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Abstract—This paper proposes neural network for computing
the eigenvectors of Hermitian matrices. For the eigenvalues
of Hermitian matrices, we establish an explicit representation
for the solution of the neural network based on Hermitian
matrices and analyze its convergence property. We also con-
sider to compute the eigenvectors of skew-symmetric matrices
and skew-Hermitian matrices, corresponding to the imaginary
maximal or imaginary minimal eigenvalue, based on the neural
network for computing the eigenvectors of Hermitian matrices.
Numerical examples are given to illustrate our theoretical result
are valid.

Index Terms—Complex differential equations, complex-
valued neural network, Hermitian matrix, eigenvectors.

I. INTRODUCTION

THE unknown variables are complex-valued vectors in
many scientific and engineering problems. A main aim

is to find these variables by minimization of a complex-
valued optimization problem with constraints [1], [2].
Complex-valued systems arise applications from adaptive
signal processing for highly functional sensing and imaging,
in automatic control in unknown and changing environment,
in brain-like information processing and in robotics inspired
by human neural systems. In the field of signal processing,
for example, complex-valued systems are widely applied,
as in land-surface classification, in the generation of digital
elevation maps and in speech synthesis [3], [4], [5], [6], [7],
[8].

For background to the eigenvalue problem, we recommend
the monographs by Stewart and Sun [9], Golub and Van
Loan [10], and Wilkinson [11]. There are several numerical
methods for solving the eigenvalue problem. They include
approaches based on the power and inverse iteration meth-
ods, QR methods, Lanczos based methods and the Jacobi-
Davidson method [12], [13], [14].

Throughout this paper, we assume that n will be reserved
to denote the index upper bounds, unless stated otherwise,
and i, j, k will be reserved to denote the index. We take Greek
alphabet α, β, γ, . . . for scalars, small letters x, u, v, . . . for
vectors, capital letters A,B,C, . . . for n × n matrices, and
calligraphic letters A,B, C, . . . for 2n × 2n matrices. For a
given matrix A ∈ Cm×n, we denote A> and A∗ the transpose
and the complex conjugated transpose of A, respectively. We
use |α| to denote the model of a complex number α ∈ C.
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A. Eigenpairs of Hermitian matrices
The eigenvalue problem of A ∈ Cn×n are elements of the

set λ(A) defined by [9], [10] as follows

λ(A) = {λ ∈ C : det(A− λI) = 0}.

If λ ∈ λ(A) and two nonzero vectors u, v ∈ Cn satisfy

Au = λu, v∗A = λv∗,

then u and v are called the right and left eigenvectors of A,
corresponding to λ, respectively.

For a given Hermitian matrix A = B + ιC, where ι =√
−1, B, C ∈ Rn×n with B> = B and C> = −C, it is

well known that there exist a unitary matrix Q ∈ Cn×n and
a diagonal matrix Λ ∈ Rn×n such that

A = QΛQ∗, Λ = diag(λ1, λ2, . . . , λn).

We observe the right and left eigenvectors of the Hermitian
matrix A corresponding to λ are the same. If we rewrite
Q = U + ιV with U ∈ Rn×n and V ∈ Rn×n, then we
obtain(

B −C
C B

)(
U −V
V U

)
=

(
U −V
V U

)(
Λ 0
0 Λ

)
,

and(
U −V
V U

)(
U> V >

−V > U>

)
=

(
U> V >

−V > U>

)(
U −V
V U

)
=

(
I 0
0 I

)
.

For a given eigenpair (λ, z) of the Hermitian matrix A, we
have (

B −C
C B

)(
x
y

)
= λ

(
x
y

)
,

and (
B −C
C B

)(
−y
x

)
= λ

(
−y
x

)
,

where the vector z can be written as x+ ιy with x, y ∈ Rn.
Suppose that

A =

(
B −C
C B

)
,

since A ∈ R2n×2n is symmetric, we can compute the
eigenpairs of an Hermitian matrix A by the eigenpairs of
the associated symmetric matrix A.

