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Abstract—Based on two-joint rigid manipulator, we analyze 

its kinematics and dynamics, establish forward and inverse 

kinematic model of the manipulator, and plan the joint 

trajectory using the high order polynomial interpolation 

method. Then utilizing dynamic equation established by 

Lagrange equation, we propose a sliding mode control method 

based on linear sliding surface and backstepping, use adaptive 

method to estimate the uncertainty from external disturbances, 

and prove the system stability based on Lyapunov theory. After 

the dual power reaching law and terminal sliding surface are 

further used instead of power reaching law and linear sliding 

surface, the initial torque become much smaller. Finally the 

lower torque limit of the first link is set up so as to further lessen 

initial torque, accelerate the tracking speed, and adapt to 

practical engineering requirements. The simulation results 

show the validity of the proposed method. 

 
Index Terms—kinematics, backstepping, sliding mode, 

Lyapunov 

 

I. INTRODUCTION 

ITH the development of modern industry, the 

automation of manufacturing industry has become an 

inevitable direction, which makes the manipulator 

extensively used in the machining industry with its own 

remarkable characteristics. The effective application of 

manipulator has greatly improved the production efficiency. 

In order to further improve the automation level of machining 

industry, it is very important to study more advanced control 

method of the manipulator.  

For the study of the manipulator kinematics, the classical 

D-H method can be used to establish the kinematic model of 

the manipulator, and the inverse kinematics can also be 

solved by using forward kinematics. When the manipulator 

performs the limited operation, its trajectory needs to be 

planned and coordinated. Currently many scholars have done 

a lot of theoretical research in this area. Yiwei Zhang [1] used 

high order polynomial to do the trajectory planning of the 

robot. Zhong Shi [2] used high order polynomial and particle 

swarm optimization algorithm to solve the planning problem, 

and the simulation results verify the feasibility of the 

algorithm. 
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Sliding mode control is a kind of variable structure control 

with strong robustness. The control method can make the 

system state slide along the sliding surface by switching the 

control amount and keep stable under parameter perturbation 

and external disturbance. Because of this characteristic, the 

sliding mode control has been applied in robot control 

[3]–[6]. Hong Mei [7] proposed a dual power reaching law 

which combines with the sliding surface, and get better 

control effect. Wenhui Zhang [8] used a neural network 

control scheme with sliding mode variable structure. The 

system also has good control effect in the case of strong 

interference. Kewen Tong [9] adopted the integral sliding 

surface and continuous function to reduce chattering. 

Chunshan Xu [10] designed a fast terminal sliding surface 

combined the smooth index reaching law, and discussed the 

convergence domain. 

Backstepping control method has a better effect in the 

realization of uncertain systems, especially when the 

interference or uncertainty does not meet the matching 

conditions. The basic idea of the backstepping control is to 

decompose the complex nonlinear system into subsystems 

which do not exceed the order of systems until the design of 

the control law is completed [11]. Chuanzhong Xu [12] 

designed the sliding mode controller considering modeling 

errors. The neural network is used to estimate the modeling 

errors, and the better simulation results are obtained. 

In this paper, we first analyze the kinematics and dynamics 

of the manipulator, establish forward and inverse kinematic 

model of the manipulator, and plan the joint trajectory using 

the high order polynomial interpolation method. Then 

utilizing dynamic equation established by Lagrange 

equation, we propose a sliding mode control method based 

on backstepping and linear sliding surface, use adaptive 

method to estimate the uncertainty from external 

disturbances, and prove the system stability based on 

Lyapunov theory. Then aimed at the deficiency of the larger 

initial torque, the dual power reaching law and terminal 

sliding surface are used to reduce the initial torque. Finally 

the lower torque limit of the first link is set up to further 

lessen initial torque and accelerate the tracking speed.  

 

II. TRAJECTORY OF MANIPULATOR 

A. Kinematics Analysis of Manipulator 

Utilizing kinematics analysis of the manipulator, we can 

get the transformation matrix of the end position with respect 

to the origin of the manipulator system. And utilizing inverse 

kinematic analysis, the joint variables can be obtained by the 

end position. In this paper, we use modified D-H modeling 
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method for two-joint rigid manipulator. The modified D-H 

method requires a coordinate system for all the joints of the 

manipulator. In general, the base coordinate frame is first 

established. Then the coordinate frame of each link is 

respectively established. Fig. 1 is the coordinate system of 

two-joint rigid manipulator.  
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Fig.  1. The link coordinate system of manipulator 

 

