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Abstract—Ontology, as an effective structured information
storage, classification, and statistical tool, has been attached
importance from researchers of various disciplines. At present,
ontology has become the core study field of semantic network,
artificial intelligence, and information retrieval. The core topic
of ontology algorithm is to calculate the similarity between
concepts, so as to obtain the potential information of each other.
In this paper, we present the boosting based iterative learning
algorithm to compute the ontology sparse vector, and thus get
the ontology function which maps each ontology concept to
a real number. Since the advantage of ontology sparse vector
is dimensionality reduction, the algorithm can extract the key
information from the high dimensional ontology representation
data. At last, we select four classical ontologies to test the
efficiency of new ontology algorithm, and the rest give the
positive answer.

Index Terms—Ontology, Similarity measure, Ontology map-
ping, Sparse vector, Boosting.

I. INTRODUCTION

ONTOLOGY is known in almost every corner of com-
puter science domain as an information representation

and shared model. Besides, ontology is efficient for its
application in other domains like biology science, medical
science, pharmaceutical science, material science, mechan-
ical science and chemical science, as a concept semantic
framework. (to illustrate, see Coronnello et al. [1], Vishnu
et al. [2], Roantree et al. [3], Kim and Park [4], Hinkelmann
et al. [5], Pesaranghader et al. [6], Daly et al. [7], Agapito
et al. [8], Umadevi et al. [9] and Cohen [10]).

The graph G = (V,E) can be used to represent the
model of ontology, but the graph needs to meet the certain
requirements that each vertex v stands for a concept and
each edge e = vivj stands for a close link between two
concepts vi and vj . The reason why we compute the ontology
similarity lies in the need to learn a similarity function
Sim : V × V → R+ ∪ {0}. Every couple of vertices are
mapped by this function to a real number. What’s more,
considering the something common among some different
ontologies, the ontology mapping can be very helpful to
connect the relation with them. Two graphs G1 and G2 are
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used to denote the two ontologies O1 and O2, respectively.
To be clear, we need to determine a set Sv ⊆ V (G2) for
each v ∈ G1 in which the vertices in Sv have semantically
high similarity to the concept which is corresponding to
v. In addition, it may calculate the similarity S(v, vj) for
each vj ∈ V (G2) and select a parameter 0 < M < 1 for
each v ∈ G1. Sv is set for vertex v and the factors of it
satisfy S(v, vj) ≥ M . In this way, in its real applications,
it’s essential to obtain the similarity function S and to
determine a proper parameter M . For details on similarity
computing, please see Mazumdar et al. [11], Renu and
Mocko [12], Hamedani et al. [13], Aouicha, and Taieb [14],
Surianarayanan and Ganapathy [15], Tarko [16], Fernando
and Webb [17], Segundo et al. [18], Phong and Son [19],
and Spencer et al. [20].

The studies on ontology similarity measure and ontology
mapping are quite popular and some good learning tricks
have been proposed. For instance, the gradient learning
algorithms for ontology similarity computing and ontology
mapping were researched by Gao and Zhu [21]. Then, the
stability analysis for ontology learning algorithms was done
by Gao and Xu [22]. Hence, Gao et al.[23] continued to work
on it by using ADAL trick and raised an ontology sparse vec-
tor learning approach. Based on the previous research, Gao
et al. [24] re-considered the distance calculating techniques,
and put forward an ontology optimization tactic. For more
detailed theoretical analysis of ontology learning algorithm,
please refer to [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35].

In terms of the boosting and greedy technologies, the paper
concentrates on obtaining a new ontology learning trick.
Moreover, the efficiency and effectiveness of the algorithm
in the biology and chemistry are proved in the experiments.

II. SETTING

Assume V be an instance space. p dimension vector is
taken to show the semantics information of every vertex in
ontology graph. Especially, let v = {v1, · · · , vp} be a vector
that corresponds to a vertex v. To complete the whole proof
process, we purposely make the notations a little disorder
and the ontology vertex and the relevant vector are denoted
by v. It’s clear that we set it in this way aimming to get an
ontology function f : V → R, then based on the comparison
between revalent real numbers of the vertices, we can get
the similarity between them. Hence, we can consider the
ontology function a dimensionality reduction operator f :
Rp → R.

