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Hierarchical Algorithms of Quasi-Linear ARX
Neural Networks for Identification of Nonlinear
Systems

Mohammad Abu Jami’in, Member, IAENG, Yuyun, Member, IAENG, Eko Julianto, Member, IAENG

Abstract—A quasi-linear ARX neural network model
(QARXNN) is a nonlinear model built using neural networks
(NN). It has a linear-ARX structure where NN is an embedded
system to give the parameters for the regression vector. There
are two contributions in this paper, 1) Hierarchical Algorithms
is proposed for the training of QARXNN model, 2) an adaptive
learning is implemented to update learning rate in NN training
to ensure global minima. First, the system is estimated by using
LSE algorithm. Second, nonlinear sub-model performed using
NN is trained to refine error of LSE algorithm. The linear
parameters obtained from LSE algorithm is set as bias vector
for the output nodes of NN. Global minima point is reached by
adjusting the learning rate based on Lyapunov stability theory
to ensure convergence of error. The proposed algorithm is
used for the identification and prediction of nonlinear dynamic
systems. Finally, the experiments and numerical simulations
reveal that the proposed method gives satisfactory results.

Index Terms—System Identification, quasi linear-ARX neural
network, hierarchical algorithm, convergence of error, nonlin-
ear system

I. INTRODUCTION

YSTEM identification is an extensive problem because

it is difficult to propose a model capable of describing
efficiently in every possible nonlinear system. Neural net-
works (NN) and neuro-fuzzy networks are a type of black-
box models with nonparametric or multi-parametric models
[1]. The Black-box models for the identification of nonlinear
systems do not require parametric expressions. The most
useful property of NN is its ability to approximate arbitrary
linear or nonlinear mapping through training. However, there
are three major drawbacks: 1) these methods take the system
as a whole and do not permit separate analysis and identi-
fication of the linear dynamics, 2) it is difficult to use their
parameters for controller design, and 3) the stability analysis
is not easy, and the parameter tuning is generally a time-
consuming process due to its nonlinear and multi-parametric
nature [2], [3].

Some researchers adopted hybrid approach by mixing
linear and nonlinear models to improve accuracy, simplicity
and reducing computational complexity [4], [1], [5], [6].
A hybrid fuzzy time series model is constructed based
on ARIMA and Interval Type-2 Fuzzy Inference System
was proposed to improve forecasting accuracy [4]. In this

Manuscript received 05 April, 2017; revised 19 July, 2017.

Mohammad Abu Jami’in is with the Department of Automation Engi-
neering, Politeknik Perkapalan Negeri Surabaya, Surabaya, Jawa Timur,
Indonesia. e-mail: jammysby @ gmail.com.

Yuyun is with the Department of Computer Engineering, STMIK Han-
dayani, Makassar, Sulawesi Selatan, Indonesia.

Eko Julianto is with the Department of Piping Engineering, Politeknik
Perkapalan Negeri Surabaya, Surabaya, Jawa Timur, Indonesia.

paper, we propose a quasi-linear ARX neural network model
(QARXNN). It has an easy-to-use structure shown by its
ARX-like structure. Nonlinear coefficients are implemented
by NN to parameterize the input vector. It is injected to
the QARXNN model as an embedded system [1]. This is
the interesting aspect of the structure that the coefficients
have some meaning to describe the dynamic behavior of the
identified plants. The parameters of system modeling can
be used to estimate the stability of the modeled system and
can be set as controller parameters [8], [9]. The coefficients
consist of linear and nonlinear parts that allow for system
analysis using the approach of linear theory.

In the previous research, the embedded system of the
QARXNN model was modified by using neuro-fuzzy,
wavelet, radial-basis function, and multilayer perceptron
(MLP) networks in order to increase the accuracy of model
for system identification [10]. However, this work does
not discuss the stable and global convergence of system
identification. In this paper, a hierarchical algorithm was
proposed for the training of QARXNN model based on
Lyapunov stability theory. The learning rate is updated every
leaning step in order to guarantee the convergence of error.
Thus, the error will be asymptotically goes to zero by the
number of training time.

Lyapunov stability is a well-known theory for control
application to guarantee closed-loop control stability. A
Iyapunov-like analysis was proposed to derive stable learning
law in order to ensure the stability property of the iden-
tification error [11]. Using the Lyapunov stability theorem
for the training algorithm allows for increasing the speed of
the convergence in the learning process, guaranteeing global
convergence of the model, and avoiding local minima and
achieving global minima of cost function [12], [13]. The
Lyapunov function has been used to track convergence of
error; the output of tracking error can then asymptotically
converge to zero [13] and can be used to analyze the stability
of the identification process with stable learning law [14],
[15], [16].

