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Abstract—This paper investigates the problem of global
stabilization of nonholonomic mobile robots with constrained
angular velocity. By using input-state-scaling technique and
backstepping recursive approach, a state feedback control
strategy is presented. With the help of a switching control
strategy, the designed controller renders that the states of
closed-loop system are globally asymptotically regulated to zero.
A simulation example is provided to illustrate the effectiveness
of the proposed approach.

Index Terms—nonholonomic mobile robots , state feedback,
constrained angular velocity, backstepping.

I. INTRODUCTION

IN the past decade, nonholonomic systems, which can
be modeled with constraints concerning velocity or ac-

celeration as well as coordinates and position angle, have
become a hot research topic of the mechanical systems. As
a class of typical nonholonomic systems, the mobile robots
have caused the extensive concern[1-4]. Nonholonomic mo-
bile robots have good flexibility, since they could realize
autonomous movement in the case of nobody involving.
However, due to the limitations imposed by Brockett’s con-
dition[6], this class of nonlinear systems cannot be stabi-
lized by stationary continuous state-feedback, although it
is controllable. There are currently several effective control
methodologies that overcome the topological obstruction.
The idea of using time-varying smooth controllers was first
proposed in [6], in order to stabilize a mobile robot. For
driftless systems in chained form, several novel approaches
have been proposed for the design of periodic, smooth, or
continuous stabilizing controllers [7, 8]. Most of the time-
varying control scheme suffer from a slow convergence
rate and oscillation. However, it has been observed that a
discontinuous feedback control scheme usually results in a
fast convergence rate. An elegant approach to constructing
discontinuous feedback controller was developed in [9].
The drawback is that there is a restriction on the initial
conditions of the controlled system. This limitation has been
overcome by a switching state or output control scheme [10].
Subsequently, [11-19] further developed the discontinuous
feedback control strategy based on different control targets,
respectively. However, the effect of the angular velocity
constraint is not addressed in the above-mentioned results.
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As a matter that the constraints which can represent not
only physical limitations but also performance requirements
are common in practical systems. Violation of the constraints
may cause performance degradation or system damage. In
recent years, driven by practical needs and theoretical chal-
lenges, the control design for constrained nonlinear systems
has become an important research topic [20-22]. However,
less attention has been paid to the constrained nonholonomic
systems.

This paper addresses the global stabilization by state
feedback for nonholonomic mobile robots with constrained
angular velocity. A constructive method in designing global
stabilizing controller for such uncertain systems is proposed.
The contributions of this paper are listed as follows:(i) by
using the nested saturation to handle the technical problem
of input saturation, and based on a combined application of
the input-state-scaling technique and backstepping recursive
approach, a systematic control design procedure is devel-
oped for all plants in the considered class, including the
ideal chained form system; (ii) the saturated control based
switching strategy is adopted to handle the technical problem
of uncontrollability at x0(0) = 0, which prevents the finite
escape of system and guarantees thatthe states of closed-loop
system are globally asymptotically regulated to zero.

The rest of this paper is organized as follows. In Section
II, the problem formulation and preliminaries are given.
Section III presents the input-state-scaling transformation
the backstepping design procedure, the switching control
strategy and the main result. Section IV gives simulation
results to illustrate the theoretical finding of this paper.
Finally, concluding remarks are proposed in Section V.

II. PROBLEM FORMULATION

Fig. 1. The planar graph of a mobile robot.

Consider a tricycle-type mobile robot shown in Fig. 1. The
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kinematic equations of this robot are represented by

ẋc = v cos θ
ẏc = v sin θ

θ̇ = ω
(1)

where (xc, yc) denotes the position of the center of mass of
the robot, θ is the heading angle of the robot, v is the forward
velocity while ω is the angular velocity of the robot.

For system (1), by taking the following state and input
transformation

x0 = θ,
x1 = xc sin θ − yc cos θ
x2 = xc cos θ + yc sin θ
u0 = ω
u1 = v

(2)

one obtains
ẋ0 = u0

ẋ1 = x2u0

ẋ2 = u1 − x1u0

(3)

which belongs to the class of nonholonomic chain systems
introduced in [10].

Remark 1. It is evident that, system (3) is a third-order
chained form system which has been extensively studied in
the literature when the inputs saturation was not taken into
consideration. However, in the process of actual movement,
the unbounded angular velocity of the robot is impermissible.
That is because the overquick rotation will result in robot
overturned. Therefore, it is more practical to consider the
stabilization problem of the nonholonomic mobile robot
subject to saturated angular velocity, that is, consider the
stabilization problem of the nonholonomic system (3) with
input u0 saturation.

The objective of this paper is to design a state feedback
controller of the form

u0 = u0(x0), |u0(x0)| ≤ M, u1 = u1(x0, x) (4)

where M is a known bound of u0, such that the states of
closed-loop system are globally asymptotically regulated to
zero.