With the popularity of ontology algorithm, these years
have witnessed the rapid development of it. On the other
hand, the relevant studies of it have also been more and more
challenging. Among them, the related studies in chemistry
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and biology are the cases in the point, because the data
needed for the study are always big and in high dimension.
Fortunately, we borrow the effective sparse vector learning
algorithms in biology and chemical ontology computation
(see Afzali et al. [36], Khormuji, and Bazrafkan [37], Cia-
ramella and Borzi [38], Lorincz et al. [39], Saadat et al.
[40], Yamamoto et al. [41], Lorintiu et al. [42], Mesnil and
Ruzzene [43], Gopi et al. [44], and Dowell and Pinson [45]
for more details). To illustrate, we are required to locate and
decide the genes that directly cause a certain genetic disease.
If we examine and study all the genes in the body, all efforts
could be in vain. In fact, It’s always a certain amount of
genes that cause the disease.The work for us is to target the
fixed suspicious genes and it’s useful for us to choose the
sparse vector learning algorithm tp pinpoint genes in billions
of disease genes in body.

A computational method of ontology function via sparse
vector is shown by

fw(v) =

p∑
i=1

viwi + δ, (1)

where w = {w1, · · · , wp} is a sparse vector for shrinking
irrelevant elements to zero and δ is a noise term. By this
model, learning the optimal sparse vector w is essential to
get the ontology function f .

For example, the standard framework with the penalize
term via the l1-norm of the unknown sparse vector w ∈ Rp
is described below:

Yw = l(w) + λ‖w‖1, (2)

in which λ > 0 is a balance parameter and l is the principal
function to measure the error of w. In order to measure
the sparsity of sparse vector w, we choose the balance term
λ‖w‖1.

III. BOOSTING BASED ONTOLOGY SPARSE VECTOR
LEARNING ALGORITHM DESCRIPTION

In this section, we first present the boosting algorithm in
normal regression setting, then connect it with the ontology
setting and determine the boosting based ontology learning
algorithm for ontology sparse vector computation.

A. A functional gradient descent technology for gradient
boosting

The functional gradient descent boosting algorithm is an
old and famous learning algorithm which is simply called
AdaBoost algorithm.

Normally, consider the learning problem which aims to
estimate a real-valued function, and it is represented as

f0(·) = argminf(·) E[l(f(x), y)], (3)

where l(·, ·) is a differentiable and convex loss function. For
instance, the squared loss function l(f, y) = |y − f |2 gets
the well-known minimizer f0(x) = E[Y |X = x], and the
L1 loss lL1

(f, y) = |y − f | yields the population minimizer
f0(x) = median(Y |X = x). Another example which is
balanced between L1 loss and L2 loss is Huber-loss function
from robust statistics: lHuber(f, y) = |y−f |2

2 if |y − f | ≤ Γ;
otherwise, lHuber(f, y) = Γ(|y − f | − Γ

2 ). Here, the value

of Γ depends heavily on the iteration parameter m. In the
ontology engineering, Γ can be determined as

Γ = median{|yi − f̂m−1(xi)|; i ∈ {1, · · · , n}}.

To deal with the learning problem defined in (3) with
boosting done in light of discussing the empirical risk∑n

i=1 l(f(xi),yi)

n and searching iterative sharpest descent in the
certain function space, we summarize the standard generic
functional gradient descent learning algorithm as follows.

Algorithm 1. Generic functional gradient descent algorith-
m.
Step 1. Initialize

f̂0(·) = argmint

∑n
i=1 l(t, yi)

n

or f̂0(·) = 0. Set m = 0, and a number M ∈ N which is
large enough.
Step 2. Repeat the following steps until m reaches M .
Step 3. m← m+ 1;
Step 4. Determine the negative gradient

ui = − ∂

∂f
l(f, y)|f=f̂m−1(xi)

for i ∈ {1, · · · , n}.
Step 5. Fit the negative gradient vector u1, · · · , un to
x1, · · · , xn by the real-valued based regression:

(xi, ui)
n
i=1 → ĝm(·).

Hence, ĝm(·) is stated as an approximation of negative
gradient vector.
Step 6. Update f̂m(·) = ĝm−1(·) +νĝm(·), where ν ∈ (0, 1]
is a parameter to control the length of step.
Step 7: Go back to Step 2 and judge whether m reaches M .

