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Abstract—Wavelet theory has become popular in modeling
echo state network. One of the most promising directions is
usage of the wavelets as membership activation functions of its
reservoir. However, only Symlets wavelet seems to be suitable
for hybrid wavelet-sigmoid activation functions. To enhance a
systematic study of the field, we concentrate on developing
more wavelets towards the typical ESN representation, and ask:
What are the more outstanding wavelets of reservoir structure
for obtaining competitive models and what is the memory
capacity of such reservoirs for obtaining competitive models? In
the paper, three echo state wavelet-sigmoid networks (ESWNs)
are proposed, considering Shannon wavelet, frequency B-spline
wavelet and impulse response wavelet, respectively. The corre-
sponding wavelet functions are instead of sigmoid one in part
to construct wavelet-sigmoid reservoirs. On three widely used
system nonlinear approximation tasks of different origin and
characteristics, as well as by conducting a theoretical analysis
we show that the proposed ESWNs are superior to the popular
echo state network with build-in Symlets wavelet.

Index Terms—echo state network, wavelet function, short-
term memory capacity, system identification

I. INTRODUCTION

RECURRENT Neural Networks (RNNs) are a widely
known class of neural networks used for learning in

sequential domains. In theory, RNNs can approach any
nonlinear system with arbitrary precision [1][2], and exhibit
dynamic temporal pattern, since they introduce recurrent con-
nections between neurons. However, RNN training algorithm
[3] based on direct optimization of the network weights is
relatively tedious so that it is easy to cause slow convergence,
excessive calculation and suboptimal solutions [4].

To settle all the aforementioned issues,a groundbreaking
network structure for RNNs was proposed independently by
Jaeger, called echo state networks (ESNs) [5]. ESN is a
recurrent neural network, whose the core is a large and fixed
reservoir. The reservoir is composed of massive randomly
and sparsely connected neurons, and passively stimulated by
the input signal. The desired readout is the only trainable
part, which can be generated by a linear readout layer
attached to the reservoir based on a simple linear regression.
Typically, the important property of an ESN is the echo state
property (ESP): the reservoir state is an echo of the entire
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input history. ESN can operate steadily if its spectral radius
is set to a proper value in the preparation phase, which
is completely different from traditional RNNs. ESNs have
been successfully applied in various domains, e.g., time-
series prediction [6], pattern recognition [7], robot control
[8], reinforcement learning [9] and noise modeling [10].

ESNs have attracted the widespread attentions of research
communities, and many extensions of the classical ESN
have been explored, such as echo state Gaussian process
[6], minimum complexity ESN [11], Balanced ESNs [12],
tree ESNs [13], deterministic ESN with loop reservoir [14],
copula ESN [15]. In these improved ESN paradigms, sigmoid
function (S-function) was the most widely used as the acti-
vation function of reservoir neurons because of its stability.
However, despite its popularity, S-function is not an optimal
choice for nonlinear approximation [18].

Recently, wavelet transform [16][17] has become a
widespread tool for modeling neural networks. Typical com-
putation advantages that wavelet functions have include the
following [19][20]: wavelets have local support and provide
compact local representation of signals in both time and
frequency domain; wavelets are capable of scaling (width)
and shifting (centers), that allow to process signals with local
features. In [21], Jain et al., proposed an adaptive wavelet
neural network (WNN) for low-order dominant harmonic
estimation. The model possessed high estimation accuracy
and robustness against the presence of interharmonics, noise,
and fundamental frequency deviation. In [22], Bhaskar et
al., developed a two-stage forecasting method for multiple
wind power prediction, in which adaptive WNNs are used to
predict each decomposed signal. It was demonstrated that
this method had better approximation and faster training
speed than feed-forward neural network. In [23], Wang et
al., proposed a wavelet-neuro-fuzzy system for chaotic time
series identification. The multidimensional wavelet, instead
of conventional radial basis functions, was conducive to the
improvement of approximation property and learning rate.
Especially in [24], Wang et al., firstly introduced wavelet
neurons as an extension of the typical ESN with sigmoid
neurons, where wavelet neurons replaced sigmoid ones in
part. Furthermore, Cui et al., injected the hybrid wavelet-
sigmoid neurons to minimum complexity ESN [25]. These
two models enhanced prediction performance and memory
capacity. However, in the above wavelet-injected methods,
only a few classical wavelet functions is considered towards
ESNs, such as Symlets, Morlet, and Gaussian wavelets [26].
Moreover, Symlets wavelet function was regarded as the
optimal activation one of reservoir neurons. To broaden a
study of the field, we concentrate on exploring more wavelet
families to build activation functions in the typical ESN
architecture.