III. ROBUST CONTROLLER DESIGN

In this section, we proceed to design a robust controller
based on backstepping technique. For clarity, the case that
x0(t0) ̸= 0 is considered first. Then the case where the initial
x0(t0) = 0 is dealt later. The inherently structure of system
(4) suggests that we should design the control inputs u0 and
u1 in two separate stages.

A. Design u0 for x0-subsystem

For x0-subsystem, we take the following control law

u0(x0) = −k0σ(x0) (5)

where k0 > 0 is a design constant and

σ(x0) =

{
sign(x0), |x0| > ε
x, |x0| ≤ ε

(6)

for a small constant ε > 0 to be determined later.
Remark 2. From (5) and (6), it can clearly be seen that

the control law u0 is bounded by a constant k0ε, this is,

by choosing design parameters k0 and ε as k0ε < M , the
control law |u0(x0)| ≤ M is guaranteed.

Under (5), the first result of this paper is established, which
is crucial for the input-state-scaling transformation in what
follows.

Lemma 1. For any initial condition x0(t0) ̸= 0, where
t0 ≥ 0, the corresponding solution x0(t) exists and globally
asymptotically converges to zero. Furthermore, the control
u0 given by (5) also exists and does not cross zero.

Proof. Taking the Lyapunov function V0 = x2
0/2, a simple

computation gives

V̇0 ≤
{

−k0|x0|, |x0| > ε
−k0x

2
0, |x0| ≤ ε

≤
{

−k0V
1/2
0 , |x0| > ε

−2k0V0, |x0| ≤ ε

(7)

from which, we can conclude that x0(t) exists and x0(t) → 0
as t → ∞.

Next, we will show that x0(t) does not cross zero. Ob-
viously, it suffices to prove the statement in the case where
|x0(t)| ≤ ε. In this case, under the control law (5), the x0-
subsystem becomes

ẋ0 = −k0x0 (8)

Therefore, the solution of x0- subsystem can be expressed
as

x0(t) = x0(t0)e
−k0(t−t0)

Consequently, x0 can be zero only at t = t0, when x(t0) = 0
or t = ∞. Since x0(t0) ̸= 0 is assumed, it is concluded that
x0 does not cross zero for all t ∈ (t0,∞) provided that
x0(t0) ̸= 0. Furthermore, we can see from (5) that the u0

exists, does not cross zero for all t ∈ (t0,∞) independent of
the x-subsystem and satisfies limt→∞ u0(t) = 0. Thus, the
proof of Lemma 1 is completed.

B. Input-state-scaling transformation

From Lemma 1, we can see the x0-state in (3) can be
globally regulated to zero via u0 in (5) as t → ∞. However,
in the limit case, x0 will converge to the origin, which
will cause serious trouble in controlling the x-subsystem via
the control input u1. This difficulty can be well addressed
by utilizing the following discontinuous input-state scaling
transformation:

z1 =
x1

u0
, z2 = x2 (9)

Under the new z-coordinates, the x-subsystem is transformed
into

ż1 = z2 + fi(x0, z)
ż2 = u1 + fn(x0, z)

(10)

where

fi(x0, z) =
ϕi(x0, x, u0)

un−i
0

− (n− i)zi
u̇0

u0
(11)

By transformation (9), we easily obtain the following
estimation for nonlinear function fi.

Lemma 2. For i = 1, 2, there are nonnegative smooth
functions γi such that

|fi(x0, z)| ≤ (|z1|+ · · ·+ |zi|)γi(x0, z1, · · · , zi) (12)
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Proof. In view of (9) and (11), we have

|fi(x0, z)|

≤ (|x1|+ · · ·+ |xi|)
|un−i

0 |
φi(·) + (n− i)|zi|

∣∣∣ u̇0

u0

∣∣∣
=

(|z1un−1
0 |+ · · ·+ |ziun−i

0 |)
|un−i

0 |
φi(·)

+(n− i)|zi| ×
{

| u̇0

u0
|, |x0| > ε

| u̇0

u0
|, |x0| ≤ ε

=
(|z1un−1

0 |+ · · ·+ |ziun−i
0 |)

|un−i
0 |

φi(·)

+(n− i)|zi| ×
{

0, |x0| > ε
k0, |x0| ≤ ε

≤ (|z1|+ · · ·+ |zi|)γi(x0, z1, · · · , zi)

(13)

C. Backstepping Design for u1

In this subsection, the controller u1 will be recursively
constructed by applying backstepping technique to system
(10).