Now, let’s explain why we use the negative gradient
vector in the boosting based algorithm. Consider L(f) =∑n

i=1 l(f(xi),yi)

n as the empirical risk function from f ∈
L2(

∑n
i=1 δXi

n ) to R, where
∑n

i=1 δXi

n is defined as the em-
pirical measure of xi. We check that the associated inner
product is formulated as (f, g)n =

∑n
i=1 f(xi)g(xi)

n for
f, g ∈ L2(

∑n
i=1 δXi

n ). Hence, the negative functional Gateaux
derivative dL(·) of L(·) is calculated by

−dL(f)(x) = − ∂

∂α
L(f + αδx)|α=0,

where f ∈ L2(
∑n

i=1 δXi

n ), x ∈ Rp, and δx is the indicator
function at x ∈ Rp. If the derivative −dL at f̂m−1 and xi
are computed, then we infer

−dL(f̂m−1)(xi) =
ui
n
,

where u1, · · · , un in above expression are exactly described
in Step 4 of Algorithm 1.

B. L2 Boosting for normal regression learning setting

In this subsection, we discuss the standard AdaBoost
technology in the special setting where the loss function is
exactly a L2 squared loss: lL2 = ‖y−f‖2

2 (here the factor
0.5 leads to a convenient notation and the evaluated negative
gradient of the loss function becomes the standard residual
vector).
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Therefore, the Algorithm 1 described above can be re-
stated as follows.
Algorithm 2. L2 Boosting regression learning algorithm.
Step 1. Initialize f̂0(·) with an offset value. The default value
is f̂0(·) = Y . Set m = 0, and a number M ∈ N which is
large enough.
Step 2. Repeat the following steps until m reaches M .
Step 3. m← m+ 1.
Step 4. Calculate ui = yi − ĝm−1(xi) for i ∈ {1, · · · , n}.
Step 5. Fit the negative gradient vector u1, · · · , un to
x1, · · · , xn by the real-valued based regression:

(xi, ui)
n
i=1 → ĝm(·).

Hence, ĝm(·) is stated as an approximation of negative
gradient vector.
Step 6. Update f̂m(·) = ĝm−1(·) +νĝm(·), where ν ∈ (0, 1]
is a parameter to control the length of step.
Step 7: Go back to Step 2 and judge whether m reaches M .

C. L2 Boosting for ontology sparse vector model

Consider the ontology setting where the ontology data
are realizations of (v1, y1), · · · , (vn, yn) with p dimensional
vectors vi ∈ V ⊆ Rp and response values yi ∈ Y ⊆ R for
i ∈ {1, · · · , p}. For the continuous response value y ∈ R, we
consider the following ontology linear computational model

yi =

p∑
j=1

wjv
j
i + εi (4)

for i ∈ {1, · · · , n} where ε1, · · · , εn are independent and
identically distributed with E[εi] = 0 and independent from
all vi. Furthermore, the vector dimension p can be much
larger than the sample volume n.

As an example, the ontology algorithm is widely used to
get the ontology sparse vector w which can be stated as
follows

ŵλ = argminw{
‖Y −Vw‖22

n
+ λ‖w‖1},

where Y ∈ Rn is a response value, w ∈ Rn×p is an ontology
information vector and λ is a balance parameter.

The above ontology framework can be extended into a
more generalized linear model. Assume that y1, · · · , yn are
independent, and

g(E[yi|vi = v]) =

p∑
j=1

wjv
j ,

where g(·) is a real valued known function. Let l(·, ·) : Rp×
R→ R+ be an ontology loss function. The sample error part
of ontology framework can be expressed as

L(w) =

∑n
i=1 lw(vi, yi)

n
.

Let m be the iterative parameter in ontology boosting
algorithm. We set the previous active set of index Sm−1 ⊆
{1, · · · , p} for each iteration m ∈ {1, 2, · · · }. In order
to decrease the ontology sample error, while resetting the
previous coefficients of ontology sparse vector, we need
to seek for a single additional index which can be stated
as follows. For index subset S ⊆ {1, · · · , p}, introduce
wS ∈ Rp as (wS)j = wj if j ∈ S, and (wS)j = 0

otherwise. In this way, the ontology sparse vector can be
estimated by means of S as follows:

ŵS = argminwS
L(wS), (5)

where the minimization is implemented only over the com-
ponents in view of S.

