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Abstract—In this paper, a discrete-time noise-suppressing
Zhang neural network (DTNSZNN) model is proposed, an-
alyzed and investigated for the dynamic quadratic program-
ming (QP) subject to dynamic linear-equality constraint. Com-
pared with the discrete-time conventional Zhang neural net-
work (DTCZNN) model or most other conventional meth-
ods/algorithms, the DTNSZNN model has the superiority of
satisfying the real-time calculation with high precision and
suppressing various noises simultaneously. Moreover, relative
theoretical analyses are presented for showing the superiority
of noise suppressing as well as the high precision. Besides, both
the DTCZNN model and the DTNSZNN model are investigated
in noise environments and relative numerical experiments
are conducted, which further substantiate the efficacy and
superiority of the DTNSZNN model in the present of various
noises. Furthermore, the DTNSZNN model is applied to robot
manipulator motion control to show the feasibility in practice.

Index Terms—noise, dynamic quadratic programming,
Zhang neural network, discrete-time, real-time calculation.

I. INTRODUCTION

A
S an essential part of nonlinear optimization [1], [2],

quadratic programming (QP) is widely studied in engi-

neering fields [3], [4], [5], [6], [7], such as optimal control

[3], robotics [4] and classification [5]. In view of its fun-

damental role, more and more attention has been attached

in decades. In [8], the penalty barrier function method was

applied for the solution of large-scale QP. In [9], by using a

penalty function approach, an exterior point algorithm was

developed for convex QP. Note that the computation com-

plexity is normally proportional to the cube of its Hessian

matrix’s dimension for solving QP, which may be not suitable

for high-dimension matrices [10]. Neural network, due to

its superiority of parallel-computing and the convenience of

hardware implementation, is deeply studied for solving QP

problem [11], [12], [13], [14], [15].

However, most neural networks or neural dynamic meth-

ods are developed for the static QP problem solving, which

is difficult to be employed for the dynamic QP problem

solving. Differing from the static (or called time-invariant)

QP, the dynamic (or called time-varying) QP has a dynamic
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solution instead of a static one, which means that we have to

calculate the solution (or say, approximation solution) online.

In view of the difficulty of the dynamic QP solving, the

relative study is quite few. However, the dynamic QP is often

encountered in engineering fields such as robotic control

[4], [16]. For solving various dynamic problems effectively,

Zhang neural network (ZNN) or Zhang dynamics (ZD),

which is a special class of recurrent neural network [17], was

proposed by Zhang et al [18], [19]. Zhang neural network

opens a door for various dynamic problems solving, such

as dynamic nonlinear optimization [20], dynamic Jacobian

matrix pseudoinverse [21] and dynamic Sylvester equation

[22].

In [23], different types of discrete-time ZNN models were

presented for the dynamic equality-constrained dynamic QP.

Note that, if the noise is ignored during the calculative

process, those discrete-time ZNN models perform well and

satisfy the real-time requirement with high precision. How-

ever, the noise exists in the real word inevitably and a

model ignoring noise is unpractical in practice [24]. In this

paper, we propose a discrete-time noise-suppressing ZNN

(DTNSZNN) model, which not only satisfies the urgent real-

time requirement, but also has the superiority of suppressing

different types of noise (i.e., constant noise, bounded random

noise and linear noise). For comparison, a discrete-time ZNN

model in [23] is also investigated in noise environments,

which is named discrete-time conventional ZNN (DTCZN-

N) model in this paper. Moreover, theoretical analyses are

presented to show the stability and convergence of the

DTNSZNN model even in the situation of various noises

(i.e., constant noise, bounded random noise and linear noise)

existing. Note that, in the situation of the constant noise or

the bounded random noise existing, the DTNSZNN model

shows better performance and has a lower error than the

DTCZNN model, and that, in the situation of the linear

noise existing, the error of the DTCZNN model increases

with the time increasing, while the error of the DTNSZNN

model does not, which means that the DTNSZNN model can

suppress the linear noise while the DTCZNN model can not.

The remainder of this paper is organized into four sections.

Section II introduces the dynamic QP problem and the

DTCZNN model. In Section III, we propose the DTNSZNN

model and relative theoretical analyses and numerical exper-

iments are presented. In Section IV, the DTNSZNN model

is applied to robot manipulator motion planing. Section

V concludes this paper with final remarks. Before ending

this section, it is worth pointing out here that the main

contributions of this paper lie in the following facts.