We notice that it is required to convert a complex-
valued eigenvalue problem into a real-valued one by splitting
the complex numbers into their real and imaginary parts.
However, the major disadvantage of this method is that
the resulting algorithm will double the dimension compared
with the original problem and may break the special data
structure. Moreover, they will suffer from high computational
complexity and have a slow convergence when the problem
size is large.
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B. Goals and organization

The neural network approach to parallel computing
and signal processing has been successfully demonstrated
through a variety of neurodynamic model with learning
capabilities [15], [16], [17]. Many scholars have developed
numerical methods based on neural network approach to
compute eigenvectors of the symmetric matrices [18], [19],
[20], [21] and solve linear matrix equations or nonlinear
matrix equations on the basis of recurrent neural networks
[22], [23], [24], [25]. Moreover, by the neural network-
s for computing eigenvectors of the symmetric matrices,
Tang and Li [26], Liu, You and Cao [27], [28] introduce
neural networks for extracting the eigenvectors of the real
skew-symmetric matrices corresponding to the the maximal
or minimal modulus eigenvalues. Liu, You and Cao [29],
[30] also give recurrent neural networks to extract some
eigenpairs of a general real matrix. Zhang and Leuang
[31] propose a dynamic system for solving the eigenvalue
problem with complex matrices.

In the above subsections, we can convert the eigenpairs
of Hermitian matrices to the eigenvalue problem with an
associated symmetric matrix. Then, the eigenvectors of the
symmetric matrix A can be computed by the following
proposed neural network model:

ds(t)

dt
= [s(t)>s(t)]As(t)− [s(t)>As(t)]s(t), (1)

for t ≥ 0, where s = (s1, s2, . . . , s2n)> ∈ R2n represents
the state of the network.

However, the network (1) is summarized by 2n-
dimensional ordinary differential equations. We note that
computation of 2n-dimensional ordinary differential equa-
tion inevitable adds much workload and is computationally
inefficient. Thus, in order to avoid redundant computation
in a double real-valued space and reduce a low model
complexity and storage capacity, we need to design the
proposed complex-valued neural dynamical approach for
computing the eigenvectors of Hermitian matrices and the
Takagi vectors of complex symmetric matrices. We can refer
to [32], [33], [34], [35], [36] for solving a complex-valued
nonlinear convex programming problem by a complex-valued
neural network.

The dynamics of the complex-valued neural network mod-
el for computing the eigenvectors of an Hermitian matrix
A ∈ Cn×n is described by

dz(t)

dt
= −z(t) + f(z(t)), (2)

for t ≥ 0, where

f(z(t)) = [(z∗z)A+ (1− z∗Az)]z

and z = (z1, z2, . . . , zn)> ∈ Cn represents the state of the
network.

Through some basic operations, we perform the above
network for computing the eigenvectors of skew-symmetric
matrices and skew-Hermitian matrices.

The rest of our paper is organized as follows. In Section
II, we establish the relationship between the solutions of the
network (2) and the eigenvectors of Hermitian matrices. We
obtain an explicit expressions for the solutions of the network
(2) and derive its convergence properties. We use the network

(2) for computing the eigenvectors of skew-symmetric and
skew-Hermitian matrices in Section III. We illustrate the
theoretical results via computer simulations in Section IV.
Finally, we conclude our paper in Section V.

II. HERMITIAN MATRICES

In this section, we analyze the equilibrium points of
the network (2) and derive an explicit representation for
the solutions of the network (2). We show that a nonzero
solution of the network (2) converges to an eigenvector of
the associated Hermitian matrix. Some applications for the
network (2) are explored.

A. Properties

We utilize the following lemma to illustrate a basic prop-
erty for the solutions of the network (2).

Lemma II.1. If the nonzero vector z(t) is a solution of the
network (2) for t ≥ 0, then z(t)∗z(t) keeps invariant for
t ≥ 0, i.e., z(t)∗z(t) = z(0)∗z(0).

Proof: Since the matrix A is Hermitian, then z∗Az is
real for all vectors z ∈ Cn.