Unlike the above popular wavelets, the Shannon wavelet,
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frequency B-spline wavelet and impulse response wavelet
have more outstanding advantages in multiresolution rep-
resentation of signals. The Shannon wavelet not only has
orthogonality but also approximate any functions in the
quadratic integrable space, leading to good nonlinear map-
ping ability [27]. The B-spline wavelet manifests the com-
petitive superiorities of explicit expressions in time and
frequency domains relative to the capability of nonlinear
approximation, and symmetry or antisymmetry conducive to
function reconstruction [28]. The impulse response wavelet
effectively represents the system behavior while guaranteeing
admissibility and providing sufficient smoothness and rate of
decay in both time and frequency domains [29]. Theoretical-
ly, the excellent characteristics of these wavelets can provide
a more favorable treatment for reservoir activation functions.

In the paper, we introduce three wavelet families of SW,
FBW and IRW towards ESN, respectively, providing the
promising alternatives to SymW. Embedded in the reservoir
neurons, we propose three echo state wavelet-sigmoid net-
works (ESWNs). In these newly built structures, wavelet
neurons are partly injected into reservoirs, and have dif-
ferent activation functions that are derived from the same
wavelet family. The hybrid activation mechanism, as well
as the outstanding local feature representation of alternative
wavelet functions, providing better theoretical guarantees that
ESWNs will perform well on given nonlinear approximation
tasks. Through the experiments with widely used time series
benchmarks, we observe that compared with a SymW-based
ESN, these three new structures are able to provide efficient
solutions to the predictive modeling task.

The contents of this paper is organized in six sections.
Section 2 presents our echo state wavelet-sigmoid networks.
Experimental results are shown in Section 3. We analyze
both theoretically and empirically the short-term memory
capacity (MC) of our models in Section 4. Finally, our work
is discussed and concluded in Sections 5 and 6, respectively.

II. ECHO STATE WAVELET-SIGMOID NETWORK

This paper focuses on developing new wavelets towards
ESN to achieve good approximation quality, termed as echo
state wavelet-sigmoid networks. The details of ESWNs are
briefly discussed in the following subsections.

A. Selection of wavelet functions

Definition 1: In function space L2(ℜ) (or Hilbert space),
the mother wavelet function h(x) must satisfy the following
admissibility condition.

Cψ =

∫
ℜ

∣∣∣⌢ψ(ω)∣∣∣2
|ω|

dω <∞ (1)

where
⌢

ψ(ω) is the Fourier transform of h(x). The corre-
sponding wavelet family is obtained through the dilation and
translation, given by

ψa,b(x) = |a|−
1
2ψ(

x− b
a

) a, b ∈ ℜ, a ̸= 0 (2)

where a is the dilation factor, b is the translation factor.
Eq.(2) is the continuous wavelet function dependent on the
parameter (a, b), generated from the mother wavelet ψ(t).

Unlike the common wavelets in ESN modeling, such as
Symlets, Morlet and Gaussian wavelets, we consider the
alternative wavelets in the paper as follows.

(1) The Shannon wavelet [27] is constructed from the
Shannon multiresolution approximation, which approximates
functions by the restriction to low frequency intervals. The
real SW can be expressed as:

ψShannon(t) = 2sinc(2t− 1)− sinc(t) (3)

This wavelet belongs to the C∞ class of differentiability, but
it decreases slowly at infinity and has no bounded support,
since band-limited signals cannot be time-limited.

(2) The frequency B-spline wavelet [28] is a series of
mother wavelets, each of which produces a different wavelet
family, defined as follows

ψBspline(t) = Cm,fbsinc
m(
fbt

m
)ej2πfct (4)

where Cm,fb is a normalization factor of the wavelet energy,
m ∈ N is the integer order parameter, fb ∈ ℜ+ is the
bandwidth parameter, and fc ∈ ℜ+ is the wavelet’s central
frequency.

(3) The impulse response wavelet, proposed by Alkafafi
et al. in [29], is derived from the bearing impulse response,
aimed at increasing the amplitude of the generated wavelet
coefficients related to the fault impulses, and improving the
fault detection process, given by

ψImpulse(t) = Ae
− β√

1−β2
ωct

sin(ωct) (5)

where A is an arbitrary scaling factor, β is the damping
factor that adjusts the resolution of the wavelet, and ω is the
wavelet centre frequency.