1) For solving the dynamic QP problem in noise environ-
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ments, the DTNSZNN model is firstly proposed.

2) The DTCZNN model in the noise environment is inves-

tigated and compared with the DTNSZNN model.

3) The efficacy and superiority of the DTNSZNN model

are guaranteed by both theoretical analyses and numer-

ical experiments.

4) The DTNSZNN model is applied to the robot manipu-

lator control to show the feasibility in practice.

II. PROBLEM FORMULATION AND DTCZNN MODEL

In this paper, we consider the following problem of

dynamic QP subject to dynamic linear-equality constraints

[23]:

min. xT(t)P (t)x(t)/2 + qT(t)x(t),

sub. A(t)x(t) = b(t),
(1)

where the dynamic decision vector x(t) ∈ R
n is unknown

and is solved for satisfying the above minimization and

superscript T denotes the transpose of a vector or a matrix.

Besides, the Hessian matrix P (t) ∈ R
n×n, the vector

q(t) ∈ R
n, the full-row-rank matrix A(t) ∈ R

m×n, and

the vector b(t) ∈ R
m are all smoothly dynamic. In this

paper, we assume that QP (1) is strictly convex, i.e., P (t)
is positive-definite at any time instant t ∈ [0,∞). Based on

Lagrangian method, dynamic QP problem (1) can be equally

converted to the following dynamic linear equations:

W (t)y(t) = u(t), (2)

where

W (t) =

[

P (t) AT(t)
A(t) 0

]

∈ R
(n+m)×(n+m),

y(t) =

[

x(t)
ρ(t)

]

∈ R
n+m, u(t) =

[

−q(t)
b(t)

]

∈ R
n+m,

and ρ(t) ∈ R
m is the Lagrange-multiplier vector.

For solving the dynamic linear equations as well as

dynamic QP problem (1), the continuous-time conventional

ZNN (CTCZNN) model and the DTCZNN model were

proposed by Zhang et al [23]. Specifically, an error function

is defined firstly as e(t) = W (t)y(t)−u(t). Then, a design

formula ė(t) = −γe(t) is employed to force e(t) → 0

with t → ∞, where γ > 0. Finally, the CTCZNN model

is obtained as below:

W (t)ẏ(t) = −Ẇ (t)y(t)−γ
(

W (t)y(t)−u(t)
)

+ u̇(t). (3)

In view of the noise existing, CTCZNN model (3) is rewritten

as

W (t)ẏ(t) =− Ẇ (t)y(t) − γ
(

W (t)y(t) − u(t)
)

+ u̇(t) + ξ(t),
(4)

where ξ(t) ∈ R
n×m denotes the noise, of which the

specific value is unknown in calculative processes. Based

on CTCZNN model (4) and the Euler method, the following

DTCZNN model is obtained:

yk+1 =W−1
k

(

− τẆkyk − h(Wkyk − uk) + τ u̇k + τξk
)

+ yk,
(5)

where τ is the sampling interval and h = τγ; besides, we

denote yk = y(t = tk), Wk = W (t = tk), yk = y(t = tk)
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Fig. 1. Order of errors generated by DTCZNN model (5) for solving (6)
with different values of τ in the different situations

and uk = u(t = tk); W
−1
k is the inverse of Wk, and tk

and tk+1 are continuous time instants where k = 0, 1, 2 · · · .
Note that, if the noise is ignored during the calculative

precess, DTCZNN model (5) performs well. Specifically,

Xk+1 is obtained before time instant tk+1 and we do not

need to know the value of Ak+1 for calculating Xk+1,

which satisfies the urgent real-time requirement. However,

the noise is inevitable during the calculative precess and

if there exists noise, DTCZNN model (5) may perform

not well. For illustrating the above declaration, we conduct

some numerical experiments. Let us consider a dynamic QP

problem, which is written as the form of (1) with

P (t) =

[

8 2 exp(−0.5t)
2 exp(−0.5t) 10

]

,q(t) =

[

sin(0.5t)
cos(0.5t)

]

,

A(t) =

[

0.8 exp(−t)
1.5

]T

, and b(t) = − cos(0.5t).