Let z(t) = x(t) + ιy(t). Then, we have

z(t)∗z(t) = x(t)>x(t) + y(t)>y(t).

Meanwhile, the network (3) can be rewritten as

ds(t)

dt
= [s(t)>s(t)]As(t)− [s(t)>As(t)]s(t),

where s(t) = (x(t)>, y(t)>)> and the matrix

A =

(
B −C
C B

)
.

If the nonzero vector s(t) is a solution of the above
network for t ≥ 0, then the derivative of s(t)>s(t) is

[s(t)>s(t)]′ = 2s(t)>(s(t))′

= 2s(t)>[s(t)>s(t)As(t)− s(t)>As(t)s(t)]
= 0.

Hence, s(t)>s(t) keeps invariant for t ≥ 0. The proof is
complete.

A vector u ∈ Cn is called an equilibrium point of the
network (2) if and only if it satisfies

−u+ f(u) = 0, (3)

that is, (u∗u)Au− (u∗Au)u = 0.
Denote E by the set of all equilibrium points of the

network (2). For a given eigenvalue λ of an Hermitian
matrix A ∈ Cn×n, denote Vλ by the invariant eigenspace
corresponding to λ.

Theorem II.1. Suppose that A ∈ Cn×n is Hermitian. The
set of all the equilibrium points of (2) is equal to the union
of all invariant subspaces of A, i.e.,

E = ∪λVλ.

Proof: Given any u ∈ Vλ, if u = 0, clearly, u ∈ E.
Suppose that u is nonzero, there exists a scalar λ such that
u ∈ Vλ, i.e., Au = λu and u∗A = λu∗. Thus,

(u∗u)Au− (u∗Au)u = (u∗u)λu− λ(u∗u)u = 0.
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By equation (3), we have u ∈ E. This implies E ⊇ ∪λVλ.
On the other hand, for any u ∈ E, it holds that (u∗u)Au−

(u∗Au)u = 0. If u = 0, then u ∈ Vλ. If u is nonzero, then
it is obvious that

Au =
u∗Au

u∗u
u,

which shows that u is an eigenvector of A. It follows that

E ⊆ ∪λVλ.

Thus, E = ∪λVλ. This completes the proof.
The above theorem shows that any equilibrium state of

network (3) is an eigenvector of A if it is not the zero vectors.
If the convergence of the network can be proved, then it can
provide a method to compute the eigenvectors of A. Next
we consider how to derive an explicit representation for the
solutions of the network (3).

Since A is an Hermitian matrix, there exists a group of
orthogonal basis of Cn composed by eigenvectors of Cn.
Let λi (i = 1, 2, . . . , n) be eigenvalues of A and zi (i =
1, 2, . . . , n) be the corresponding eigenvectors that compose
an orthonormal basis of A. Then, for any z ∈ Cn, it can be
represented as z =

∑n
i=1(αi + ιβi)zi, where αi and βi (i =

1, 2, . . . , n) are some real constants. Meanwhile, we have
that ‖z‖22 =

∑n
i=1(α2

i + β2
i ).

Suppose that zi = xi + ιyi and let

si =

{
(x>i , y

>
i )>, i = 1, 2, . . . , n,

(−y>i , x>i )>, i = n+ 1, n+ 2, . . . , 2n.

For any z ∈ Cn, there exists a unique vector s ∈ R2n,
such that

s =

n∑
i=1

αisi +

2n∑
i=n+1

βi−nsi.

Since ‖zi‖2 = 1, the set {s1, s2, . . . , s2n} composes an
orthonormal basis of R2n. All vectors si (i = 1, 2, . . . , 2n)
are the eigenvectors of A, corresponding to the eigenvalues

λ1, λ2, . . . , λn;λ1, λ2, . . . , λn,

respectively.