In order to reduce the ontology sample errors, the forward
index set selection is searching in each iteration m for the
optimal single index with ĵm which is formalized as follows:

ĵm = argminj∈{1,··· ,p}−Sm−1 L(ŵSm−1⊆{j}), (6)

and thus the new active index set is

Sm = Sm−1 ⊂ {ĵm}.

The detailed process of forward index set section for
ontology sparse vector computation is presented in Algorithm
3.

Algorithm 3: Forward index set section for ontology sparse
vector computation.
Step 1. Initialize the active index set S0 = ∅, and set a
number M ∈ N which is large enough.
Step 2. Repeat the following steps until m reaches M .
Step 3. m← m+ 1.
Step 4. Compute the value of ĵm according to (6).
Step 5: Update Sm = Sm−1 ⊂ {ĵm} and the corresponding
estimator is formulated as

f̂m = vŵSm

as introduced in (5).
Step 6: Go back to Step 2 and judge whether m reaches M .

D. Ontology sparse vector learning for squared ontology
loss

With the squared ontology loss, the ontology sample error
becomes

L(w) =

∑n
i=1(yi − viw)2

n
.

In light of what discussed in above subsection, the L2-
boosting process aims to choose the index set with index
ĵ satisfing

ĵm = argmaxj(

∑n
i=1 uiv

j
i∑n

i=1(vji )
2

), (7)

where ui is the current i-th residuum ui = yi − f̂m−1(vi).
Algorithm 4: L2-Boosting algorithm for ontology sparse

vector computation in squared loss setting.
Step 1. Initialize the active index set S0 = ∅, and set a
number M ∈ N which is large enough.
Step 2. Repeat the following steps until m reaches M .
Step 3. m← m+ 1.
Step 4. Compute the value of ĵm according to (7).
Step 5: Update Sm = Sm−1 ⊂ {ĵm} and the corresponding
estimator is formulated as

ŵSm = argminŵSm

‖Y −VSmwSm‖22
n

,

where VS ∈ Rn×|S| is the sub ontology information matrix
corresponding to the index set S ⊆ {1, · · · , p}. Then the
ŵSm is denoted as the estimated ontology sparse vector.
Step 6: Go back to Step 2 and judge whether m reaches M .
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Fig. 1. The Structure of “GO” Ontology

Fig. 2. “Physical” ontology O2

Fig. 3. “Physical” ontology O3
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TABLE I
THE EXPERIMENT RESULTS OF ONTOLOGY SIMILARITY MEASURE

P@3 average P@5 average P@10 average P@20 average
precision ratio precision ratio precision ratio precision ratio

Algorithm in our paper 0.5660 0.6904 0.8297 0.9449

Algorithm in Gao et al. [23] 0.5192 0.6569 0.8031 0.9192

Algorithm in Gao et al. [25] 0.5649 0.6827 0.8124 0.9371

Algorithm in Gao et al. [27] 0.5201 0.6663 0.8275 0.9417

TABLE II
THE EXPERIMENT RESULTS OF ONTOLOGY MAPPING

P@1 average P@3 average P@5 average
precision ratio precision ratio precision ratio

Algorithm in our paper 0.6913 0.8387 0.9419

Algorithm in Gao et al. [23] 0.6774 0.7849 0.9032

Algorithm in Gao et al. [27] 0.6774 0.7957 0.9290

Algorithm in Gao et al. [29] 0.6913 0.8065 0.8968

IV. EXPERIMENTS

Five simulation experiments about ontology similarity
measure and ontology mapping are designed in this section
to test whether our new algorithm is effective or not. At first,
we get the sparse vector w, and then the ontology function
is achieved by fw(v) =

∑p
i=1 viwi where the noise term is

not considered.