(6)

In numerical experiments, we set h = 0.3 and τ = 0.1, 0.01
and 0.001. The error is defined as e(t) = e(t = tk) =
‖yk − y∗

k‖2, where y∗

k is the theoretical solution which can

be calculated by y∗

k = W−1
k uk and ‖ · ‖ denotes 2-norm

of a vector. The results are presented in Fig. 1. From Fig.

1(a), we can observe that, DTCZNN model (5) performs

well and the errors generated by DTCZNN model (5) are

of order 10−2, 10−4 and 10−6 with τ = 0.1, 0.01 and

0.001, respectively. However, in the present of various noises

(i.e., constant noise, bounded random noise and linear noise),

model (5) performs not well. Specifically, in the situations of

constant and bounded random noises existing, with τ = 0.1,

the errors generated by model (5) are between 1 and 10,

which are relatively large and may not be accepted for the

requirement of high calculative precision. In addition, in the

situation of the linear noise existing, the error increases with

the time increasing.

III. DTNSZNN MODEL

In view of the weakness of DTCZNN model (5) in the

situation of noise existing, we propose the DTNSZNN model
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for solving the dynamic linear equations as well as the

dynamic QP problem. Moreover, theoretical analyses about

the DTNSZNN model are also presented.

A. Proposing of DTNSZNN model

Before proposing the DTNSZNN model, we present the

continuous-time noise-suppressing ZNN (CTNSZNN) model

as a basis [24]. Specifically, an error function is defined firstly

as e(t) = W (t)y(t) − u(t), which is same as previous

one and a different design formula ė(t) = −λ1e(t) −
λ2

∫ t

0
e(τ)dτ is employed, where λ1 > 0 and λ2 > 0. Then,

the following CTNSZNN model in the situation of the noise

existing is obtained:

W (t)ẏ(t) =− Ẇ (t)y(t) − λ1
(

W (t)y(t) − u(t)
)

+ u̇(t)

− λ2

(
∫ t

0

W (τ)y(τ) − u(τ)dτ

)

+ ξ(t).

(7)

Based on the following lemmas, the convergence of

CTNSZNN model (7) in different situations (i.e., with no

noise, constant noise, bounded random noise and linear

noise) is guaranteed [24].

Lemma 1: With no noise existing during the calculative

process, CTNSZNN model (7) converges to the theoretical

solution of problem (1)with the steady-state error (SSE) (i.e.,

limt→∞‖W (t)y(t) − u(t)‖2) being zero.

Lemma 2: In the situation of three different types of noise

existing, CTNSZNN model (7) is convergent: 1) with the

constant noise existing, CTNSZNN model (7) converges

to the theoretical solution with the SSE being 0; 2) with

the bounded random noise existing, CTNSZNN model (7)

converges to the theoretical solution with the SSE being

bounded and approximately in inverse proportion to λ1;

3) with the linear noise existing, CTNSZNN model (7)

converges to the theoretical solution with the SSE being

bounded and in inverse proportion to λ2;

Focusing on CTNSZNN model (7), we can observe that

model (7) may not be discretized directly by the Euler

method or other discretization formulas due to the existence

of the integral term
∫ t

0
W (τ)y(τ) − u(τ)dτ . For solving

this problem, we define z(t) =
∫ t

0 W (τ)y(τ) − u(τ)dτ and

model (7) can be rewritten as the following form:










ẏ(t) =W (t)−1
(

− Ẇ (t)y(t) − λ1
(

W (t)y(t) − u(t)
)

+ u̇(t)− λ2z(t) + ξ(t)
)

ż(t) =W (t)y(t) − u(t).
(8)

We use the Euler method [23], [25] to discretize the terms

ẏ(t) and ż(t) of the above CTNSZNN model (8) simultane-

ously, and the following DTNSZNN model is obtained:










yk+1 =W−1
k

(

− τẆkyk − κ1
(

Wkyk − uk

)

+ τ u̇k

− κ2zk + τξk
)

+ yk

zk+1 =τ(Wkyk − uk) + zk,

(9)

where parameters κ1 = γ1τ and κ2 = γ2τ . Note that

we may use other discretization formulas to discretize the

CTNSZNN model, and then obtain different discrete-time

ZNN models. Specifically, we may use the Taylor-Type dis-

cretization formula which is employed in [23]. We know that

the truncation error of Taylor-Type discretization formula is
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Fig. 2. Solution states of DTCZNN model (5) and DTNSZNN model (9)
with constant noise, where solid lines and dashed lines denote calculated
solution states y(tk) and theoretical solution states y

∗(tk), respectively

O(τ2), which is higher than that of Euler method. However,

from the theoretical analyses in the ensuing subsection, we

can find that, due to the limitation of calculative precision

of CTNSZNN model (7), we cannot get a higher calculative

precision for DTNSZNN model (9) in the present of the

bounded random noise or the linear noise. Besides, higher

calculative precision of discretization formula means higher

time and space costs.