W
in

W

W
out

W
back

Input layer

u(t)

Wavelet-sigmoid reservoir

x(t)
Output layer

y(t)

Sigmoid neuronWavelet neuron

Fig. 1. Typical architecture of an ESWN.

B. Network architecture of ESWN

ESWN is essentially an ESN architecture with a hybrid
wavelet-sigmoid reservoir. The wavelets in the Section II-A
serve as its reservoir activation functions, and they are first
introduced to build the wavelet-sigmoid reservoir. Fig. 1
shows the typical architecture of a multiple-input multiple-
output ESWN, comprising of three key parts: input layer,
hybrid wavelet-sigmoid reservoir and output layer. u(t) is
the observed signal injected to the network at time t, W in

is the input weight matrix, i.e., the matrix of connections
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between the input units and the internal units, x(t) is the
reservoir state at time t, W is the reservoir weight matrix,
i.e., the matrix of connections between the internal units,
y(t) is the network readout at time t, W out is the output
weight matrix, i.e., the matrix of connections from internal
units to output units, W back is the feedback weight matrix,
i.e., the matrix of connections from output units to internal
units. Supervised ESWN training is conducted by updating
the reservoir state and network output as follows:

x(t+ 1) = f(W inu(t+ 1) +Wx(t) +W backy(t)) (6)

y(t+ 1) =W out(x(t+ 1)) (7)

where f denotes the activation function of reservoir neurons,
given by

f(·) =
{

tanh(·) if sigmoid
ψa, b(·) if wavelet

(8)

In our implementation, wavelet neurons are still injected
to the reservoir in part, which is measured by the mixed ratio
(MR) of injected wavelets, given by

MR =
rwavelet
N

(9)

where rwavelet ∈ Z is the amount of injected wavelet
neurons, N is the sum of all neurons. Besides, the dilation
parameter a and translation parameter b are changed into
decimals in order to balance the diversity of generated
wavelet function family, given by

ai =
i

rwavelet
, bi =

i

rwavelet
− 0.5, (i = 1, 2, ..., rwavelet )

(10)
where bi makes the center of each wavelet function family
steady near the zero value to ensure the coordination between
wavelet neurons and sigmoid neurons. Consequently, the ac-
tivation functions based on SW, FBW and IRW are rewritten
as follows

ψSW
ai, bi

(t) = 2sinc(2(ait− bi)− 1)− sinc(ait− bi) (11)

ψFBW
ai, bi

(t) = Cm,fbsinc
m(
fb(ait− bi)

m
)ej2πfc(ait−bi) (12)

ψIRW
ai, bi

(t) = Ae
− β√

1−β2
ωc(ait−bi)

sin(ωc(ait− bi)) (13)

C. Network training

Similar to the typical ESN paradigm, the ESWN training
is also to obtain the optimal output weight vector W out. The
training process includes the following stages.

(1) Network initialization
As discussed previously, elements of W and W in are

generated randomly during the initialization with random
values drawn from a uniform distribution, and fixed until
the end of ESWN execution. To account for echo state
performance, the internal weight matrix W is typically scaled
as

W ← α

|λmax|
W (14)

where |λmax| is the spectral radius of W , and α ∈ (0, 1) is
a scaling parameter.

(2) Constructing wavelet-sigmoid reservoir

Especially, wavelet-neurons proportionally replace some
original sigmoid-ones in a random way. Actually, the wavelet
functions are embedded into corresponding neurons.

(3) Collecting network states
Network states before a washout time nmin is ignored due

to the dependency on the initial states. The reservoir states
obtained by Eq. (6) are collected in a state matrix X .

X =


xT (nmin + 1)
xT (nmin + 2)
...
xT (n)

 (15)

and the corresponding target outputs are collected in a target
output matrix Y

Y =


y(nmin + 1)
y(nmin + 2)
...
y(n)

 (16)

(4) Computing readout matrix
The readout matrix W out is obtained by solving a linear

regression problem, expressed as

XW out = Y (17)

Generally, the traditional method is to use the least squares
solution, that is

W out = argmin
w

∥Xw − Y ∥ (18)

where ∥·∥ denotes the Euclidean norm. The output matrix
W out can be solved in a single step using the Moore-Penrose
pseudo inverse

W out = X̃Y = (XTX)−1XTY (19)

where X̃ denotes the generalized inverse of X . It means
the completion of the local fine-tuning in regression layer.
Afterwards, our ESWNs are used to perform nonlinear
system identification tasks.