A. Ontology similarity measure experiment on biology data

“GO” ontology O1 , as described in Fig. 1, is popular as a
convenient database among gene researchers, and the basic
construction of it can refer to http://www.geneontology.org.
The ontology is taken in our first experiment. P@N (Preci-
sion Ratio, see Craswell and Hawking [46] for more details)
is favored by lots of researchers to measure the effectiveness
of experiment and we also take it here. In the first step,
we have experts give the closest N concepts (have highest
similarity) for each vertex. Then, the algorithm is used to
calculate the first N concepts for each vertex on ontology
graph. After that, we compute the precision ratios. By the
way, in order to compare the effectiveness of algorithms, we
also apply the ontology proposed earlier by Gao et al. [23],
[25], [27] to calculate the precision ratios in the way we used
above. Parts of the experiment results are shown in to Tab.
I.

It’s apparently shown in Fig. I that, if we take N = 3, 5, 10
or 20, the precision ratio computed by our new sparse vector
ontology learning algorithm is higher than those by other pre-
vious algorithms by Gao et al. [23], [25], [27]. Furthermore,
such precision ratios keep increase with the increase of N .
Therefore, the conclusion is drawn that our newly proposed
ontology learning algorithm has higher efficiency than the
previous ones by Gao et al. [23], [25], [27].

B. Ontology mapping experiment on physical data

Physical ontologies O2 and O3 are traditionally used by
researchers to test the feasibility of ontology mapping. The
basic constructions of them O2 and O3 are shown in Fig. 2
and Fig. 3, respectively and our second experiment will adopt
it. Same as the above experiment, we also use P@N criterion

to measure the experiment. The newly proposed algorithm is
applied to achieve the ontology mapping between O2 and
O3. By the way, in order to compare the effectiveness of
algorithms, we also apply the ontology proposed earlier by
Gao et al. [23], [27], [29] to calculate the precision ratios in
the way we used above. Parts of the experiment results are
shown in to Tab. II.

As obviously shown in the table, the newly proposed
algorithm has far more efficiency than those put forward by
Gao et al. [23], [27], [29] especially when N is large enough.

C. Ontology similarity measure experiment on plant data

“PO” ontology O4, as described in Fig. 4, is famous in
plant science as a popular database to measure the effective-
ness of ontology learning algorithm for ontology similarity
calculating and we also take it here to learn and search
concepts and botanical features. The basic construction of
it can refer to http: //www.plantontology.org.

Based on cROP project, Planteome is an effective online
database for researchers to search for biological information
of plants. The cROP project functions and collaborate with
various plants-relevant projects both domestic and interna-
tional to collect enough reference ontologies for plants. As
a result, the database can be updated timely to maintain the
latest and richest reference. On the other hand, it may help
with the ontology use by providing a better annotation of
the gene expression profiles and phenotypes in OMICs, etcs.
What’s important is that the database can realize ontology
cros - references, which helps to link the reference vocab-
ularies with relevant terms in biology. It aims to build a
semantic web of ontologies specifically for plant biology.
In addition, the data annotation standards can be improved
greatly by collaborating frequently with a wide range of plant
genome sequencing and annotation projects and other rele-
vant database like Gramene, iPlant, PlantEnsembl, Uniprot...

Many researchers may encounter the problems to find the
exact description and references of certain terms in plant
biology. If they search by different keywords, or vocabularies
for one term, they may get different items online, which
is pretty headache for them to identify and choose the
description of what they want. However, planteome take
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Fig. 4. The Structure of “PO” Ontology

Fig. 5. “Humanoid Robotics” ontology O5

advantage of the cROP project to make it possible to get
the comprehensive and timely resources in plant biology. It
provides the reference ontologies for plants, which makes the
classification much simpler and clearer. The database also
get a web page for plant biology related blog which can
provide latest developments in the field. By the way, it owns
a zone for documents download. In result, Planteome helps
researchers search for the exact descriptions of plant ontology
and make the annotations of scientific terms professional and
in high standard.

Again, P@N is taken in this experiment, too. In order to
compare the effectiveness of algorithms, we also apply the
ontology proposed earlier by Gao et al. [21], [25], [27] to the
“PO” ontology to calculate the precision ratios in the way
we used above. Parts of the experiment results are shown in
to Tab. III.