Step 1. Begin with z1-subsystem of (10), where z2 is
regarded as a virtual control. Introducing the transformation

e1 = z1, e2 = z2 − z∗2 (14)

and choosing Lyapunov function

V1 =
1

2
e21 (15)

From (10) and (12), it follows that

V̇1 ≤ e1e2 + e1z
∗
2 + e21γ1(x0, z1) (16)

Obviously, the first virtual controller

z∗2 = −e1(2 + γ1(x0, e1)) := −e1β1(x0, e1) (17)

leads to
V̇1 ≤ −2e21 + e1e2 (18)

Step 2. Consider the Lyapunov function

V2 = V1 ++
1

2
e22 (19)

Clearly

V̇i ≤ −2e21 + e1e2

+e2

(
z2 + f2 −

∂z∗2
∂x0

u0 −
∂z∗2
∂z1

(z1 + f1)
) (20)

Now we estimate each term on the right-hand side of (20).
First, it follows (14) that

e1e2 ≤ 1

4
e21 + e22σ1 (21)

where σ1 is a positive constant.
Noting that z∗2 = −e1β1, it implies that z∗i satisfies

z∗2(x0, 0, 0) = 0,
∂z∗2
∂x0

(x0, 0, 0) = 0 (22)

from (22), (12) and (14), after lengthy but simple calculations
based on the completion of squares, there is a smooth
nonnegative function σi2 such that

e2

(
z2 + f2 −

∂z∗2
∂x0

u0 −
∂z∗2
∂z1

(z1 + f1)
)

≤ 3

4
e21 + e22σ2(x0, e1, e2)

(23)

Substituting(21) and (23) into (20) gives

V̇2 ≤ −e21 + e2u1 + e22(σ1 + σ2) (24)

Now, it easy to see that the smooth actual control

u1 = −e2(1 + σ1 + σ2) := −e2β2(x0, e1, e2) (25)

renders
V̇2 ≤ −(e21 + e22) (26)

which implies limt→∞ e(t) = 0. According to the
input-state-scaling transformation (9), we conclude that
limt→∞ x(t) = 0.

The above analysis is summarized into the following
theorem:

Theorem 1. For system (3), if control law (5) and the
full feedback control law (25) are applied, the globally
asymptotic regulation of the closed-loop system is achieved
for x0(t0) ̸= 0.

D. Switching controller and main results

Without loss of generality, we assume that t0 = 0. When
the initial state x0(0) ̸= 0, we have given controller (5) and
(25) for u0 and u1 of system (3). Now, we discuss how to
select the control laws u0 and u1 when x0(0) = 0. In the
absence of disturbances, the most commonly used control
strategy is using constant control u0 = u∗

0 ̸= 0 in time
interval [0, ts). In this paper, we also use this method when
x0(0) = 0, with u0 chosen as

u0 = u∗
0 (27)

where 0 < u∗
0 < M is a constant.

Since x0(0) = 0, under (27), the solution of x0-subsystem
can be expressed as

x0(t) = u∗
0t (28)

Obviously, we have x0 does not escape and x(ts) ̸= 0, for
given any finite ts > 0. Thus, input-state-scaling transforma-
tion for the control design can be carried out.

During the time period [0, ts), using u0 defined in (27),
new control law u1 = u∗

1(x0, x) can be obtained by applying
the procedure described in Section III-C to the original x-
subsystem in (3). Then we can conclude that the x-state of (3)
cannot blow up during the time period [0, ts). Since x(ts) ̸=
0 at ts, we can switch the control input u0 and u1 to (5) and
(25), respectively.

We are now ready to state the main theorem of our paper.
Theorem 2. If the proposed saturated control design

procedure together with the above switching control strategy
is applied to system (3), then the states of closed-loop system
globally asymptotically regulated to zero.

IV. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the pro-
posed approach. with the boundedness of ω being 0.5, i.e.,
|u0| ≤ 0.5.

If x0(0) = 0, controls u0 and u1 are set as in Section III-
D in interval [0, ts), such that x(ts) ̸= 0, then we can adopt
the controls developed below. Therefore, without loss of
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Fig. 2. System states.

generality, we assume that x0(0) ̸= 0. For the x0-subsystem,
we can choose the control law

u0(x0) =

{
−sign(x0), |x0| > 0.5
−x, |x0| ≤ 0.5

(29)

and introduce the input-state-scaling transformation

z1 =
x1

u0
, z2 = x2 (30)

In new z-coordinates, the(x1, x2)-subsystem of (3) is rewrit-
ten as

ż1 = z2 −
u̇0

u0
z1

ẋ2 = u1 − z1u
2
0

(31)
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Fig. 3. Control inputs.

Using (29), it is easy to verify that Lemma 2 holds with
γ1 = γ2 = 1. By applying the design procedure shown in
Section III-C to system (31), we can obtain the following
controller

u1 = −β2(z2 + β1z1) (32)

where β1 = 2.1 and β1 = 23.45. When (x0(0), x1(0),
x2(0))= (2,−1, 1), the simulation results are shown in Figs.
2 and 3, from which, it can be seen that the system states
are asymptotically regulated to zero and the amplitude of the
control input u0 is bounded by 0.5.

V. CONCLUSION

In this paper, the problem of global stabilization of non-
holonomic mobile robots with constrained angular velocity.
By using input-state-scaling transformation and backstepping
technique, a state feedback controller is obtained. Based
on switching strategy to eliminate the phenomenon of un-
controllability, the proposed controller can guarantee that
the system states globally asymptotically converge to the
origin. Simulation results demonstrate the effectiveness of
the proposed control design.
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