Theorem II.2. Let A ∈ Cn×n be Hermitian with the eigen-
vectors zi ∈ Cn. Given any nonzero vector z(0) ∈ Cn, if
there exist 2n real scalars αi(0) and βi(0) (i = 1, 2, . . . , n)

such that z(0) =
n∑
i=1

ci(0)zi, where there exists an integer k

such that αk(0) 6= 0 or βk(0) 6= 0, then the solution of the
network (2) starting from z(0) can be represented as

z(t) =
n∑
i=1

√√√√√ ‖z(0)‖22
n∑
j=1

‖cj(0)‖22 exp [2‖z(0)‖22(λj − λi)t]
ci(0)zi,

(4)
for all t ≥ 0, where cj(0) = αj(0)+ιβj(0) (j = 1, 2, . . . , n).

Proof: Define two vectors b, a(0) ∈ R2n as

bi =

{
λi, i = 1, 2, . . . , n,

λi−n, i = n+ 1, n+ 2, . . . , 2n,

and

ai(0) =

{
αi(0), i = 1, 2, . . . , n,

βi−n(0), i = n+ 1, n+ 2, . . . , 2n.

Since z(0) is a nonzero vector and zi = xi + ιyi, we have

z(0) =
n∑
i=1

ci(0)zi =
n∑
i=1

[αi(0) + ιβi(0)]zi

=
n∑
i=1

[αi(0)xi − βi(0)yi] + ι[αi(0)yi + βi(0)xi].

The vector s(0) can be represented as

s(0) =
n∑
i=1

αi(0)si +
2n∑

i=n+1

βk−n(0)si =
2n∑
i=1

ai(0)si.

Here, we know that s(0) is a nonzero vector. On the basis
of [21], the representation of a solution of the network (1)
is

s(t) =
2n∑
i=1

√√√√√ s(0)>s(0)
2n∑
j=1

a2j (0) exp[2s(0)>s(0)(bj − bi)t]
ai(0)si,

(5)
for t ≥ 0.

Now, we shall consider how to derive the representation
of a solution of (4) based on (5). First, we can rewrite s(t)
as

s(t) =
n∑
i=1

√√√√√ s(0)>s(0)
2n∑
j=1

a2j (0) exp[2s(0)>s(0)(bj − bi)t]
αi(0)si

+
2n∑

i=n+1

√√√√√ s(0)>s(0)
2n∑
j=1

a2j (0) exp[2s(0)>s(0)(bj − bi)t]
βi−n(0)si.

Since z(0)∗z(0) = s(0)>s(0) =
n∑
i=1

(αi(0)2 +βi(0)2) holds,

s(t) =
n∑
i=1

√√√√√ ‖z(0)‖22
2n∑
j=1

a2j (0) exp[2‖z(0)‖22(bj − bi)t]
αi(0)si

+
2n∑

i=n+1

√√√√√ ‖z(0)‖22
2n∑
j=1

a2j (0) exp[2‖z(0)‖22(bj − bi)t]
βi−n(0)si.

Moveover

2n∑
j=1

a2j (0) exp[2‖z(0)‖22(bj − bi)t]

=
n∑
j=1

α2
j (0) exp[2‖z(0)‖22(bj − bi)t]

+
2n∑

j=n+1

β2
j−n(0) exp[2‖z(0)‖22(bj − bi)t.

If i = 1, 2, . . . , n, then

n∑
j=1

α2
j (0) exp[2‖z(0)‖22(bj − bi)t]

=
n∑
j=1

α2
j (0) exp[2‖z(0)‖22(λj − λi)t)].
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Hence, we have
2n∑
j=1

a2j (0) exp[2‖z(0)‖22(bj − bi)t]

=
n∑
j=1

[α2
j (0) + β2

j (0)] exp[2‖z(0)‖22(λj − λi)t],
(6)

If i = n+ 1, n+ 2, . . . , 2n, then
2n∑
j=1

a2j (0) exp[‖z(0)‖22(bj − bi)t]

=
2n∑
j=1

a2j (0) exp[2‖z(0)‖22(bj − λi−n)t]

=
n∑
j=1

α2
j (0) exp[2‖z(0)‖22(bj − λi−n)t]

+
2n∑

j=n+1

β2
j−n(0) exp[2‖z(0)‖22(λj−n − λi−n)t]

=
2n∑

j=n+1

[α2
j−n(0) + β2

j−n(0)] exp[2‖z(0)‖22(λj−n − λi−n)t]

=
n∑
j=1

[α2
j (0) + β2

j (0)] exp[2‖z(0)‖22(λj − λi)t].