As apparently shown in Tab. III, if we take N = 3, 5 or

10, the precision ratio computed by our new sparse vector
ontology learning algorithm is higher than those by other pre-
vious algorithms by Gao et al. [21], [25], [27]. Furthermore,
such precision ratios keep increase with the increase of N .
Therefore, the conclusion is drawn that our newly proposed
ontology learning algorithm has higher efficiency than the
previous ones by Gao et al. [21], [25], [31].

D. Ontology mapping experiment on humanoid robotics data

Humanoid robotics ontologies, denoted as O5 and O6

by Gao and Zhu [21], is effective to orderly and clearly
express the humanoid robotic and this experiment will take
it to determine ontology mapping between O5 and O6. The
basic construction of them can refer to in Fig. 5 and Fig. 6.
Follow the convention, P@N criterion is chosen again in the
experiment. By the way, in order to compare the effectiveness
of algorithms, we also apply the ontology proposed earlier
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Fig. 6. “Humanoid Robotics” ontology O6

Fig. 7. “Mathematical discipline” ontology O7

Engineering Letters, 25:4, EL_25_4_07

(Advance online publication: 17 November 2017)

 
______________________________________________________________________________________ 



Fig. 8. “Mathematical discipline” ontology O8

TABLE III
THE EXPERIMENT RESULTS OF ONTOLOGY SIMILARITY MEASURE

P@3 average P@5 average P@10 average P@20 average
precision ratio precision ratio precision ratio precision ratio

Algorithm in our paper 0.5396 0.6697 0.9156 0.9792

Algorithm in Gao et al. [21] 0.5042 0.6216 0.7853 0.9034

Algorithm in Gao et al. [25] 0.5360 0.6664 0.9004 0.9673

Algorithm in Gao et al. [27] 0.5081 0.6549 0.8104 0.9317

TABLE IV
THE EXPERIMENT RESULTS OF ONTOLOGY MAPPING

P@1 average P@3 average P@5 average
precision ratio precision ratio precision ratio

Algorithm in our paper 0.4444 0.5556 0.8333

Algorithm in Gao et al. [21] 0.4444 0.5185 0.6111

Algorithm in Gao et al. [23] 0.2778 0.6111 0.7889

Algorithm in Gao et al. [27] 0.4444 0.5370 0.8222

TABLE V
THE EXPERIMENT RESULTS OF ONTOLOGY MAPPING ON MATHEMATICAL DATA

P@1 average P@3 average P@5 average
precision ratio precision ratio precision ratio

Algorithm in our paper 0.3462 0.5000 0.6846

Algorithm in Gao et al. [21] 0.3077 0.4359 0.5615

Algorithm in Gao et al. [47] 0.3462 0.4744 0.6000

Algorithm in Gao et al. [31] 0.3462 0.4487 0.5923

by Gao et al. [21], [23], [27] to calculate the precision ratios
in the way we used above. Parts of the experiment results
are shown in to Tab. IV.

As obviously shown in Tab. IV, the newly proposed
algorithm has far more efficiency than those put forward by
Gao et al. [21], [23], [27] especially when N is large enough.

E. Ontology mapping experiment on mathematical ontology
data

Mathematical discipline ontologies denoted as O7 and
O8 and this experiment will take it to determine ontology
mapping between O7 and O8. The basic construction of them
can refer to in Fig. 7 and Fig. 8. Following the convention,
P@N criterion is chosen again in the experiment. By the
way, in order to compare the effectiveness of algorithms, we
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also apply the ontology proposed earlier by Gao et al. [21],
[47], [31] to calculate the precision ratios in the way we used
above. Parts of the experiment results are shown in to Tab.
V.

As obviously shown in Tab. V, the newly proposed algo-
rithm has far more efficiency than those put forward by Gao
et al. [21], [47], [31] especially when N is large enough.

V. CONCLUSION

In machine learning, the technology of sparse vector
learning is widely used in various engineering applications
for its high efficiency in data dimensionality reduction.
AdaBoosting is a well-known iterative algorithm and has
many extended algorithms employed in regression, ranking
and classification. In our paper, we present the boosting based
algorithm to compute the ontology sparse vector, and apply
it in ontology similarity measure and ontology mapping.
Five experiments imply that the proposed ontology learning
algorithm has high efficiency in certain special applications.
Therefore, the algorithm proposed in this paper has a wide
application prospect in semantic network and information
retrieval.
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