1≤i≤n,1≤j≤m
sup
t∈T

{
τji(t)

}
, j = 1, 2, · · · ,m,

where ϕi(·) and φi(·) denote real-valued continuous func-
tions defined on [−τ̂ , 0] ∩ T and [−ϑ, 0] ∩ T.

Throughout this paper, we make the following assump-
tions:

(H1) Each ai(t)(i = 1, 2, · · · , n, t ∈ T) and bj(t)(j =
1, 2, · · · ,m, t ∈ T) is positive, continuous and bounded
function, and −ai ∈ R+,−bj ∈ R+.

(H2) pji(t), qij(t), Ii(t), Lj(t), 0 < ϑij(t) < ϑ, 0 < τji(t) <
τ̂, are all nonnegative continuous bounded almost peri-
odic functions on T, i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(H3) fj , gi ∈ C(R,R), fj , gi ≥ 0(i = 1, 2, · · · , n, j =
1, 2, · · · ,m) are Lipschitzian with Lipschitz constants
ηj , λi > 0,

|fj(x)−fj(y)| ≤ ηj |x−y|, |gi(x)−gi(y)| ≤ λi|x−y|.

For convenience, we denote f̄ = sup
t∈T

|f(t)|, f =

inf
t∈T

|f(t)|.
The main purpose of this paper is, by using some dynamic

inequalities on time scales, to discuss the permanence of
system (1), then by using the almost periodic functional hull
theory on time scales, to establish criteria for the existence,
uniqueness and global exponential stability of almost peri-
odic solutions of system (1).

The organization of this paper is as follows: In Section 2,
we introduce some notations and definitions and prove some
preliminary results needed in the later sections. In Section
3, based on M-matrix theory, some sufficient conditions
are obtained to ensure that the solution of (1) is globally
exponentially stable. In Section 4, by using almost periodic
functional hull theory, we show that the almost periodic
system (1) has a unique globally exponentially stable strictly
positive almost periodic solution. In Section 5, two examples
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are given to illustrate that our results are feasible and more
general.

II. PRELIMINARIES

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators σ, ρ : T → T and the
graininess µ : T → R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t},
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t,
left-scattered if ρ(t) < t, right-dense if t < supT and σ(t) =
t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If
T has a right-scattered minimum m, then Tk = T\{m};
otherwise Tk = T. The backwards graininess function ν :
Tk → [0,+∞) is defined by ν(t) = t− ρ(t).

A function f : T → R is ld-continuous provided it is
continuous at left-dense point in T and its right-side limits
exist at right-dense points in T.

The function p : T → R is ν-regressive if 1−ν(t)p(t) ̸= 0
for all t ∈ Tk. The set of all ν-regressive and ld-continuous
functions p : T → R will be denoted by Rν = Rν(T,R).
Define the set R+

ν = {p ∈ Rν : 1− ν(t)p(t) > 0, ∀ t ∈ T}.
If p is a ν-regressive function, then the nabla exponential

function êr is defined by

êp(t, s) = exp

{∫ t

s

ξ̂ν(τ)(p(τ))∇τ
}

for all s, t ∈ T, with the cylinder transformation

ξ̂h(z) =

{
−Log(1−hz)

h if h ̸= 0,
z if h = 0.

Lemma 1. (see [14]) If p ∈ Rν , and a, b, c ∈ T, then
(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;
(ii) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s);
(iii) êp(t, s)êp(s, r) = êp(t, r);
(iv) (êp(t, s))∇ = p(t)êp(t, s);
(v)

∫ b

a
p(t)êp(c, ρ(t))∇t = êp(c, a)− êp(c, b).

For more details about the calculus on time scales, see
[14].

Definition 1. (see [15]) A time scale T is called an almost
periodic time scale if

Π := {τ ∈ R : t± τ ∈ T, ∀t ∈ T} ̸= {0}.

Definition 2. (see [15]) Let T be an almost periodic time
scale. A function f ∈ C(T,En) is called an almost periodic
function if the ε-translation set of function f

E{ε, f} = {τ ∈ Π : |f(t+ τ)− f(t)| < ε, for all t ∈ T}

is a relatively dense set in T for all ε > 0; that is for any
given ε > 0, there exists a constant l(ε) > 0 such that in any
interval of length l(ε), there exists at least a τ(ε) ∈ E{ε, f}
and

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.

τ is called the ε-translation number of f .