Hence, the solution of (2) starting from z(0) can be repre-
sented as

z(t) =

n∑
i=1

√√√√√ ‖z(0)‖22
n∑
j=1

‖cj(0)‖22 exp[2‖z(0)‖22(λj − λi)t]
ci(0)zi,

for t ≥ 0. This completes the proof.
Theorem II.2 shows the solutions of network (2) can be

represented in terms of the set of all orthogonal eigenvectors.
This property will be quite convenient for analyzing the
convergence of the network (2) in Section II-B.

B. Convergence analysis

In this subsection, convergence of the network (2) will
be analyzed. For an artificial neural network of continuous
model, the convergence property is crucial. From Theorem
II.2, the convergence property can be developed on a sound
foundation.

Theorem II.3. Each solution of (2) starting from any nonze-
ro points in Cn converges to an eigenvector of any Hermitian
matrix A ∈ Cn×n.

Before we obtain a theorem that gives the necessary and
sufficient conditions for the network (2) to converge to the
eigenvectors of Hermitian matrices A ∈ Cn×n, correspond-
ing to the maximal eigenvalue, some notations will be listed.

Suppose that A ∈ Cn×n is Hermitian. Let λi (i =
1, 2, . . . , n) be all eigenvalues of A with λ1 ≥ λ2 ≥
· · · ≥ λn, and zi (i = 1, 2, . . . , n) be the corresponding
eigenvectors that compose a group of orthogonal basis of
Cn. Let δi (i = 1, 2, . . . ,m, m ≤ n) be all the distinct
eigenvalues of A ordered by δ1 ≥ δ2 ≥ · · · ≥ δm. For
any i (1 ≤ i ≤ m), denote the algebraic sum of the
multiplicity of δi (i = 1, 2, . . . ,m) by ki. Clearly, km = n.
For convenience, denote k0 = 1. It is easy to see that λi = δr,
and zi ∈ Vδr , for all i ∈ {kr−1, kr−1 + 1, . . . , kr}.

Theorem II.4. Suppose that A ∈ Cn×n is Hermitian. Let
z(0) ∈ Cn be a nonzero vector, if z(0) is not orthogonal

to Vδ1 , then the solution of the network (2) starting from
z(0) converges to an eigenvector of A, corresponding to the
maximal eigenvalue.

According to the above theorem, we have the following re-
mark for illustrating the maximal eigenvalue of an Hermitian
matrix A ∈ Cn×n.

Remark II.1. Under the conditions of Theorem II.4, the
value z∗(t)Az(t)

z∗(t)z(t) converges to the maximal eigenvalue λ1,
where z(t) is the solution of the network (2) starting from
some nonzero vectors z(0) ∈ Cn.

These conditions in Theorem II.4 depend on the
eigenspace Vδ1 . However, the space Vδ1 is not known a
prior, it is not practical to choose initial values that satisfy
Theorem II.4 in advance. This problem can be solved by
the initial values under some random perturbations, since
the dimension of Vδ1 is always less than the dimension of
Cn. In this way, one can obtain a high probability of having
initial values satisfying the conditions in Theorem II.4.

Theorem II.4 shows how to compute the eigenvectors of an
Hermitian matrix A ∈ Cn×n, corresponding to the maximal
eigenvalue. Under some operations, we can also compute the
eigenvectors of the matrix A, associated with the minimal
eigenvalue.

Theorem II.5. Replacing A in network (2) with −A, and
suppose that z(0) is a nonzero vector in Cn which is not
orthogonal to Vδm , then the solution starting from z(0)
converges to an eigenvector of the matrix A, corresponding
to the minimal eigenvalue.