In this paper, the training of QARXNN model is performed
hierarchically between linear and nonlinear sub-models based
on Lyapunov stability theorem. First, the system is estimated
using a linear sub-model under LSE algorithm. From this
step, we have linear part parameters. Second, the residual
errors of LSE algorithm (linear sub-model) are refined by
nonlinear sub-model performed using NN. The parameters
of linear part is set as bias vector for the output nodes of
NN, where the residual errors of linear sub-model is set as
the target output to train NN sub-model. Thus, the errors of
the linear sub-model is refined by the training of nonlinear
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sub-model. From the training of NN, we have nonlinear
part parameters. Thus, by summing between the linear and
nonlinear parts parameters, we have nonlinear parameters.
If the system is linear then the coefficients converge to
the specific value of the constant, and if the system is
nonlinear then the coefficients will be a function of time [17].
Especially in control applications, this approach allow us to
derive the linear or nonlinear controllers based on the linear
or nonlinear parameters. A simple switching mechanism is
introduced between the linear and nonlinear parts parameters
in order to derive linear and nonlinear controls. [8], [18], [7].

The rest of the paper is organized as follows: Section
2 contains a brief discussion of the QARXNN model. In
Section 3, the proposed hierarchical learning algorithm is
derived with linear and nonlinear sub-models. Convergence
analysis of the proposed algorithm is also described in this
section. Experimental results are presented in Section 4, and
finally conclusions are recorded in Section 5.

II. QUASI-LINEAR ARX NEURAL NETWORK MODEL

Consider a single-input-single-output (SISO) black-box
nonlinear system whose input-output relation is described by

y(t) = glo(t) )]

where, g(-), y(t) € R, and ¢(t) = [y(t—1) - - y(t—ny)u(t—
1)+ -u(t—n,)]T are nonlinear function, system output, and a
regression vector, respectively. The general nonlinear system
expressed in (1) can be represented in a regression which has
been shown in Ref.[1,2]. The unknown nonlinear function
g(o(t)) can be performed using Taylor expansion on a small
region of around ¢(t) = 0:

w(t) = 9(0)+4(0)8(t) + 56" WHO)BE) + - @)

As (2) shows, the coefficients are infinite. However, Taylor
expansion is only used as a bridge to transform the nonlinear
system. Applying the Taylor series transformation and the
system dynamics, the nonlinear system can be expressed as

[1]:
y(t) = y(0) + o) Qe(1)). 3)

where, y(0) = ¢(0) is the value for the initial condition, and
Q(¢(t)) is the coefficient of the regression vector by

Qo) =

= [al,t

§0)6(0) + 567 (OF0)6(0) + 17 @
bnyfl,t] (5)

where, a;; = a;(¢(t)),(t = 1,---,n,) is the coefficient of
the regression vector of output and b;, = b;(¢(t)),(j =
0,---,n, — 1) is the coefficient of the regression vector of
input. The orders of time delay for the system input-output
are n, and n,.

The Quasi-linear ARX neural network is a flexible non-
linear model that has linear properties [19]. Fig. 1 shows
the structure of quasi-linear ARX neural network model.
Selecting NN as an embedded system, the model can be
written as follows:

y(t, (1))

An, t bO,t s

o) R(g(1), Q) (6)
= ()" Wl Wi(o(t) + o()"0, (D)

ot

y(t.9(2)
H)

MIMO MLP Neural Network

Fig. 1. A quasi-linear ARX neural network model.

where 0 = {W3, Ws,0} sets the network parameters. The
network parameter is I', Wi, Ws, and 6, being the diag-
onal nonlinear operator with identical sigmoidal elements
on hidden nodes, the weights of hidden layer, the weights
of output layer, and the bias vector for the output nodes,
respectively. The coefficients or state dependent parameter
estimation (SDPE), denoted by N(¢(t),€?) is implemented
using NN stated as

N(¢(1),Q2) = W2I'Wi(e(t)) +6 (8)

3(p(t), W) + 6. )

As this demonstrates, when compared to conventional feed-
forward neural networks, the quasi-linear ARX neural net-
work has an easy-to-use structure and introduces efficient
algorithms for the parameter estimation as shown by (7) and
(8). The quasi-linear ARX neural networks model consists
of two parts: the second term of the right side of (7) shows
the linear part, while the first term is the nonlinear part.
The coefficients of the linear and nonlinear parts are fused
to parameterize the input vector. Error in the linear and
nonlinear sub-models is shared. In one step, both linear and
nonlinear parts are updated simultaneously. The estimated
parameter of the linear part changes at every learning step.
Thus, it is difficult to analyze the system identified linearly
using the linear part.