Definition 3. (see [15]) Let T be an almost periodic time
scale. A function f ∈ C(T × D,En) is called an almost
periodic function in T uniformly for x ∈ D if the ε-
translation set of function f

E{ε, f, S} = {τ ∈ Π : |f(t+τ)−f(t)| < ε, for all t ∈ T}

is a relatively dense set in T for all ε > 0 and for each
compact subset S of D; that is for any given ε > 0 and each
compact subset S of D, there exists a constant l(ε, S) > 0
such that each interval of length l(ε, S) contains a τ(ε, S) ∈
E{ε, f, S} such that

|f(t+ τ, x)− f(t, x)| < ε, ∀t ∈ T, x ∈ S.

τ is called the ε-translation number of f .

Definition 4. (see [15]) Let f(t) ∈ C(T×D,En), H(f) =
{g : T×D → En|there exist α ∈ Πsuch that Tαf(t, x) =
g(t, x) exists uniformly on T × T} is called the hull of
f .

Lemma 2. (see [14]) Let y, f ∈ Rν(T) and p ∈ R+
ν . Then

y∇(t) ≤ (≥)p(t)y(t) + f(t), ∀t ∈ T

implies

y(t) ≤ (≥)y(t0)êp(t, t0) +

∫ t

t0

êp(t, σ(τ))f(τ)∆τ, ∀t ∈ T.

Lemma 3. Assume that the assumptions (H1) − (H3) are
satisfied. Any solution z(t) = (x1(t), · · · , xn(t), y1(t), · · · ,
ym(t)) of system (1) is uniformly bounded on [0,+∞)T.

Proof: From system (1), for any t ∈ [0,+∞)T, we have

x∇i (t) ≤ −aixi(t) +
m∑
j=1

p̄jif̄j + Īi,

y∇j (t) ≤ −bjyj(t) +
n∑

i=1

q̄ij ḡi + L̄j , (2)

and

x∇i (t) ≥ −āixi(t) +
m∑
j=1

p
ji
f
j
+ Ii,

y∇j (t) ≥ −b̄jyj(t) +
n∑

i=1

q
ij
g
i
+ Lj . (3)

Then, from (4), by Lemma 3 and Lemma 1(v), we have

xi(t)

≤ xi(t0)ê−ai
(t, t0)

+

∫ t

t0

ê−ai
(t, σ(s))

[ m∑
j=1

p̄jif̄j + Īi

]
∆s

≤ xi(t0)ê−ai
(t, t0)

+

[
−

m∑
j=1

p̄jif̄j + Īi

ai

]
(ê−ai

(t, t0)− 1)

= ê−ai
(t, t0)

[
xi(t0)−

m∑
j=1

p̄jif̄j + Īi

ai

]
+

m∑
j=1

p̄jif̄j + Īi

ai

≤

m∑
j=1

p̄jif̄j + Īi

ai
, i = 1, 2, · · · , n.
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Similarly, we can get

yj(t) ≤

n∑
i=1

q̄ij ḡi + L̄j

bj
, j = 1, 2, · · · ,m.

On another side, from (5), by Lemma 3 and Lemma 1(v),
then

xi(t)

≥ xi(t0)ê−āi(t, t0)

+

∫ t

t0

ê−āi(t, σ(s))

[ m∑
j=1

p
ji
f
j
+ Ii

]
∆s

≥ xi(t0)ê−āi(t, t0)

+

[
−

m∑
j=1

p
ji
f
j
+ Ii

āi

]
(ê−āi(t, t0)− 1)

= ê−āi(t, t0)

[
xi(t0)−

m∑
j=1

p
ji
f
j
+ Ii

āi

]
+

m∑
j=1

p
ji
f
j
+ Ii

āi

≥

m∑
j=1

p
ji
f
j
+ Ii

āi
, i = 1, 2, · · · , n.

Similarly, we can get

yj(t) ≥

n∑
i=1

q
ij
g
i
+ Lj

b̄j
, j = 1, 2, · · · ,m.

So, any solution z(t) = (x1(t), · · · , xn(t), y1(t), · · · ,
ym(t)) of system (1) is uniformly bounded on [0,+∞)T.
The proof is completed.