Remark II.2. Under the conditions of Theorem II.5, the
value z∗(t)Az(t)

z∗(t)z(t) converges to λn, where z(t) is the solution
of (2) starting from the nonzero vector z(0).

More general, we have the following theorem to compute
the eigenvectors of an Hermitian matrix A ∈ Cn×n, corre-
sponding to the other eigenvalues (neither the maximal nor
the minimal eigenvalues), by the network (2).

Theorem II.6. Suppose that A ∈ Cn×n is Hermitian and zi
are its eigenvectors with i = 1, 2, . . . , n. If z(0) is orthogonal
to each zi with i = 1, 2, . . . ,m and m ≤ n, then the
solution of the network (2) starting from z(0) converges to
an eigenvector of the matrix A, which is also orthogonal to
each zi with i = 1, 2, . . . ,m.

According to the explicit representation for the solutions
of the network (2) and the content in [21], it is easy to prove
Theorems II.4, II.5 and II.6. Here, we omit the proof.

III. APPLICATIONS FOR THE NETWORK (2)
In this section, we investigate how to generalize the

network (2) for computing the eigenvectors of the skew-
symmetric and skew-Hermitian matrices, corresponding to
the maximal (or the minimal) imaginary part eigenvalue.

A. The eigenvalue problem with skew-symmetric matrices

A matrix A ∈ Rn×n is skew-symmetric if it satisfies the
relation A> = −A. Let A ∈ Rn×n be a skew-symmetric. It
is obvious to see that

(−ιA)∗ = −ιA, (ιA)∗ = ιA.

Engineering Letters, 25:3, EL_25_3_13

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



Therefore, −ιA is an Hermitian matrix. The properties for
the eigenvalues of the matrices A [37] are listed as follows:

(1) All eigenvalues of the matrix A are zero or pure
imaginary numbers;

(2) If the pair (ιλ, u) is an eigenpair of the matrix A, then
the (−ιλ, u) is another eigenpair of the matrix A, where
λ ∈ R;

(3) If the pair (ιλ, u) is an eigenpair of the matrix A, then
the pair (λ, u) is an eigenpair of the matrix −ιA and
the pair (−λ, u) is an eigenpair of the matrix ιA, where
λ ∈ R.

When we compute the eigenvectors of the matrix −ιA,
corresponding to the maximal eigenvalue λ, by the network
(2), it is easy to obtain the eigenvectors of the matrix A,
associated with the maximal imaginary part eigenvalue ιλ.

B. The eigenvalue problem with skew-Hermitian matrices

A matrix A ∈ Cn×n is skew-Hermitian if it satisfies the
relation A∗ = −A [38]. We list the properties [38] of a
skew-Hermitian matrix A ∈ Cn×n as follows:

(1) All eigenvalues of the matrix A are zero or pure
imaginary numbers;

(2) Both ιA and −ιA are Hermitian;
(3) If the pair (ιλ, u) is an eigenpair of the matrix A, then

the pair (λ, u) is an eigenpair of the matrix −ιA and
the pair (−λ, u) is an eigenpair of the matrix ιA, where
λ ∈ R.

If we compute the eigenvectors of the matrix −ιA, corre-
sponding to the maximal eigenvalue λ based on the network
(2), it is easy to obtain the eigenvectors of the skew-
Hermitian matrix A, corresponding to the maximal imaginary
part eigenvalue ιλ.

IV. NUMERICAL EXAMPLES

In this section, some computer simulation results are given
to illustrate our theory. All computations are carried out in
Matlab Version 2013a, which has a unit roundoff 2−53 ≈
1.1 × 10−16, on a laptop with Intel Core i5-3470M CPU
(3.20GHz) and 4GB RAM. All floating point numbers have
four digits. Suppose that ε = 1e− 10.

In order to compute the eigenvectors of an Hermitian
matrix A ∈ Cn×n, we use the following difference equations
to approximate the network (2):

z(k + 1) = z(k) + α[z(k)∗z(k)Az(k)− z(k)∗Az(k)z(k)],

where α is a learning rate and z(0) ∈ Cn is any nonzero
vectors.