III. HIERARCHICAL ALGORITHM WITH ADAPTIVE
LEARNING FOR QARXNN MODEL

In this paper, we use a different approach to describe the
QARXNN model by separating the linear and nonlinear sub-
models. First, the linear sub-model is used to identify the
system to obtain the linear parameter estimate. The linear
estimator allows for the calculation of the linear parameter
estimation and the residual error of the model. This feature
allow for analyzing the identified plant as a linear system.
Second, the residual error of the linear sub-model is used
to train NN. NN is a compensator to refine the error of
the linear sub-model. The proposed hierarchical algorithm
fixed the linear parameter estimator, which does not change
in any training step of NN. Interestingly, this method can be
used to describe the system linearly and nonlinearly via the
switching mechanism [8]. In order to perform the hierarchical
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algorithm, the Equation (7) can be rewritten as:

y(t, o(t)) 2+ 2 (10)
a = ¢'(t)e (11)
o= ¢ ()(s(t), W) (12)

where, z; is the linear estimator (linear sub-model) and z,,
is the nonlinear estimator (nonlinear sub-model).

In our main theoretical result, the following assumption
are made:
Al. The pairs of the input-output training data are bounded.
A2. The SDPE R(¢(t),2) is bounded.
A3. There is an optimal weight of SDPE denoted by
R*(6(1), ).
By using the QARXNN model, the estimated output of (7)
can be rewritten in the following form:

i) = ¢T(OR(6(1).Q) (13)
if there exists N*(¢(t),2) such that
y(t) = TR (6(),Q) (14)

Using (13) and (14), the adaptation error e(t) is derived as
follows:

e(t) = y(t)—9@)

= TR (1), Q) — 6T (1)R((t), )

= ¢T(t)E (15)
E o= W), Q) - R(e(t), Q). (16)

where = is the adaptation error of SDPE.
Suppose that the assumption A2. is valid, then there is a
positive real number « for || e(t) ||[< «. The accuracy
and convergence of error characteristics are then greatly
influenced by the adaptation error =.

The adaptation error is then distributed to the two sub-
models by

y(t) - 6" ()6
y(t) — & (D3(6(0), ).

where 6 denotes the linear part-parameter estimator and
5(¢(t), W) denotes nonlinear part-parameter estimator. The
residual error of the linear and nonlinear sub-models are ¢;
and e, respectively. The linear part-parameter estimator is
the parameter for the linear system. Therefore, it is possible
to analyze the system in a linear fashion. Hereafter, e; can be
set as the target output for the nonlinear sub-model z,. By
introducing two linear and nonlinear sub-models, equation
(15) can be rewritten in the following form:

a7
(18)

e =

€n -

et) = yt)—9(t)
y(t) — " (OR($(1), Q)
= y(t) =" (O)(0(p(t), W) +6)
= y(t) - " ()o(s(t), W) — ¢" (t)0
= e — 2n (19)
en — 2 (20)

The desired goal of system identification is to make
the adaptation error e(t) reach and remain at zero. Two
algorithms are implemented hierarchically. First, the system
is estimated using the linear sub-model under the LSE

algorithm to obtain linear parameter estimator 6. Second,
the residual error of the linear sub-model is calculated by
(17) and set as the target output for the nonlinear sub-
model performed by a multilayer perceptron neural network
(MLPNN). Because the linear parameter estimator is fixed
and set as a bias vector for the output nodes of NN, sub-
model z,, is estimated by (12) until its output converge to e;.
By (19), e(t) will converge to zero if the output of nonlinear
sub-model z,, converges to e;. Thus, the nonlinear sub-model
becomes a booster to refine the estimator of the linear sub-
model.