Lemma 4. If the following conditions satisfy:

(i) D+x∇i (t) ≤
n∑

j=1

aijxj(t)+
n∑

j=1

bij x̄j(t), t ∈ [t0,+∞)T,

i, j = 1, 2, · · · , n, where aij ≥ 0(i ̸= j), bij ≥ 0,
n∑

i=1

x̄i(t0) > 0, x̄i(t) = sup
s∈[t−τ0,t]T

xi(s), and τ0 > 0 is

a constant;
(ii) M̃ := −(aij + bij)n×n is an M -matrix;
then there exists a constant γi > 0, a > 0, such that the
solutions of inequality (i) satisfies

xi(t) ≤ γi

( n∑
j=1

x̄j(t0)

)
ê⊖a(t, t0), ∀ t ∈ (t0,+∞)T,

i = 1, 2, · · · , n.

Proof: Assume that

G(t, x(t), x̄(t)) = (g1(t, x(t), x̄(t)), g2(t, x(t), x̄(t)),

· · · , gn(t, x(t), x̄(t))),

where

gi(t, x(t), x̄(t)) =

( n∑
j=1

aijxi(t) +
n∑

j=1

bij x̄i(t)

)
,

i = 1, 2, · · · , n.

By condition (i), then

D+x∇i (t) ≤ gi(t, x(t), x̄(t)), ∀t ∈ [t0,+∞)T,

i = 1, 2, · · · , n. (4)

By condition (ii), there exists constants ξ > 0 and di > 0
(i = 1, 2, · · · , n) such that

n∑
j=1

(aij + bij)di < −ξ, i = 1, 2, · · · , n.

Choose 0 < a≪ 1, such that

adi +
n∑

j=1

(aijdi + bijdiêa(t, t− τ0)) < 0,

∀t ∈ [t0,+∞)T, i = 1, 2, · · · , n. (5)

If t ∈ [t0 − τ0, t0]T, choose F ≫ 1, such that

Fdiê⊖a(t, t0) > 1, i = 1, 2, · · · , n. (6)

For any ε > 0, let

qi(t) = Fdi

( n∑
j=1

x̄j(t0) + ε

)
ê⊖a(t, t0).

From (5), for any t ∈ [t0,+∞)T, we have

D+q∇i (t)

= (⊖a)Fdi
( n∑

j=1

x̄j(t0) + ε

)
ê⊖a(t, t0)

≥ −aFdi
( n∑

j=1

x̄j(t0) + ε

)
ê⊖a(t, t0)

>
n∑

j=1

(
aijdi + bijdiêa(t, t− τ0)

)
F

( n∑
j=1

x̄j(t0) + ε

)
×ê⊖a(t, t0)

=
n∑

j=1

aijdiF

( n∑
j=1

x̄j(t0) + ε

)
ê⊖a(t, t0)

+

n∑
j=1

bijdiF

( n∑
j=1

x̄j(t0) + ε

)
ê⊖a(t− τ0, t0)

≥
n∑

j=1

aijqi(t) +
n∑

j=1

bij q̄i(t)

= gi(t, q(t), q̄(t)), i = 1, 2, · · · , n, (7)

that is

D+q∇i (t) > gi(t, q(t), q̄(t)), ∀t ∈ [t0,+∞)T,

i = 1, 2, · · · , n. (8)

For t ∈ [t0 − τ0, t0]T, by (6), we can get

qi(t) = Fdi

( n∑
j=1

x̄j(t0) + ε

)
ê⊖a(t, t0)

>
n∑

j=1

x̄j(t0) + ε, i = 1, 2, · · · , n.

Let xi(t) ≤
n∑

j=1

x̄j(t0) + ε, t ∈ [t0 − τ0, t0]T, then

qi(t0) > xi(t0), i = 1, 2, · · · , n. (9)

Together with (4), (8) and (9), by Lemma 1, we can get

xi(t) < qi(t) = Fdi

( n∑
j=1

x̄j(t0) + ε

)
ê⊖a(t, t0),

∀t ∈ (t0,+∞)T, i = 1, 2, · · · , n.
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Let ε→ 0+, Fdi = γi, then

xi(t) ≤ γi

( n∑
j=1

x̄j(t0)

)
ê⊖a(t, t0), ∀t ∈ (t0,+∞)T,

i = 1, 2, · · · , n.

The proof is completed.