For the pair (β(k,A), z(k)) with β(k,A) = z(k)∗Az(k)
z(k)∗z(k) ,

we define

ERR(k) :=
‖Az(k)− β(k,A)z(k)‖2

‖|A| · |z(k)|+ |β(k,A)| · |z(k)|‖2
.

If there exists a positive integer k0 such that ERR(k) ≤ ε for
all k ≥ k0, then the pair (β(k,A), z(k)) is an approximate
eigenpair of the matrix A. According to Theorem II.4, we
have that β(k,A) is the approximation for the maximal
eigenvalue of the matrix A.

(a) The maximal eigenvalue.

(b) The real parts of variable.

(c) The imaginary parts of variable.

Fig. 1. Illustrate the solutions of the network (2) converges to an
eigenvectors of the matrix A, corresponding to the maximal eigenvalue.

Example IV.1. We test the Hermitian matrix A from [39]:

A =


−0.1 −0.6 + 0.7ι 0.8 + 0.2ι

−0.6− 0.7ι −0.5 −0.8 + 0.3ι
0.8− 0.2ι −0.8− 0.3ι 1.6
−0.3− 1.2ι −0.3 + 1.7ι 0.1 + 0.1ι
−0.3− 0.3ι 0.1 + 0.5ι 0.9
−0.1− 0.1ι −1− 0.2ι 1.2 + 0.9ι

−0.3 + 1.2ι −0.3 + 0.3ι −0.1 + 0.1ι
−0.3− 1.7ι 0.1− 0.5ι −1 + 0.2ι
0.1− 0.1ι 0.9 1.2− 0.9ι

1.9 −1.5− 0.3ι 0.3ι
−1.5 + 0.3ι 0.4 0.1− 0.2ι
−0.3ι 0.1 + 0.2ι −0.5

 .

We compute the approximate maximal and minimal eigen-
values of A by the ‘eig’ function in Matlab as λ = 3.8673
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and λ = −3.0348, respectively.

We set z = x + ιy with x, y ∈ R6. We can use the
network (2) with a random initial z(0) to find an eigenvector
of the matrix A, corresponding to the approximate maximal
eigenvalue λ = 3.8673, the results about the trajectories for
β(k,A), and the real part and imaginary part of z(k) are
shown in Figure 1.

On the other hand, we set the temporary matrix B as B =
−A. Notice that λ is an eigenvalue of the matrix A implies
that −λ is an eigenvalue of B, and vice versa. Hence, we can
compute the eigenvectors of A, corresponding to the minimal
eigenvalue, employing the network (2) to the matrix B. The
trajectories of −β(k,−A), and the real part and imaginary
part of z(k) are shown in Figure 2.

(a) The minimal eigenvalue.

(b) The real parts of variable.

(c) The imaginary parts of variable.

Fig. 2. Illustrate the solutions of the network (2) converges to an
eigenvectors of the matrix A, corresponding to the minimal eigenvalue.

Example IV.2. The testing matrix A is adopted from Tang

and Li [26] and its entries are given by:

A =



0 0.6837 0.0194 0.1856
−0.6837 0 0.3056 0.0305
−0.0194 −0.3056 0 0.2671
−0.1856 −0.0305 −0.2671 0
−0.0885 0.1352 −0.3347 0.5776
−0.7982 −0.0307 −0.6079 −0.4037
0.4444 −0.0248 −0.5217 −0.7374

0.0885 0.7982 −0.4444
−0.1352 0.0307 0.0248
0.3347 0.6079 0.5217
−0.5776 0.4037 0.7374

0 −0.2048 −0.4198
0.2048 0 0.4930
0.4198 −0.4930 0


.

The set of the approximate eigenvalues of A is
{±1.5195ι,±0.9850ι,±0.7115ι, 0}, computed by the
‘eig’ function in Matlab.