TABLE I
CONFIGURATION OF THE EVALUATED MODELS IN OUR EXPERIMENTS.

Parameters NARMA Ikeda map MSO

Reservoir size 100 150 100

Spectral radius 0.7 0.7 0.6

MR 0.5 0.7 0.2

Reservoir Connectivity 0.1 0.15 0.2

Feedback weights between [-0.1, 0.1] [-0.56, 0.56] [-0.25, 0.25]

Sequence length L 1400 5000 3000

Ltrain 700 2500 1500

Ltest 700 2500 1500

Washout time Lv 100 100 100

Engineering Letters, 25:3, EL_25_3_12

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



0 100 200 300 400 500 600
0

0.5

1

1.5

Time steps

S
ig

na
l a

m
pl

itu
de

 

 
Original NARMA SymW

0 100 200 300 400 500 600
−0.1

−0.05

0

0.05

0.1

Time steps

E
rr

or
 a

m
pl

itu
de

(a) SymW

0 100 200 300 400 500 600
0

0.5

1

1.5

Time steps

S
ig

na
l a

m
pl

itu
de

 

 
Original NARMA SW

0 100 200 300 400 500 600
−0.1

−0.05

0

0.05

0.1

Time steps

E
rr

or
 a

m
pl

itu
de

(b) SW

0 100 200 300 400 500 600
0

0.5

1

1.5

Time steps

S
ig

na
l a

m
pl

itu
de

 

 
Original NARMA FBW

0 100 200 300 400 500 600
−0.1

−0.05

0

0.05

0.1

Time steps

E
rr

or
 a

m
pl

itu
de

(c) FBW

0 100 200 300 400 500 600
0

0.5

1

1.5

Time steps

S
ig

na
l a

m
pl

itu
de

 

 
Original NARMA IRW

0 100 200 300 400 500 600
−0.1

−0.05

0

0.05

0.1

Time steps

E
rr

or
 a

m
pl

itu
de

(d) IRW

Fig. 2. Output and error of SymW, SW, FBW and IRW in the NARMA system.
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Fig. 3. Dependency of the network performance on the reservoir size for
the NARMA system, utilizing SymW, SW, FBW and IRW.

III. EXPERIMENTS

In the following section, we provide a comprehensive
experimental evaluation of the ESWN models, considering

three classical system identification tasks. In the proposed
ESWNs, we build three novel reservoirs with wavelet- sig-
moid neurons, using the Shannon wavelet, frequency B-
spline wavelet and impulse response wavelet. For conve-
nience of discussion, these models are called SW, FBW
and IRW, respectively, We also evaluate the Symlets wavelet
based ESWN, namely SymW, in order to demonstrate the
advantages of our models. Table I shows the details of param-
eter configuration. The normalized root mean square error
(NRMSE) is used to measure the nonlinear approximation
capacity of the proposed models, defined as

NRMSE =

√√√√√ ltest∑
t=1

(ytest(t)− d(t))2

ltest · σ2
(20)

where ltest is the length of test samples, ytest(t) and d(t) are
the test output and desired output at time step t, respectively,
and σ2 is the variance of desired output d(t). All the
simulations are carried out in an identical software and
hardware environment, and for each task, the average results
over 10 trials are obtained for comparison.
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Fig. 4. Dependency of the network performance on the spectral radius
for the NARMA system, utilizing SymW, SW, FBW and IRW.
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Fig. 6. Attractors obtained by SymW, SW, FBW and IRW for the Ikeda map.

A. NARMA

The nonlinear autoregressive moving average (NARMA)
system [30] is a discrete time system, whose current output
depends on both the input and the previous output, given by

y(n) = 0.7x(n−m) + (1− y(n− 1))y(n− 1) + 0.1 (21)

where y(n) is the system output at time n, and x(t) is the
system input at time n, m is the memory length (in my case,
m = 1). In general, it is really difficult to model this system,
due to the nonlinearity and possibly long memory.

Fig. 2 shows the comparative curves of the desired output

and the estimated output as well as the output errors over
time steps, for SymW, SW, FBW and IRW. As we observe
from this figure, our models achieve more highly accurate
approximations than SymW for the NARMA system. The
corresponding NRMSEs are 0.0093, 0.0045, 0.0035 and
0.0037, respectively.