In Fig. 1, the letter B represents the base coordinates, letter 

E represents the end coordinates, and letter p is a point in the 

end coordinate system. According to homogeneous 

transformation, we can get the position and orientation of the 

manipulator. 
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So we may get: 
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E ET T T T                                                                  (2)

 It can be seen from the Fig. 1, the coordinate frame 1 has 

no translation, and just rotates 
1 with respect to the base 

frame; the coordinate frame 2 translates 
1l  and rotates 

2  

with respect to the coordinate frame 1; the coordinate frame E 

of the end effector just translates 
2l with respect to the 

coordinate frame 2. Therefore, we may get: 
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   Homogeneous transformation matrix of each joint can be 

shown as follows. 
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                                         (4) 

In general, from the Equation (1), (2), (3) and (4), the final 

homogeneous transformation matrix can be shown as 

follows. 
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Assuming that the point p is located in the frame of end 

effector, the forward kinematics solution of the point p may 

be obtained.  
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In the analysis and design of manipulator, the solution of 

inverse kinematics is very important. Usually the control of 

the manipulator is to make the manipulator reach the desired 

position, which needs each joint angle to be determined so as 

to achieve the specified position. Each joint angle is obtained 

by solving the inverse kinematics equation. 
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Fig.  2. The two trajectory of manipulator 

The position of end effector is known, and we may solve 

the joint angles by the following equation. 
1= (p)f 

                                                                             (8) 

From Fig. 2 we may get: 

2                                                                                (9) 

According to cosine formula, we may get: 
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Utilizing the above equations, the joint angles can be 

obtained. In fact, two groups of solutions are gotten by using 

inverse kinematics for two-freedom-degree manipulator. As 

shown in Fig.2, we discard a set of data which is represented 

by dashed line, and use another group to solve the following 

questions. 

B. Polynomial Interpolation 

In order to control the motion of the manipulator in the 

joint space, the position of the joint should be calculated by 

interpolation. For the starting position and the target position 

of the joint space, the middle position of the joint can be 

calculated by interpolation. In this paper, we use the five 

order polynomial to calculate the desired joint position of 

each trajectory point. Assuming that the joint position in the 

0t and ft time are 
0q and fq , the velocity of joint movement 

are 
0q and fq , and the acceleration are 

0q and fq . So we 

can get the boundary conditions of the joint movement of the 

manipulator. 
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                                                      (12) 

Because Equation (12) has 6 conditions, so the high order 

polynomial may have 6 coefficients. The joint position is 

represented by Equation (13) of the five order polynomial, 

and the joint velocity and acceleration may be obtained by the 

derivative. 
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                By solving (12), (13) and (14), the coefficients 

0 1 2 3 4, , , ,a a a a a and 5a  can be gotten. 
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Suppose the initial joint angles are both 0, the final joint 

angles are respectively 1 and 0.5, the running time of the 

system is 10s, and the functions of two joint angles are: 
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III. DESIGN OF BACKSTEPPING SLIDING MODE CONTROLLER 

A. State Equation of Manipulator 

Regardless of model error, Lagrange dynamics equation is 

as follows.  

( ) ( , ) dM q q C q q q G q     （ ）                                    (17) 

where, M is the symmetric positive definite inertia matrix, 

C is the vector matrix containing Coriolis and centrifugal 

force, and G is the gravity vector matrix. q q, and q are the 

position vector, the velocity vector and the acceleration 

vector.  is the input torque , and d  is external disturbance. 

Suppose that 1 2, .x q x q   Equation (18) can be gotten 

from Equation (17). 
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                                            (18) 

B. Definition of Variables 

The basic design method of backstepping control is as 

follows. First, define the state error 1e  and 2e . 

1 1 de x q                                                                          (19) 

2 2 1e x                                                                           (20) 

In Equation (19), 
dq is given joint angles, and 

1 is virtual 

control quantity. 

1 1 1 dk e q                                                                      (21) 

Then, we may get: 

1 1 2 2 1 1d de x q x q e k e                                              (22) 

1

2 2 1 2 1 1( )d de x M Cx G q k e                            (23) 

Defining the sliding surface switching function: 

1 2s ce e                                                                      (24) 

where,  0c  . 
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C. Design of Reaching Law 

In order to improve the control performance of sliding 

control, it is important to eliminate or weaken chattering. A 

good reaching law can not only weaken the chattering in the 

system, but also speed up the system sliding time from any 

initial state to sliding mode surface, and improve the 

robustness of the system. In this paper, the reaching law is 

adopted as follows: 

2sgn
a

s s s k s                                                           (25) 

where 0  , 
2 0k  . This is a combination of the power 

reaching law and exponential reaching law.      
            