To train the NN for the nonlinear sub-model, adaptive
learning is proposed for training similar to a BP algorithm.
The fixed learning rate of BP is replaced by the adaptive
learning rate performed based on the Lyapunov stability the-
orem. The selected Lyapunov function is defined as follows:

1
vV = 562(16) (2D
where e(k) = {e] — z},e? — 22, el — 2V}, N is the

number of training data, and k is the learning sequence.
Performing the derivative of (21) in discrete form, we have

AV(E) = V(k+1) —V(k)
= %(52(/4 +1) — (k) (22)
By introducing the increment of error,
e(k +1) = e(k) + Ae(k) (23)
Substituting (23) in (22), we have
AV = 5 ((elh)+ Ac(R)? — (k) )
= %(Ae(k))z + e(k)Ae(k) (24)

The parameters of weight W are updated using the gradi-
ent descent algorithm that may be defined as

W(k+1) = W(k)+AW
= Wk)+n( -2 )
= Wk +n( T )ek). (25
Thus, AW can be rewritten as
AW =n( 2 )e(k) (26)

For learning, the difference of error is due to the change
during learning, which can be expressed as

Ae(k) ;T?/
~ —( 2 ) AW 27)
Let gZW" = H. By using (26) and (27) in (24), we have
AV(k) = (—HAW)? +e(k)(—HAW (k))

= H?(nHe(k))* + e(k)(—HnHe(k))
P H*e*(k) — nH?e?(k) (28)
According to the Lyapunov stability theorem, the condition
of stability is dependent on a negative AV (k). Therefore, the
trajectory of AV (k) is as follows:

AV(k) = —Xé(k) (29)
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Substituting (28) and (29), we have

A = nH?-—n?*H* (30)

Based on the Lyapunov stability theorem, the stability is
ensured if V(k) ) is positive-definite and if AV(k) is
negative-definite. Therefore, the learning rate n is adapted
to guarantee a global convergence condition, which can be
satisfied if A > 0. Therefore, the learning rate is adapted to
satisfy the condition as follows:

)2<1

n( % (31)

The Lyapunov function is selected with the positive def-
inite function that represents the energy function. In each
learning step, the parameters of the network is updated based
on reducing the energy, and the energy is always dissipated.
The global convergence point of cost function is ensured
if the energy and dissipated energy converge to zero. This
can be shown by both as the error and the gradient of
error converge to zero through training. To guarantee global
convergence under Lyapunov stability theory, the derivative
of the Lyapunov function is ensured in that negative definite
function.

The detailed steps to train a QARXNN model based on
Lyapunov theorem is described as follows:

1) Set y(t) as z; then estimate 6 using LSE algorithm of

11).

2) Calculate e; using (17) and set as output guide to train
sub-model z, in (12).

3) Use 6 as bias vector for output nodes of MLPNN,
and small initial values of Wy (k) and W (k). Update
Wi(k),Wa(k) by using adaptive learning based on
Lyapunov function (ALLF). Set £ = 1, k is the
sequence of learning number.

4) Select Lyapunov function candidate, the candidate
function is stated as V = f(e), where V' = 0 only
ife=0,V >0onlyife#0,e=¢e — z,.

5) Update the learning rate based on energy function by
V < 0. Based on Lyapunov theory, if V > 0 and
V < 0, then the error will converge to zero at time
goes to infinity limy_, . e(k) = 0.

6) Update the weights using (25) and learning condition
satisfy (31)

7) Stop if pre-specified condition is met, otherwise goto
step 3, set k =k +1

The parameters of the prediction model obtained from
system identification is tested to predict the output of d ahead
prediction as follows:

gt+d) = ¢T(E+dROGE+d),Q) (32
where, R(p(t + d), ) =
[&(l,ter T d(ny,t+d) b(l,t+d) s b(nu,ter)]T and

ot +d) = [yt+d—-1)yt+d—2)--ylt+d—
ny)u(t+d—1)u(t+d—2)---u(t+d—n,)|T are SDPE
and the input vector of d step ahead prediction, respectively.

IV. SIMULATION STUDIES

In order to evaluate the performance of the proposed
method, a number of simulation studies are carried out for
identification and prediction of nonlinear systems. The plant
models are taken from the literature in order to complete a
performance comparison.

System

7.
..r‘
p
Fig. 2. Identification scheme using QARXNN model.

0 50 100 150 200 250 300

0 50 100 150 200 250 300
t

Fig. 3. System’s input-output of training data.