Figs. 3-5 show the average test set NRMSEs achieved by
the selected method representatives versus different param-
eters for the NARMA system. In Fig. 3, we presents the
dependency of network performance on the chosen reservoir
size N . As we observe, SW, FBW and IRW achieve better
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approximation than SymW, and the best scenario is that the
reservoir size is N = 300. Fig. 4 shows the dependency
of network performance on the spectral radius λ, where the
proposed models obviously outperform SymW, and the rela-
tively smaller λ is more conducive to superior performance.
Furthermore, the dependency of network performance on
mixed ratio is shown in Fig. 5. Likewise, the alternative
models are superior to SymW over the whole choice of MR.
It is noteworthy that their prediction performances start to
get better as MR increases, while the performance of SymW
tends to be worse.

B. Chaotic dynamical system

The Ikeda map [14],first proposed by Ikeda et al. (1980), is
a discrete-time chaotic dynamical system, originated by the
nonlinear optical system. As a model of laser light emission
from a ring cavity containing a bistable dielectric medium,
its 2D real example is given by the following form:{

x(n+ 1) = 1 + u(x(n) sin t(n)− y(n) cos t(n))
y(n+ 1) = u(x(n) sin t(n) + y(n) cos t(n))

(22)
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Fig. 9. Dependency of the network performance on the mixed ratio for
the Ikeda map, utilizing SymW, SW, FBW and IRW.

where x(n) and y(n) denote the input and output of the Ikeda
system at time n, the parameter u (in the case, u = 0.7)
ensures that the system has a chaotic attractor, t(n) is a time
variable associated with y(n) and x(n), given by

t(n) = 0.4− 6

1 + x2(n) + y2(n)
(23)

where the system input and output are initialized to x(0) =
0.1 and y(0) = 0.1. And there exists the gaussian white noise
with the standard deviation υ ∈ (0, 1) in the system.

In Fig. 6, we show the chaotic attractor of the original
Ikeda map and ones produced by the evaluated models.
As seen from this figure, all the trained models come
close to the trajectory of the original Ikeda map attractor.
The corresponding prediction NRMSEs are 0.0160, 0.0146,
0.0145 and 0.0142, respectively.

Figs. 7-9 shows the average test set NRMSEs achieved
by the selected model representatives versus different pa-
rameters for the Ikeda map system. In all cases where the
considered reservoir size changes, the proposed models can
perform better than SymW, as shown in Fig. 7. The optimal
case is that the reservoir size is set to 150. Likewise in
Figs. 8-9, our models are also superior to SymW over the
choices of λ and MR. Specially, SW, FBW and IRW are
slightly sensitive to the change of λ, but the approximation
performance of SymW degenerates gradually with the in-
crease of λ. In addition, the larger MR is considered, the
better approximations are obtained for our models, and MR
should be kept up within the set range [0.7, 1] to ensure the
satisfactory approximation performance as much as possible
in the Ikeda map.

C. Multiple superimposed oscillations

The considered MSO system [12] are built by summing
up several simple sine wave functions. Formally the general
expression is given by the following equation

y(n) =
s∑
i=1

sin(αin) (24)

where s denotes the number of sine waves, αi denotes the
frequencies of the summed sine waves, and n specifies an
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Fig. 10. Output and error of SymW, SW, FBW and IRW in the MSO system.
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Fig. 11. Dependency of the network performance on the reservoir size for
the MSO system, utilizing SymW, SW, FBW and IRW.

integer index of the time step. We use MSOx to describe
the especial MSO dynamics, where x defines the number of
summed sine waves. To demonstrate the capability of the
ESWNs in approximating the MSO system, they are trained

to learn the function composed of two sines, i.e., MSO2:

y(n) = sin(0.2n) + sin(0.311n) n = 1, 2, .... (25)

Fig. 10 shows comparative curves of the desired net-
work output and actual signal versus time steps as well
as the corresponding output error for each model under
consideration. It is observed that our models again demon-
strate their abilities to identify the nonlinear system with
high approximation performance. The obtained NRMSEs
are 2.1 × 10−13, 7 × 10−15, 5.5 × 10−11 and 2.1 × 10−9,
respectively. Moreover, it can be clearly seen that the test
NRMSE for SW is of two orders of magnitudes better than
the NRMSE achieved by the other alternatives, which implies
that it can track the oscillations more accurately.