Definition 5. The almost periodic solution z∗ = (x∗1, x
∗
2,

· · · , x∗n, y∗1 , y∗2 , · · · , y∗m)T of equation (1) is said to be ex-
ponentially stable, if there exist a positive α such that for
any δ ∈ (−∞, 0]T, there exists N = N(δ) ≥ 1 such that the
solution z = (x1, x2, · · · , xn, y1, y2, · · · , ym)T satisfying

∥z(t)− z∗(t)∥ ≤ N∥φ(δ)− z∗(δ)∥ê⊖α(t, δ), t ∈ T+,

where δ ∈ [−max{τ̂ , ϑ}, 0].

III. GLOBAL EXPONENTIAL STABILITY

Suppose that z∗ = (x∗1, x
∗
2, · · · , x∗n, y∗1 , y∗2 , · · · , y∗m)T =

(z∗1 , z
∗
2 , · · · , z∗n+m)T is a solution of system (1). In this sec-

tion, we will construct some suitable differential inequality
to study the global exponential stability of this solution and
we will use the following norm:

∥z∥ = max
1≤l≤n+m

sup
t∈T

|zl(t)|

= max

{
max
1≤i≤n

sup
t∈T

|xi(t)|, max
1≤j≤m

sup
t∈T

|yj(t)|
}
.

Theorem 1. Assume that (H1)− (H3) hold and if

Υ :=

[
A −PL

−QΛ B

]
(n+m)×(n+m)

is an M -matrix, where A = diag(a1, a2, · · · , an)n×n, B =
diag(b1, b2, · · · , bm)m×m, P = (p̄ji)m×n, Q = (q̄ij)n×m,
L = diag(η1, η2, · · · , ηm),Λ = diag(λ1, λ2, · · · , λn), then
the solution of system (1) is globally exponentially stable.

Proof: Suppose that z∗ = (x∗1, x
∗
2, · · · , x∗n, y∗1 , y∗2 , · · · ,

y∗m)T is a solution of system (1), and z = (x1, x2, · · · , xn,
y1, y2, · · · , ym)T is another arbitrary solution. Then, system
(1) can be written as

(
xi(t)− x∗i (t)

)∇
= −ai(t)xi(t) + ai(t)x

∗
i (t)

+
m∑
j=1

pji(t)(fj(yj(t− τji(t)))− fj(y
∗
j (t− τji(t)))),(

yj(t)− y∗j (t)
)∇

= −bj(t)yj(t) + bj(t)y
∗
j (t)

+
n∑

i=1

qij(t)(gi(xi(t− ϑij(t)))− gi(x
∗
i (t− ϑij(t)))).

(10)

The initial condition of (10) is ψ(s) = (ϕ1(s), · · · , ϕn(s),
φ1(s), · · · , φm(s))T .

Let V (t) = |z(t) − z∗(t)|, the upper right derivative
D+V ∇(t) along the solutions of system (10) is as follows:

D+V ∇(t) = sign(z(t)− z∗(t))(z(t)− z∗(t))∇

≤
[

−A 0
0 −B

]
V (t) +

[
0 PL
QΛ 0

]
V (t).

According to Lemma 4, then there must exist constants
α > 0, γ > 0, for any δ ∈ [−max{τ̂ , ϑ}, 0], and l = 1, 2,
· · · , n+m such that

|zl(t)− z∗l (t)| ≤ γmax

{
max
1≤i≤n

sup
−ϑ≤δ≤0

|ϕi(δ)− x∗i (δ)|,

max
1≤j≤m

sup
−τ̂≤δ≤0

|φj(δ)− y∗j (δ)|
}
ê⊖α(t, t0),

then

∥z(t)− z∗(t)∥

≤ γ

ê⊖α(t0, δ)
max

{
max
1≤i≤n

sup
−ϑ≤δ≤0

|ϕi(δ)− x∗i (δ)|,

max
1≤j≤m

sup
−τ̂≤δ≤0

|φj(δ)− y∗j (δ)|
}
ê⊖α(t, δ)

=
γ

ê⊖α(t0, δ)
∥ψ − z∗∥ê⊖α(t, δ).

Let N = N(δ) = γ
ê⊖α(t0,δ)

, then

∥z − z∗∥ ≤ N∥ψ − z∗∥ê⊖α(t, δ).

From Definition 5, the solution z∗ = (x∗1, x
∗
2, · · · , x∗n, y∗1 ,

y∗2 , · · · , y∗m)T is globally exponentially stable. The proof is
completed.

IV. ALMOST PERIODIC SOLUTION

Suppose that h(t) is an almost periodic function defined
on T. Let H(h(t)) denote the hull of h(t).