To a certain extent, the continuous function and the sign 

function may both inhibit the chattering. However, because 

of the discontinuity of the sign function, as shown in Fig.3, 

there is a certain chattering in the process of switching. So we 

use the arctangent function instead of sign function. The 

arctangent function is represented as follows. 

sgn 2 / arctans s                                                          (26) 

 

Fig. 3-1. The sign function 

 

Fig. 3-2. 2 / arctan x  function 

Fig.3. The  comparison of the continuous function and the sign function 

 

D. Sliding mode controller 

Defining the Lyapunov function: 

21

2
mv s                                                                          (27) 

Then, differentiate Equation (27), we may get: 
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From Equation (28) ， we may know that when 

0s  , arctan 0s  ; when 0s  , arctan 0s  ; whatever s  

is, -s arctan 0s  . So 0mv  is always correct, and the 

system can reach the sliding mode face in finite time. 

The input torque is: 
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E. Design of Backstepping Controller 

In the following, we use the backstepping method to 

estimate 
d . 

Then letting ˆ
d d d    , 0  , and defining the first 

lyapunov function:  
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So, we may get: 
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Then we define the second Lyapunov function. 
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                                (33) 

So we may design adaptive law. 
1ˆ

d M s                                                                         (34) 

We substitute Equation (34) into Equation (33), and get: 
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Defining: 
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Setting 
1 2[ ]Te e e  , we may get: 
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Substituting Equation (37) into Equation (35), and get: 

2
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And, 
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So we can choose the values of 1 2k k, and 1c to 

make 0Q  . 

As is shown above, 0v  , and the system satisfies the 

condition of Lyapunov stability theory. 

IV. SIMULATION 

A. Simulation Results 

In the manipulator dynamics Equation (17), all parameters 

are as follows: 
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    And, 
    

2

1 2 1
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In the manipulator dynamics Equation (17), the 

parameters are: 
1 4m kg , 2 2m kg , 1 1l m , 

2 0.8l m , 1.2a  ,
1 20k  , 2 25k  , 

4  0

0   16
c

 
  
 

, 

10  , 80  . 

The desired positions of two joints are Equation (16), the 

initial state of system is： 
   

1 2 3 4[ ] [0.5 0.3 0.5 0.5]q q q q  
 

The simulation results of traditional sliding mode 

controller are in Fig.4. The simulation results of backstepping 

sliding mode controller are in Fig.5. The results are as 

follows: 

 

(4-1) The position tracking of link 1 

 

(4-2)  The position tracking of link 2 

 

 

(4-3)  The tracking error of link 1 

 

     (4-4) The tracking error of link 2 

 
     (4-5)  The input torque of link 1 

 
     (4-6)  The input torque of link 2 

 

  Fig. 4. The traditional sliding mode controller simulation diagram 
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        (5-1) The position tracking of link 1 

 
        (5-2) The position tracking of link 2 

 
       (5-3)  The tracking error of link 1 

 
   (5-4) The tracking error of link 2 

 
    (5-5) The input torque of link 1 

 
     (5-6) The input torque of link 2 

 
(5-7) The adaptive estimation of F(1) 

 
(5-8) The adaptive estimation of F(2) 

Fig. 5 The improved sliding mode controller using linear sliding surface 
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We may see from Fig. 4 that the traditional sliding mode 

controller has a good tracking effect, and can achieve a stable 

state in a relatively short time. The tracking error of two 

joints in the initial stage is large, and gradually keeps up with 

expected angle 1.4s later. Because of external disturbance, 

we may still see some fluctuations after successful tracking. 

It may be seen from the control torque that the system appears 

relatively large fluctuations which shows that the suppression 

effect to the chattering is not very good. However, it may be 

seen clearly from Fig. 5, the link 1 takes a second or so to 

reach the balance state; there are fluctuations in the initial 

stage of the link 2, but it quickly reaches the balance. For the 

control torque, there is a relatively large input torque at the 

beginning stage, and then it becomes stable. Compared with 

Fig. 4, the control torque curve is smoother, which also 

means that the reaching law has played a good effect. From 

the change curve of adaptive parameters of Fig. 5.7 and Fig. 

5.8, the estimation of F is relatively ideal. 

B. The Simulation Problem and Improved Method 

From Fig. 5-5 and Fig. 5-6 we know that the above 

presented control method needs larger initial torque than 

normal operating torque. Especially for link 2, the normal 

operating torque is about 30N.m, but its initial torque needs 

to reach more than 200N.m. In this situation, In order to 

improve this problem, we may further improve the proposed 

method. 