B. Theoretical analyses of DTNSZNN model

In this subsection, theoretical analyses are presented for

showing the convergence of DTNSZNN model (9) and the

superiority in the situation of various noises existing.

Proposition 1: In terms of the dynamic QP problem

(1), considering the situation that no noise exists during

the calculative process, DTNSZNN model (9) converges

the theoretical solution with the discrete-time SSE (i.e.,

limk→∞‖yk − y∗

k‖2) being O(τ2).
Proof. According to Definition 1 in Appendix A, the charac-

teristic polynomial of DTNSZNN model (9) can be derived

as

P (θ) = θ − 1, (10)

which has only one root, i.e., θ1 = 1, which is on the unit

circle, so DTNSZNN model (9) is 0-stable considering no

bias noise existing. In addition, we know that the SSE of

DTNSZNN model (9) is 0 from Lemma 1, and that the

truncation error of Euler method is O(τ). Therefore, we have

the following equation:










yk+1 =W−1
k

(

− τẆkyk − κ1
(

Wkyk − uk

)

+ τ u̇k

− κ2zk
)

+ yk +O(τ2)

zk+1 =τ(Wkyk − uk) + zk +O(τ2),

where O(τ2) denotes a vector with every elements being

O(τ2). Then, according to Definition 3 in Appendix, it

can be derived that DTNSZNN model (9) is consistent and

convergent, which converges with the order of its truncation

error being O(τ2). From the above analysis, it can be

concluded that yk = y∗

k + O(τ2) with k large enough.

Therefore,

‖Wkyk − uk‖2 = ‖Wk

(

y∗

k + O(τ2)
)

− uk‖2

= ‖WkO(τ2)‖2 = O(τ2).

The proof is thus completed. �

Proposition 2: In terms of the dynamic QP problem (1),

considering the situation that different types of noises exist
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Fig. 3. Solution states of DTCZNN model (5) and DTNSZNN model (9)
with random noise, where solid lines and dashed lines denote calculated
solution states y(tk) and theoretical solution states y

∗(tk), respectively

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

 

 

0 5 10 15 20
−1

0

1

2

tk (s)

tk (s)

y(tk)

y∗(tk)

y1(tk)

y∗1(tk)

y2(tk)

y∗2(tk)

(a) DTCZNN model (5)

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0 5 10 15 20
−1

−0.5

0

0.5

1

 

 

tk (s)

tk (s)

y(tk)

y∗(tk)

y1(tk)

y∗1(tk)

y2(tk)

y∗2(tk)

(b) DTNSZNN model (9)

Fig. 4. Solution states of DTCZNN model (5) and DTNSZNN model
(9) with linear noise, where solid lines and dashed lines denote calculated
solution states y(tk) and theoretical solution states y

∗(tk), respectively

during the calculative process, DTNSZNN model (9) con-

verges the theoretical solution with different discrete-time

SSEs as below. 1) For the constant noise, the discrete-time

SSE is O(τ2); 2) for the bounded random noise, if κ1 is

unaltered, the discrete-time SSE is approximately O(τ); 3)

for the linear noise, if κ2 is unaltered, the discrete-time SSE

is O(τ).
Proof. The proof process can be divided into three parts as

below.

1) For the constant noise, the proof process is similar to

that of Proposition 1 and thus is omitted here.

2) For the bounded random noise, according to Definition

1 in Appendix, we know that DTNSZNN model (9) is 0-

stable. From Lemma 2, we know that CTNSZNN model (7)

converges to the theoretical solution of (1) with the SSE is

approximately in inverse proportion to λ1 i.e., the SSE is

approximately O(1/λ1). In addition, we know that τλ1 =
κ1 in DTNSZNN model (9). Thus, if the value of κ1 is

unaltered, τ is in inverse proportion to γ1, i.e., τ = κ1/γ1.