A. System Identification Example 1

System identification is used to find the relationship be-
tween the input and output of the system. The structure of
the system identification is shown in Fig. 2. The input of the
system modeling is the input v and output y composed with
time delay, and ¢ is the estimated output of QARXNN model.
The QARXNN model parameters are updated according to
estimation error e. A nonlinear dynamic system taken from
Narendra [20] is used in this example as follows:

y(t) = fy(t = 1),y(t —2),y(t —3),u(t — 1), u(t - 2))

I1I2I3$5(IL‘3 — ].) + x4
1+a23+a3

, (33)

f(CC17l'2,I‘3, LE4,.’,U5) =

A number of input-output training data is obtained by testing
the system with a pseudo random binary sequence (PRBS)
function with the amplitude [-1.0;1.0]. The first 300 training
data are shown in Fig. 3. We set the model parameters by
N(5,5,5,1) which demonstrates that the model contains five
elements of input ¢(t) = [y(t—1)y(t—2)y(t—3)u(t—1)u(t—
2)]7, five hidden nodes, five output nodes of the embedded
system and one output node. Thus, QARXNN model has 55
parameters.

An index of normalized prediction error (N PFE) and root
mean square (RM S) error are introduced in order to measure
the performance of system identification and prediction is
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Fig. 4. Learning pattern of QARXNN model with the proposed method.
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Fig. 5. Learning pattern of QARXNN model with original BP method.

stated as follows:

S W) =90 1o o 2
S RO -

SN () — §(1))?
RMS = \/ 1 N

where §(t), y(t), t = 1,2,---, N are the estimated output,
the system output, and time. /N denotes the length of training
data.

The learning pattern of the proposed method and the
original BP method have been illustrated in Fig. 4 and Fig.
5. As we can see in Fig. 4 and Fig. 5, the error and gradient
error of learning contribute in training the model in order
to obtain optimal weights, whereas BP only contributes by
learning error. According to the Lyapunov stability theorem,
the global minimum point of cost function can be guaranteed
if the learning error and the derivative of the error converge
to zero.

The model obtained from the system identification is tested
with the input-output of the training data to estimate next step
prediction shown in Fig. 6 and Fig. 7. The training data has
uniform distribution. Therefore, the N PFE index prediction
using the proposed method is consistent to the specific value
of 21.7118 for all times. Compared with the BP method
that gives an average N P E=30.6449 with standard deviation
0.0389. Thus, the proposed method is able to ensure a stable
identification error.

NPE =

(35)

y(t) and §(t)

0 50 100 150 200 250 300

y(t) and §(t)

0 50 100 150 200 250 300
t

(b)

Fig. 6. Output of one-step-ahead prediction (a) the proposed method. (b)
QARXNN-BP method.

21.7118
2 21.7118F
=z
21.7118 : : : : :
0 200 400 600 800 1000 1200
t
30.8
w M
S 306 1
304 ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200
t
(b)

Fig. 7. N PE index of one-step-ahead prediction. (a) the proposed method.
(b) QARXNN-BP method.

After training, the test signal u(¢) is fed to the model as
follows:

sin(27t/250), if ¢ <500
u(t) = 0.8 sin(27t/250) (36)
+0.2sin(27t/25), if ¢ > 500

Fig. 8, Fig. 9 and Fig. 10 show the results of the simulation
using the tested signal. The accuracy of the proposed method
is 0.0297, whereas the BP method is 0.0792. Compared to
the previous work shown in Tab.l, it can be seen that the
proposed method performs better than the other methods.

TABLE I
SIMULATION RESULTS AND COMPARISON
Model RMS Number
Error | of parameters
ARX model 0.0866 6
NN 0.0678 341
WN 3 0.0503 12
Q-ARX-NF 0.0478 85
Q-ARX-WN 0.0367 42
Q-ARX-NN < 0.01 246
Q-ARX-NN-ALLF | 0.0297 55
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b y(t) — = —3() 1
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@

1 . . .
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\ y(t) and §(t)
o
o w
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0 100 200 300 400 500 600 700

800
t
(b)
Fig. 8. Simulation results with the deterministic signal (a) the proposed

method. (b) QARXNN-BP method

0.2
— Lyapunov— — — BP

0.1r
= 0
iy
= -01

-0.2

_03 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800

t

Fig. 9. The error of simulation tested with deterministic signal.

B. System Identification Example 2

This example considers the modeling of the nonlinear
system to be as follows:

y(t) = 0.72y(t — 1) +0.025y(t — 2)u(t — 2)

+ 0.01u*(t — 3) + 0.2u(t — 4). (37)

The same mathematical model of dynamic systems is also
used in [21], [22], [23]. The current output of the system
depends on two previous output values and three previous
input values. However, only two values, y(t—1) and u(t—1),

0.1 T
VRN - —
/ S / ~ - _
0.081 | T~ ! T T
// Lyapunov
l/_)0.06* B ) — _ _Bp 1
= /N
@ N/
0.04r / 1
!
I
0.0ZM

0 . . . . . . .
0 100 200 300 400 500 600 700 800
t

Fig. 10. RDMS errors of the simulation tested with deterministic signal.