Suppose that

a∗i (t) ∈ H(ai(t)), b
∗
j (t) ∈ H(bj(t)),

p∗ji(t) ∈ H(pji(t)), q
∗
ij(t) ∈ H(qij(t)),

τ∗ji(t) ∈ H(τji(t)), ϑ
∗
ij(t) ∈ H(ϑij(t)),

I∗i (t) ∈ H(Ii(t)), L
∗
j (t) ∈ H(Lj(t))

are selected such that there is a time sequence {tn}:

ai(t+ tn) → a∗i (t), bj(t+ tn) → b∗j (t),

pji(t+ tn) → p∗ji(t), qij(t+ tn) → q∗ij(t),

τji(t+ tn) → τ∗ji(t), ϑij(t+ tn) → ϑ∗ij(t),

Ii(t+ tn) → L∗
j (t), ai(t+ tn) → L∗

j (t)

as n → +∞ and tn → +∞ for all t on T. Then we get a
hull equation of system (1) as follows:

x∇i (t) = −a∗i (t)xi(t) +
m∑
j=1

p∗ji(t)fj(yj(t− τ∗ji(t)))

+I∗i (t), t ∈ T, i = 1, 2, · · · , n,

y∇j (t) = −b∗j (t)yj(t) +
n∑

i=1

q∗ij(t)gi(xi(t− ϑ∗ij(t)))

+L∗
j (t), t ∈ T, j = 1, 2, · · · ,m,

(11)

According to the almost periodic theory, we can conclude
that if system (1) satisfies (H1)−(H3), then the hull equation
(11) also satisfies (H1)− (H3).

For convenience, we write functional differential equation
(1) as the following almost periodic functional differential
equation

z∇(t) = F (t, zt), (12)

where z = (x1, · · · , xn, y1, · · · , ym), F (t, zt) ∈ C(T × Ω,
S̃) is an almost periodic function, and Ω is compact subset
of Rn+m.

Lemma 5. If each of hull equation of system (12) has a
unique strictly positive solution, then almost periodic system
(1) has a unique strictly positive almost periodic solution.

Proof: Suppose φ(t) is a strictly positive solution of
system (12) for t on T. There exist sequences of real values
α̂ and β̂ which have common subsequence α ⊂ α̂ and β ⊂ β̂
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such that Tα+β = TαTβF (t, zt) for t on T and z ∈ Rn+m,
Tα+βφ(t) and TαTβφ(t) exist uniformly on compact set
of T. Then Tα+βφ(t) and TαTβφ(t) are solutions of the
following common hull equation of system (12)

z∇(t) = Tα+βF (t, zt).

Therefore, we have Tα+βφ(t) = TαTβφ(t) then φ(t) is an
almost periodic solution of system (12), that is φ(t) is an
almost periodic solution of system (1). Since α ⊂ α̂ = {α̂n}
and α̂n → +∞ as n → +∞, TαF (t, zt) = F (t, zt) is uni-
formly tenable with respect to t on T and z ∈ Rn+m. For the
sequences α̂ and α ⊂ α̂, we conclude that Tαφ(t) = ψ(t) is
uniformly tenable with respect to t on T and ψ(t) ∈ Rn+m.
According to the uniqueness of solution and Tαψ(t) = ψ(t)
one obtains that φ(t) = ψ(t). The proof is completed.

Lemma 6. Suppose that conditions (H1)−(H3) are satisfied,
then there exists a bounded solution z∗(t), t ∈ T of system
(1).

Proof: Since ai(t), bj(t), pji(t), qij(t), τji(t), ϑij(t),
Ii(t), Lj(t) are nonnegative almost periodic functions, and
with same sequence {tn}, as n → +∞ and tn → +∞ for
all t on T, and

ai(t+ tn) → ai(t), bj(t+ tn) → bj(t),

pji(t+ tn) → pji(t), qij(t+ tn) → qij(t),

τji(t+ tn) → τji(t), ϑij(t+ tn) → ϑij(t),

Ii(t+ tn) → Lj(t), ai(t+ tn) → Lj(t)

If z(t) is a bounded solution of system (1) for t ≥ 0
corresponding to the initial condition ψ(t), then zn(t) =
z(t+ tn) for t ≥ tn satisfies

x∇ni(t) = −ai(t+ tn)xni(t) +
m∑
j=1

pji(t+ tn)

×fj(ynj(t− τji(t+ tn))) + Ii(t+ tn),

y∇nj(t) = −bj(t+ tn)ynj(t) +
n∑

i=1

qij(t+ tn)

×gi(xni(t− ϑij(t+ tn))) + Lj(t+ tn).