Besides, the calculative precision of Euler method is O(τ).
Thus, if the value of κ1 is unaltered, we have that











yk+1 =W−1
k

(

− τẆkyk − κ1
(

Wkyk − uk

)

+ τ u̇k

− κ2zk + τξk
)

+ yk +O(τ)

zk+1 =τ(Wkyk − uk) + zk +O(τ).

Then, according to Definitions 2 and 3, the convergence of

DTNSZNN model (9) is ensured. From the above analysis, it

can be concluded that yk = y∗

k +O(τ) with k large enough.

Therefore,

‖Wkyk − uk‖2 = ‖Wk

(

y∗

k + O(τ)
)

− uk‖2

= ‖WkO(τ)‖2 = O(τ).

3) For the linear noise, the proof process is similar to that

of the bounded random noise and thus is omitted here. The

proof is thus completed. �
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Fig. 5. Order of errors generated by DTNSZNN model (9) for solving (6)
with different values of τ in the different situations
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Fig. 6. Errors generated by DTNSZNN model (9) and DTCZNN model
(5) for solving (11)-(14) in the different situations with τ = 0.001

C. Numerical verifications

In this subsection, some numerical experiments are con-

ducted to verify the efficacy and the superiority of DTNSZN-

N model (9) for solving the dynamic QP problem (1)

considering the situation that three types of noises exist. For

comparison, the specific dynamic QP problem (6), which

is investigated in Section II for showing the weakness of

DTCZNN model (5), is investigated again. In numerical ex-

periments, we set κ1 = 0.5 and κ2 = 1. Note that parameters

κ1 and κ2 are selected relatively freely in appropriate ranges.

For showing the superiority of DTNSZNN model (9)

compared with DTCZNN model (5), a series of numerical

experiments are conducted and the results are displayed in

Fig. 2 through Fig. 4, where solid curves correspond to the

solution elements, and the dash-dotted curves correspond

to the theoretical solution elements. In these numerical

experiments, we set τ = 0.01. From Fig. 2 and Fig. 3,
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Fig. 7. Motion trajectories of planar robot manipulator generated by
DTCZNN and DTNSZNN models with various kinds of noises.

one can observe that DTNSZNN model (9) performs much

better than DTCZNN model (5). Moreover, Fig. 4 shows

that DTNSZNN model (9) can suppress the linear noise and

the actual solution overlaps the theoretical solution during

the whole calculative process. In contrast, DTCZNN model

(5) cannot suppress linear noise and the error generated by

DTCZNN model (5) increases with the time increasing.

For further substantiating the calculative precision of

DTNSZNN model (9) which is shown in the above sub-

section, some numerical experiments are conducted and the

results are plotted in Fig. 5. From Fig. 5(a), it can be observed

that, with τ = 0.1, 0.01 or 0.001, the discrete-time SSE

are of order 10−2, 10−4 or 10−6, which substantiates that

DTNSZNN model (9) with no noise converges the theoretical

solution with the discrete-time SSE being O(τ2). Similar to

Fig. 5(a), Fig. 5(b) shows that DTNSZNN model (9) with

the constant noise converges the theoretical solution with the

discrete-time SSE being O(τ2). It follows from Fig. 5(c)

and Fig. 5(d) that, with τ = 0.1, 0.01 or 0.001, the discrete-

time SSEs are both of order 10−1, 10−2 or 10−3, which

substantiates that DTNSZNN model (9) with the bounded

random noise or the linear noise converges the theoretical

solution with the discrete-time SSE being O(τ).

To substantiate the effectiveness and superiority of

DTNSZNN model (9) to solve more complicated dynamic

QP problems, we consider complicated one, which is rewrit-

ten as the form of (1) with

P (t) =















p1(t) p2(t) p3(t) · · · pn(t)
p2(t) p1(t) p2(t) · · · pn−1(t)
p3(t) p2(t) p1(t) · · · pn−2(t)

...
...

... · · ·
...

pn(t) pn−1(t) pn−2(t) · · · p1(t)















(11)

where p1(t) = 8+cos(t), and pi(t) = sin(t)/(i−1) with i =
2, 3, · · · , n. Besides, the other coefficients of QP problem (1)

are as below:

q(t) = [− 2 cos(2t), 2 cos(2t+ π/2), 2 cos(2t+ π),

· · · , 2 cos(2t+ (n− 1)π/2)]T
(12)

A(t) = [ sin(t), sin(t− π/3), sin(t− 2π/3), · · · ,

sin(t− (n− 1)π/3)]
(13)

and

b(t) = [2 cos(2t+ nπ/2)]. (14)

In numerical experiments, we set n = 6, and sampling

gap τ = 0.001. We consider a constant noise vector with

each element being 20. Besides, a bounded random noise

vector with each element randomly changing from 7 to 9

and a linear increasing noise vector with each element being

10tk are also considered. Numerical experimental results

are presented in Fig. 6. It is evident that, in all different

situations, DTNSZNN model (9) is superior to DTCZNN

model (5).