In Fig. 11-13, we provide the average test set NRMSEs
achieved by the selected model representatives versus dif-
ferent parameters for the MSO system. From the figures,
we observe that SW is the best choice for identifying this
system. In particular, the region where SW shows the best
approximation lies within the range N ∈ [50, 200] and
λ ∈ [0.6, 1] (see Figs 11-12). But for MR, SW works
considerably better than the other evaluated models. Besides,
all structures except IRW tend to perform poorly as MR
increases up to 1 (see Fig. 13).
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Fig. 12. Dependency of the network performance on the spectral radius
for the MSO system, utilizing SymW, SW, FBW and IRW.

0.2 0.4 0.6 0.8 1

10
−15

10
−10

10
−5

MR

N
R

M
S

E

 

 
SymW
SW
FBW
IRW

Fig. 13. Dependency of the network performance on the mixed ratio for
the MSO system, utilizing SymW, SW, FBW and IRW.
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Fig. 14. The forgetting curves of the evaluated models versus different λ.

IV. SHORT-TERM MEMORY CAPACITY

In [32], the inherent capacity of ESN reservoir architec-
tures is quantified by representing past events through a mea-
sure correlating the past events in an i.i.d. input stream with
the network output. As an outstanding feature of reservoir,

the memory capacity (MC) can embody the property of some
input-output systems. Just for the sake of argument, assume
that the network is driven by a univariate stationary input
signal u(t). For a given delay k, the network with optimal
parameters is established for the task of outputting u(t− k)
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TABLE II
STM CAPACITIES OF SYMW, SW, FBW AND IRW VERSUS THE SPECTRAL RADIUS λ.

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SymW 7.15 8.5318 9.0226 9.7414 10.2162 10.5053 10.8641 10.6701 10.9794

SW 6.9878 8.1992 8.7930 9.3899 9.8149 9.9330 10.5855 10.8559 10.3364

FBW 7.1000 8.3710 8.7473 9.0656 9.6567 9.5561 9.9788 10.4384 10.2556

IRW 7.3346 8.5796 8.9694 9.6099 10.3618 10.4794 10.7050 11.1950 11.1458
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Fig. 15. Reconstruction NRMSEs of the evaluated models versus different λ.

in the case that the i.d.d. input stream ...u(t−2)u(t−1)u(t)
is obtained up to time t. The capacity to recover the values of
former inputs is measured in terms of the squared correlation
coefficient between the desired output (input signal delayed
by k time steps) and the observed network output y(t).

MCk =
Cov2(u(t− k), y(t))
V ar(u(t))V ar(y(t))

(26)

where Cov and V ar denote the covariance and variance,
respectively. The short-term memory (STM) capacity is then
formulated as:

MC =
∞∑
k=1

MCk (27)

And in [32], Jaeger proved that the STM capacity cannot
surpass the reservoir size N under the assumption of i.i.d.
input stream.

We empirically evaluate the short-term MC of the consid-
ered models, where they are trained to memorize the inputs
delayed by k = 1, 2, . . . , 40. Consider that these models
are equipped with 1 input unit, 20 wavelet-sigmoid reservoir
units and 40 output units. The input signal subjects to random
uniform distribution in the interval [0, 0.5], and MR is set to
0.2. The desired output is a series of delayed versions of the
input signal [11][14][32].

Fig. 14 shows the forgetting curves of the evaluated models
over a wide choice of λ, where the detCoeff is the squared

Engineering Letters, 25:3, EL_25_3_12

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



TABLE III
RECONSTRUCTION PERFORMANCE OF SYMW, SW, FBW AND IRW VERSUS SPECTRAL RADIUS λ.

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SymW 0.8450 0.8164 0.8000 0.7881 0.7771 0.7758 0.7674 0.7753 0.7704

SW 0.8475 0.8224 0.8065 0.7959 0.7863 0.7875 0.7731 0.7697 0.7862

FBW 0.8460 0.8206 0.8080 0.8012 0.7882 0.7933 0.7832 0.7735 0.7835

IRW 0.8404 0.8131 0.8018 0.7887 0.7716 0.7730 0.7662 0.7586 0.7631

correlation coefficient (i.e., MCk in (26)), and the corre-
sponding MC values are depicted in Table II. It can be seen
clearly that IRW has a superior STM compared with the other
models, and interestingly, their STMs become more powerful
as λ increases. To illustrate the approximation capacity of
ESWNs, we show the NRMSE of each reconstruction in the
generating Fig. 15, and calculate the average NRMSE across
40 reconstructions for each model, as shown in Table III. The
experimental results show that IRW has a superior ability of
recovering the network inputs with high performance. For
example, for λ = 0.8, the reconstruction performance of
IRW is increased to around 69%, which is 1.6%, 1% and
1.5% higher than those obtained by SymW, SW and FBW,
respectively. More importantly, combined with Table II, it
can be seen that the more powerful the STM capacity is, the
better nonlinear approximation capacities ESWNs have.