Let B = −ιA, then B is an Hermitian matrix. In term
of the analysis in Section 2.3, the approximate eigenvalues
of B are ±1.5195, ±0.9850, ±0.7115 and 0 with the same
eigenspaces, respectively.

If we employ the network (2) to compute the eigenvectors
of B, associated with the maximal eigenvalue, we can
derive the eigenvectors of A, corresponding to the maximal
imaginary part eigenvalue. The trajectories for β(k,−ιA),
and the real part and imaginary part of z(k) are shown in
Figure 3.

We obtain an eigenvector of A, associated with the mini-
mal imaginary part eigenvalue, if we apply the network (2)
to ιA. The results about the trajectories for −β(k, ιA), and
the real part and imaginary part of z(k) are shown in Figure
4.

Example IV.3. We choose the skew-Hermitian matrix from
[40]:

A = 102


0 + 1.8193ι 0.0041 −0.0067
−0.0041 0 + 1.8178ι −0.0073
0.0067 0.0073 0 + 1.8084ι
0.0072 −0.0009 −0.0025
−0.0012 −0.0036 0.0072
−0.0068 −0.0003 0.0001

−0.0072 0.0012 0.0068
0.0009 0.0036 0.0003
0.0025 −0.0072 −0.0001

0 + 1.8082ι −0.0028 0.0051
0.0028 0 + 1.8197ι −0.0063
−0.0051 0.0063 0 + 1.8002ι

 .

The set of the approximate eigenvalues of A is {1.8319e +
2ι, 1.7921e + 2ι, 1.8212e + 2ι, 1.8186e + 2ι, 1.8071e +
2ι, 1.8026e+ 2ι}, computed by the ‘eig’ function in Matlab.

Let B = −ιA, then B is an Hermitian matrix. According
to the analysis in Section 2.3, the approximate eigenvalues
of B are 183.19 and 179.21 with the same eigenspaces,
respectively.

If we compute the eigenvectors of B, associated with
the maximal eigenvalue, by using the network (2), we can
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(a) The maximal imaginary part eigenvalue.

(b) The real parts of variable.

(c) The imaginary parts of variable.

Fig. 3. Illustrate the solutions of the network (2) converges to an
eigenvectors of the matrix A, corresponding to the maximal imaginary part
eigenvalue.

derive the eigenvectors of A, corresponding to the maximal
imaginary part eigenvalue. The trajectories for β(k,−ιA),
and the real part and imaginary part of z(k) are shown in
Figure 5.

Also, we obtain an eigenvector of A, corresponding to the
minimal imaginary part eigenvalue, by applying the network
(2) to ιA. The results about the trajectories for −β(k, ιA),
and the real part and imaginary part of z(k) are shown in
Figure 6.

V. CONCLUSION

We present the complex-valued neural network for com-
puting the eigenvectors of the Hermitian matrices, corre-
sponding to the maximal and minimal eigenvalues. Consid-
ering the complex-valued neural network discussed in this

(a) The minimal imaginary part eigenvalue.

(b) The real parts of variable.

(c) The imaginary parts of variable.

Fig. 4. Illustrate the solutions of the network (2) converges to an
eigenvectors of the matrix A, corresponding to the minimal imaginary part
eigenvalue.

paper is different from dealing with the general complex-
valued neural networks [32], [33], [34], [35].

Here, we derive the explicit representations for the so-
lutions of the proposed neural networks (2) according to
the matrix structures, and analyze the convergence of the
networks. Based on the network (2), we also consider two
special cases of the eigenvalue problem, the eigenvalue
problem with skew-symmetric matrices and skew-Hermitian
matrices.

In addition, for numerical examples in Section IV, we
shall point that we do not choose the optimal learning rate
for finding the approximate eigenvectors. That is, we may
need less iterative steps for achieving our goals in each
computation.
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(a) The maximal imaginary part eigenvalue.

(b) The real parts of variable.

(c) The imaginary parts of variable.

Fig. 5. Illustrate the solutions of the network (2) converges to an
eigenvectors of the matrix A, corresponding to the maximal imaginary part
eigenvalue.
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