IV. APPLICATION TO ROBOT MANIPULATORS

In this section, DTNSZNN model (9) is applied to the

motion control of robot manipulators [26], [27], [28] with

various noises. Besides, DTCZNN model (5) is also applied

to such a task to show the superiority of DTNSZNN model

(9).

In this application, a 5-link planar robot manipulator

is considered and investigated with its forward-kinematics

equation being

ψ(ǫ(t)) = ̺(t), (15)

where ψ(·) is the forward-kinematics mapping function with

known structure and parameters for a given manipulator.

In addition, ǫ(t) ∈ R
5 and ̺(t) ∈ R

2 denote the joint-

angle vector and the end-effector Cartesian position vector,

respectively. By differentiating the both sides of (15), the

following equation is obtained:

J(ǫ(t))ǫ̇(t) = ˙̺(t), (16)

where matrix J(ǫ(t)) = ∂ψ(ǫ(t))/∂ǫ(t) ∈ R
2×5; ˙̺(t)

denotes the Cartesian velocity; and ǫ̇(t) denotes the joint

velocity. The robot manipulator is investigated to track a

circle path with the radius being 0.5 m with various kinks of

noises considered. At the same time, the joint velocity should

be minimized. Thus, the control problem is formulated as

min. ǫ̇T(t)ǫ̇(t),

sub. J(ǫ(t))ǫ̇(t) = ˙̺(t),
(17)

DTNSZNN model (9) and DTCZNN model (5) are em-

ployed to solve this problem. The task duration T = 10
s; each link length is 1 m; τ = 0.001 s; initial joint state

ǫ0 = [3π/4,−π/2,−π/4, π/6, π/3] rad. Numerical results
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Fig. 8. Motion trajectories of PUMA560 robot manipulator generated by
DTCZNN and DTNSZNN models with various kinds of noises.

are presented in Fig. 7. It is evident that DTNSZNN model

(9) is superior to DTCZNN model (5) with three different

kinds of noises, i.e., constant noise, random noise and linear

noise.

Moreover, DTNSZNN model (9) is applied to the motion

control of PUMA560 robot manipulator [28] with various

noises, which is a 3D robot manipulator. Besides, DTCZNN

model (5) is also applied to such a task. Numerical results

are presented in Fig. 8, which substantiate the superiority of

DTNSZNN model (9) once again.

V. CONCLUSION

In this paper, the DTNSZNN model has been proposed for

solving the dynamic QP problem. Note that the DTNSZNN

model not only has the advantage of satisfying the urgent

real-time computation, but also has the advantage of sup-

pressing various noise (i.e., the constant noise, the bounded

random noise and the linear noise). Theoretical analyses have

been presented for showing the stability and convergence of

the proposed model. Theoretical results have shown that, in

the situation of various noises existing, DTNSZNN model

performs well and has a relatively high calculative precision.

Moreover, comparative numerical experiments and appli-

cations have been conducted for further substantiating the

efficacy and superiority of the proposed DTNSZNN model.

APPENDIX

Definition 1: An N step method
∑N

j=0 αjxk+j =

g
∑N

j=0 βjfk+j can be checked for 0-stability by deter-

mining the roots of characteristic polynomial PN (θ) =

∑N
j=0 αjθ

j . If the roots of PN (θ) = 0 are such that |θ| ≤ 1
and those for which |θ| = 1 are simple, then the N step

method is 0-stable.

Definition 2: An N step method is said to be consistent

of order p if its truncation error is O(gp) with p > 0 for the

smooth exact solution.

Definition 3: An N step method is convergent, i.e.,

x[(t−t0)/g] → x∗(t), for all t ∈ [t0, tfinal], as g → 0, if

and only if the method is 0-stable and consistent. That is

to say, 0-stability plus consistency results in convergence. In

particular, a 0-stable consistent method converges with the

order of its truncation error.
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