0.25
0.2
» 0.15
>
T
0.1
0.05
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
epoch
Fig. 11. RMS values obtained during training.

y(t), 9(t) and e(t)

— — e(t)

y(t) — — -9()

o] 100 200 300 400 500 600 700 800 900
t

-1 I I

1000

Fig. 12. The results of identification

are fed to the QARXNN model in order to compare it to other
models. The length of input of training data is 900. Half of
the inputs are independently and identically distributed (i.i.d.)
in a uniform sequence over [-2,2], and the remaining are
sinusoid generated by 1.05sin(7t/45). QARXNN model is
trained for 200 epochs, as shown in Fig. 11. After training,
the following same test signal w(t) is used for testing the
performance of the QARXNN model:

sin(mrt/25), if t < 250
1.0, if 250 < t < 500
~1.0, if 500 < ¢ < 750

wt) =9 0.3sin(rt/25)
+0.1sin(7t/32)
+0.6sin(7t/10), if 750 < ¢ < 1000

(38)

The parameters of the model are denoted as N3 42 1),
which shows the model contains two elements of input, four
hidden nodes, two output nodes of the embedded system and
one output node . Thus, QARXNN model has 20 parameters.
Fig. 12 compares the actual output of the system with that of
the QARXNN model. The RM S values of the tested model
are shown in Fig. 13. A detailed performance comparison
of the QARXNN model is given in Tab.II.

TABLE II
COMPARISON OF QARXNN MODEL WITH OTHER MODELS

Models Number RMS RMS

of parameters train test

RSONFIN [24] 49 0.03 0.06
TRFN-S [21] 33 0.0067 0.0313
FWNN [23] 27 0.01973 | 0.022609
FWNN [23] 43 0.018713 | 0.020169
AWN [22] 12 0.009368 | 0.022933
AWN [22] 20 0.009391 | 0.023259
Q-ARX-NN-ALLF 20 0.01637 0.01999
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0.015 q
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1000
Fig. 13. RMS values of tested model

25

15 1

RMS

10 b

0

. . . . \ | |
300 400 500 600 700 800 900
epoch

. .
0 100 200 1000

Fig. 14. RMS values obtained during training.

C. Prediction of nonlinear system

This example considers a nonlinear second order dynami-
cal model that has been used in [20], [25], [16]. The process
is described by the following equation:

y(t) and §(t)

. . . .
50 100 150 200 250 300

250

200

0 50 100 150

0 50 100 150 200 250 300

Fig. 15. Testing the model with training data.

y(t) and j(t)

—40 . . . . .
0

160

180 200

y(t) = 0.3y(t — 1) + 0.6y (t — 2) + flu(t)] 39)
where

flu®)] = u3(t) +0.3u?(t) — 0.4u(t) (40)

u(t) = sin(27t/250) + sin(27wt/25).  (41)

The function ’f’ is a polynomial with three degree of current
input signal w(t). The 500 input-output data is generated.
Three hundred data are used in training procedure and the
remaining 200 data-points are for prediction. The network
parameters of QARXNN model used is N3 33 1). The model
contains twenty one parameters with three elements of input,
three hidden nodes, three output nodes of embedded system
and one output node.

The models are trained with 1000 epochs, as shown in
Fig. 14. The results of the system identification in which
the model is tested with training data is shown in Fig. 15,
which also shows that the RM S value is 0.3254. Fig. 16
contains the results of prediction when the adaptation of the
trained model stops after 300 samplings. As we can see, the
proposed model is able to predict a nonlinear system where
the RM S index for prediction is 0.343.

V. DISCUSSION AND CONCLUSION

This paper discusses two issues: 1) a different approach
to the hierarchical algorithm of linear and nonlinear sub-
models of the quasi-linear ARX neural network is introduced.
First, the system is identified using a linear estimator by LSE
algorithm. Second, the residual error of the linear sub-model
is set as a target output performed using NN. 2) In order
to improve the performance of system identification and
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. . . . .
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Fig. 16. Prediction output after training model stops at ¢t = 300.

prediction, we propose using the adaptive learning performed
based on Lyapunov stability theorem. The fixed learning rate
of BP is replaced by the adaptive learning rate based on Lya-
punov stability theory. By using a Lyapunov function-based
adaptive learning approach to the system embedded in the
QARXNN model, the proposed method is able to improve
the performance of system identification and prediction.

(Advance online publication: 23 August 2017)
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