Since zn(t) is bounded uniformly on [tn,∞)T, n =
1, 2, · · · , which implies that z(t + tn) is also bounded
uniformly on [tn,∞)T, n = 1, 2, · · · . Hence zn(t) is
bounded uniformly and equicontinuous. So, there exists a
subsequence {t1n} of {tn} with t1n > t2 such that z(t+t1n) →
z1(t)(n → ∞) and z1(t)(t ∈ [−t1,∞)) satisfies system
(1). Similarly, proceeding by induction we have subsequence
{tnn} of {tn−1

n } such that z(t + tnn) → zn(t)(n → ∞) and
zn(t)(t ∈ [−tn,∞)) satisfies system (1). According to the
diagonal procedure we have z(t+ tnn) → z∗(t)(n→ ∞) and
zn(t)(t ∈ [−tn,∞)) converges uniformly on any compact
set of R, and z∗ satisfies system (1).

Theorem 2. If almost periodic system (1) satisfies (H1) −
(H3), then almost periodic system (1) has a unique strictly
positive almost periodic solution which is globally exponen-
tially stable.

Proof: By Lemma 5, we only need to prove that each
of hull equation of almost periodic system (1) has a unique
strictly positive solution, hence we need firstly prove that
each of hull equation of almost periodic system (1) has
at least a strictly positive solution (the existence), then we

further prove that each of hull equation of system (1) has a
unique strictly positive solution (the uniqueness).

Now we prove the existence of strictly positive solution
of any hull equation (11). According to the almost periodic
hull basic theory, there exists a time sequence {tn}:

ai(t+ tn) → a∗i (t), bj(t+ tn) → b∗j (t),

pji(t+ tn) → p∗ji(t), qij(t+ tn) → q∗ij(t),

τji(t+ tn) → τ∗ji(t), ϑij(t+ tn) → ϑ∗ij(t),

Ii(t+ tn) → L∗
j (t), ai(t+ tn) → L∗

j (t)

as n → +∞ and tn → +∞ for all t on T. Suppose z(t) =
(x1(t), · · · , xn(t), y1(t), · · · , ym(t)) is any positive solution
of hull equation (11). By the proof of Lemma 3, we have

0 < inf
t∈[0,+∞)T

xi(t) ≤ sup
t∈[0,+∞)T

xi(t) < +∞, (13)

0 < inf
t∈[0,+∞)T

yj(t) ≤ sup
t∈[0,+∞)T

yj(t) < +∞. (14)

Let zn(t) = z(t+ tn) for all t ≥ −tn, n = 1, 2, . . . such
that

x∇ni(t) = −ai(t+ tn)xni(t) +
m∑
j=1

pji(t+ tn)

×fj(ynj(t− τji(t+ tn))) + Ii(t+ tn),

y∇nj(t) = −bj(t+ tn)ynj(t) +
n∑

i=1

qij(t+ tn)

×gi(xni(t− ϑij(t+ tn))) + Lj(t+ tn).

(15)

From inequality (13), (14) and assumptions (H1)− (H3),
there exists a positive constant vector K which is indepen-
dent of n such that z∇n (t) ≤ K for all t ≥ −tn, i =
1, 2, . . .. Therefore, for any positive integer r, sequence
{zn(t) : n ≥ r} is uniformly bounded and equicontinuous
on [−tn,+∞)T. According to Ascoli-Arzela Theorem, one
concludes that there exists a time subsequence {tk} of
{tn} such that sequence {zk(t)} not only converges on t
on T, but also converges uniformly on any compact set
of T as k → +∞. Suppose lim

k→+∞
zk(t) = z∗(t) =

(x∗1(t), · · · , x∗n(t), y∗1(t), · · · , y∗m(t)), then z∗(t) is continu-
ous on T, and we have

0 < inf
t∈(−∞,+∞)T

x∗i (t) ≤ sup
t∈(−∞,+∞)T

x∗i (t) < +∞,

0 < inf
t∈(−∞,+∞)T

y∗j (t) ≤ sup
t∈(−∞,+∞)T

y∗j (t) < +∞.

From differential equation (15) and assumptions (H1) −
(H3), we can easily see that z∗(t) is a solution of hull
equation (11), hence each of hull equation of almost periodic
system (1) has at least a strictly positive solution.