V. DISCUSSION

The paper focuses on finding more outstanding wavelets
instead of the common Symlets wavelet towards the hy-
brid reservoir to achieve superior nonlinear approximation
capacity. Three ESWNs are proposed, considering Shannon
wavelet, frequency B-spline wavelet and impulse response
wavelet. On the one hand, the transformation of a homo-
geneous reservoir into a novel hybrid wavelet-sigmoid one
allows a more effective states representation. On the other
hand, the harmonious cooperation between the new wavelet
neurons and sigmoid neurons offers us a novel nonlinear
approximation capability.

In all the computer experiments conducted in this pa-
per, we have demonstrated that the proposed ESWNs, i.e.,
SW, FBW or IRW, possess the more powerful nonlinear
approximation capacity, compared with the common SymW
(see Figs 2-13). Furthermore, we choose the representative
parameters to confirm the effectiveness of ESWNs for the
given tasks, where the parameters are specified by reservoir
size, spectral radius, and mixed ratio of wavelets. The
reservoir size determines ESN’s nonlinear mapping capacity.
Generally speaking, the bigger reservoir size is beneficial
to obtain the better approximation performance, but the
appropriate regularization should be taken against overfitting.
The spectral radius measures how fast the influence of an
input fades away in a reservoir over time, and whether the
reservoir is stable or not. As previously discussed in [33],
the larger spectral radius tends to obtain the slower decay of
the networks response to an impulse input, and the stronger
networks memory capacity. In this case, ESN can have a
more efficient computing power and a better approximation
capability. The mixed ratio of wavelet neurons determines

the feature of reservoir (unique sigmoid reservoir or hybrid
wavelet-sigmoid reserovir), as well as the activation level of
reservoir neurons. Unfortunately, this parameter has been n-
ever deeply discussed in existing literatures [24][25]. In fact,
these reservoir parameters are task-dependent, as shown in
Figs. 3-5, 7-9 and 11-13. For example, considering the mixed
ratio of wavelet neurons, we conclude that IRW and FBW
seem to be suitable for the NARMA and Ikeda map tasks
(see Fig. 5 and Fig. 9), while SW is the optimal selection
for the MSO task (see Fig. 13). Moreover, for the NARMA
and Ikeda map tasks, the approximation performance of our
models is directly proportional to the mixed ratio of wavelet
neurons, but the contrary is the case for the MSO task. The
determination of these reservoir parameters for a given task
is still an open problem, and it is worthy of further research.

VI. CONCLUSION

In this paper, three echo state wavelet-sigmoid networks
are proposed considering Shannon wavelet, frequency B-
spline wavelet and impulse response wavelet. We have fo-
cused on the following research issues.

(1) Whether or not the alternative wavelets are suitable for
reservoir activations so that the constructed ESWNs are
comparable to the Symlet wavelet based one, and even
outperform it?

(2) What kind of reservoirs are required to construct
competitive ESWNs?

(3) When competitive wavelet-sigmoid reservoirs are con-
structed, how do they compare in terms of MC with
established one (built-in Symlets wavelet), and what is
the relationship between MC and NRMSE?

Through three widely used system identification bench-
marks of different origins and characteristics, as well as by
performing a theoretical analysis, we have demonstrated the
following.

(1) The proposed SW, FBW and IRW can achieve more
highly accurate approximation compared with SymW.

(2) The reservoirs can be constructed by means of intro-
ducing the wavelet-sigmoid neurons.

(3) The MCs of our models are directly proportional to
their reconstruction NRMSE, and IRW has the most
powerful MC and nonlinear approximation capacity.

Selecting a suitable activation function is crucial to the
accuracy and computational efficiency of ESNs. Future re-
search will work on optimizing activation function to address
the difficulty in selecting suitable activation function or
combination of functions for a given task.
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