In sliding mode control, the reaching law can improve the 

reaching motion. In Equation (25)，the reaching law includes 

the power reaching law and the exponential reaching. In 

order to decrease the chatter of initial torque, the following 

dual power reaching law can be used [14]. 

1 2 2sgn sgn
a b

s s s s s k s                                                 

(40) 

where 
1 0  , 

2 0  , 
2 0k  , 1a  , and 0 1b  . 

No matter the power reaching law or the exponential 

reaching law, they make the system smoothly reach sliding 

surface, but they both slow down the speed of reaching 

sliding surface. So we introduce terminal sliding surface 

instead of linear sliding surface. The terminal sliding surface 

can make system reach stable state in limited time, while the 

linear sliding surface can just make the system reach stable 

state in unlimited time [15].  

The following fast terminal sliding surface is adopted [16]. 
/

1 2 1+ m ns ce e de                                                                      (41) 

where 0c  , 0d  ; 0m  , 0n  , m  and n  are both odd 

numbers, and 2m n m  . 

 

 

 

 

 

 

 

 

 

 

C. Simulation of Improved Method 

We combine dual power reaching law and fast terminal 

sliding surface with backstepping, and the related parameters 

is as follows: 1.2a   , 0.8b  ，
1 0.1  ，

2 0.1  ，

1 20k  ，  
2 25k  , 

3  0

0   13
c

 
  
 

, 
3

13
d

 
  
 

， 0.1m  ，

0.1n  ， 80  .  

 

Fig. 6 is the simulation result.  

 

Known from Fig. 6-5 and Fig. 6-6, the initial torque is 

much smaller compared with Fig. 5-5 and Fig. 5-6. But this 

effect is obtained by slowing down the response speed. Seen 

from Fig. 6-1 to Fig. 6-4, the time of following expected 

trajectory has increased by about 0.2s. However, a small 

reduction of response speed is worthwhile for the 

performance improvement of the whole system. Known from 

Fig. 6-7 and Fig. 6-8, the adaptive parameters has larger 

oscillation than that of Fig. 5-7 and Fig. 5-8. It shows the 

adaptive parameters can fit the change of initial torques.  

D. Further Improvement and Simulation 

Seen from Fig. 6-5 and Fig. 6-6, although the initial torque 

is less than before, it still has large fluctuation. In addition, 

known from Fig. 6-5, the normal operation torque of link 1 is 

about 35~75N.m, but its lower initial torque is about -75N.m. 

So we can set the lower torque limit of link 1 so as to lessen 

the large fluctuation of initial torque. Of course, the torque of 

link 2 and the upper limit of link 1 have not any limit so as to 

guarantee the tracking performance of links. In our 

simulation, we set the initial torque of link 1 be equal 0 once 

it is less than 0 in the initial 0.5 second. The simulation results 

are shown as Fig.7. 

 

Seen from Fig. 7-1 to Fig. 7-2, the tracking speed is 

accelerated; seen from Fig. 7-5 and Fig. 7-6, the initial torque 

become smaller. So the further improvements make the 

system not only have smaller initial torque, but also have 

faster response speed. 

V. CONCLUSION 

This paper establishes the kinematic model of 

two-freedom-degree manipulator, and the trajectory planning 

is carried out by using higher order polynomials. Then, 

utilizing dynamic equation of the manipulator, a 

backstepping sliding mode control algorithm is designed and 

improved. The simulation proves that the controller has not 

only good dynamic quality, but also can effectively weaken 

the chattering, and quickly track the desired trajectory.  
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(6-1) The position tracking of link 1 

 
(6-2) The position tracking of link 2 

 
(6-3) The tracking error of link 1 

 
(6-4) The tracking error of link 2 

 
(6-5) The input torque of link 1 

 
(6-6) The input torque of link 2 

 
(6-7) The adaptive estimation of F(1) 

 
(6-8) The adaptive estimation of F(2) 

 

Fig. 6 The improved sliding mode controller using terminal sliding surface 
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(7-1) The position tracking of link 1 

 
(7-2) The position tracking of link 2 

 
(7-3)  tracking error of link 1 

 
(7-4) The tracking error of link 2 

 
(7-5) The input torque of link 1 

 
(7-6) The input torque of link 2 

 
(7-7) The adaptive estimation of F(1) 

 
(7-8) The adaptive estimation of F(2) 

Fig. 7 The improved sliding mode controller with the lower torque limit 
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