In the following section, we will prove the uniqueness of
strictly positive solution for any hull equation (11). Suppose
that the hull equation (11) has two arbitrary strictly positive
solutions z∗1(t) = (x∗1(t), · · · , x∗n(t), y∗1(t), · · · , y∗m(t)) and
z∗2(t) = (x̂∗1(t), · · · , x̂∗n(t), ŷ∗1(t), · · · , ŷ∗m(t)). Now we de-
fine the same Lyapunov functional in section 3, then we can
get

0 ≤ ∥z∗1 − z∗2∥ ≤ N∥ψ − z∗2∥ê⊖α(t, δ) → 0, as t→ +∞.

so, it is proved that any hull equation of system (1) has a
unique strictly positive solution.

Summarizing the inference above, we know that any hull
equation of system (1) has a unique strictly positive solution.
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By Lemma 5 and Theorem 1, almost periodic system (1) has
a unique strictly positive almost periodic solution which is
globally exponentially stable. The proof is completed.

V. NUMERICAL EXAMPLES

Consider the following BAM neural networks

x∇i (t) = −ai(t)xi(t) +
2∑

j=1

pji(t)fj(yj(t− τji(t)))

+Ii(t), t ∈ T, i = 1, 2,

y∇j (t) = −bj(t)yj(t) +
2∑

i=1

qij(t)gi(xi(t− ϑij(t)))

+Lj(t), t ∈ T, j = 1, 2,

(16)

where Ii(t) = sin t + 1, Lj(t) = cos t + 1, gi(xi(t −
ϑij(t))) = 1

2 sin(xi − τ(t)) + 1, fj(yj(t − τji(t))) =
cos(yj − τ(t)) + 1, t ∈ T, λi = 1

2 , ηj = 1, i = j = 1, 2.
Example 1: T = R, τ(t) = 3| cos t|+ 1, take

a1(t) = b2(t) = 3− sin t, a2(t) = b1(t) = 3− cos t,

then

a1 = a2 = b1 = b2 = 2, ā1 = ā2 = b̄1 = b̄2 = 4.

Let

p11(t) = 0.05 sin t+ 1, p12(t) = 0.1 cos t+ 1,

p21(t) = 0.15 cos t+ 1, p22(t) = 0.05 sin t+ 1,

q11(t) = 0.25 sin t+ 1, q12(t) = 0.05 cos t+ 1,

q21(t) = 0.05 cos t+ 1, q22(t) = 0.5 sin t+ 1.

Then

Υ =


2 0 −1.05 −1.1
0 2 −1.15 −1.05

−0.625 −0.525 2 0
−0.525 −0.75 0 2

 .
It is easy to see that the conditions (H1)−(H3) hold and Υ

is an M -matrix. According to Theorems 1 and 2, system (16)
has one unique almost periodic solution, which is globally
exponentially stable.

Example 2: T = Z, τ(t) = | sin t|+ 0.5, take

a1(t) = b2(t) = 0.5 + 0.01 sin t,

a2(t) = b1(t) = 0.5 + 0.01 cos t,

then

a1 = a2 = b1 = b2 = 0.4, ā1 = ā2 = b̄1 = b̄2 = 0.6.

Let

p11(t) = 0.05 sin t+ 0.2, p12(t) = 0.1 cos t+ 0.2,

p21(t) = 0.15 cos t+ 0.2, p22(t) = 0.05 sin t+ 0.2

q11(t) = 0.15 sin t+ 0.2, q12(t) = 0.05 cos t+ 0.2,

q21(t) = 0.05 cos t+ 0.2, q22(t) = 0.15 sin t+ 0.2.

Then

Υ =


0.49 0 −0.25 −0.3
0 0.49 −0.35 −0.25

−0.225 −0.125 0.49 0
−0.125 −0.25 0 0.49

 .
It is easy to see that the conditions (H1)−(H3) hold and Υ

is an M -matrix. According to Theorems 1 and 2, system (16)
has one unique almost periodic solution, which is globally
exponentially stable.

VI. CONCLUSION

Two problems for a BAM neural networks with nabla
derivatives on time scales have been studied, namely, ex-
istence and exponential stability of positive almost periodic
solution on time scales. It is important to notice that the
methods used in this paper can be extended to other types
of neural networks [16-18]. Future work will include neural
networks for dynamic system modeling and analysis on time
scales.
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