
Surrogate Modeling of
Stochastic Dynamical Systems

Aditya Sai1 and Nan Kong1

Abstract—Dynamical, or time-varying, systems describe a
variety of phenomena found within many branches of science
and engineering. Certain dynamical systems may be unwieldy
to simulate repetitively, especially if the model contains uncer-
tainty in the form of stochastic terms and must account for
a global range of model behavior. Surrogate modeling using
sparse grid interpolation can alleviate the burden associated
with increasing dimension of the parameter space. Previous
stochastic differential equation (SDE)-based sparse grid ap-
proaches have not presented a comprehensive analysis on the
benefits of tuning sparse grid settings. This letter seeks to
explore such settings, including the resolution level and the
dimensional adaptivity of the sparse grid. Results suggest that
the number of support nodes and the degree of dimensional
adaptivity can be strategically tuned to construct an accurate,
efficient interpolant.

Index Terms—surrogate modeling, dynamical system, Itô
stochastic differential equation, sparse grid interpolation, sys-
tems biology

I. INTRODUCTION

Dynamical systems enable modeling of time-varying real-
world systems. The underlying models can be described
by differential equations, where each equation describes the
rate of change of a single state variable as a function of
model parameters, time and other state variables, and can
be solved numerically using discretized approximations to
the true solution. Most mechanistic and semi-mechanistic
mathematical models of dynamical systems are developed
using ordinary differential equations. Nevertheless, random
external disturbances are known to influence such systems,
necessitating the need to model them with stochastic pro-
cesses [1]. Here, we focus on Itô stochastic differential
equations (SDEs):

X(t) = f(X, t,θ)dt+ g(X, t,θ)dB(t) X(0) = X0, (1)

where X ∈ RN is a continuous time stochastic process, B ∈
RM is a Brownian motion process, t is time, θ ∈ RP are
model parameters, f(·) : RN × [0, T ]×Θ→ RN is the drift
term (deterministic component), and g(·) : RN × [0, T ] ×
Θ→ RN×M is the diffusion term (stochastic component).

Complex dynamical systems are often difficult to simulate
when considering a large number of model parameters [2]–
[4]. Furthermore, local searches of the pertinent factors may
be insufficient to characterize the wide range of possible
behaviors exhibited by the system in question. Sparse grids
allow for global, computationally efficient exploration of
the parameter space using tensor-product quadrature [5]–[7].
Sparse grid interpolants mitigate the curse of dimensionality
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associated with higher dimensional parameter spaces by
sampling the parameter space strategically and evaluating the
original model sparsely. The resulting surrogate model can
be used in model-based control and optimization without
sacrificing modeling accuracy or performing unnecessary
model evaluations. The concept of sparse grid interpolation,
and surrogate modeling in general, is not unlike that of
compressive sensing, where a compressible signal is recov-
ered from a limited number of measurements [8]. Fig. 1
demonstrates the application of sparse grid interpolation to
a simple 3-dimensional trigonometric function.

In the stochastic domain, sparse grids have been applied to
stochastic partial differential equations with random inputs
[9]–[14], backwards stochastic differential equations with
random inputs [15], and differential algebraic equations with
random parameters [16]. SDEs with white noise were also
explored with the sparse grid method [17], with the intent
of determining the optimal time step and noise level for
first-order convergence of the method. When the integration
and discretization step sizes were varied, the increase in the
number of random variables along the stochastic process led
to an increase in the number of points needed to construct
the sparse grid, which we refer to as support nodes.

While stochatic models have found widespread usage in
finance [18], [19], the models we explore in this paper were
found in the systems biology literature. Systems biology is
concerned with the systems level representation of biological
phenomena [20]. Examples of SDE-based models in systems
biology include: (1) the human nervous system [21]–[23],
(2) a glucose regulatory system for type 1 diabetes patients
[24], (3) the JAK-STAT signaling pathway [25], (4) the
euglycemic hyperinsulinemic clamp [26], and (5) predator-
prey dynamics in polluted environments [27]. There is a need
to accurately model these biological phenomena and their
inherent variability.

In this work, we perform a comparative study of two
stochastic dynamical systems to understand how certain
features of the sparse grid can be tuned to improve the
accuracy of the resulting surrogate model. The surrogate
model estimates the mean and variance of an ensemble
of SDE trajectories simulated across various points in the
parameter space. After reviewing sparse grid interpolation,
we present results related to modifying certain features of
the sparse grid, such as the number of support nodes used to
construct the interpolant. Our results reveal that while these
features may all contribute to improving interpolant accuracy,
they do so disproportionately. We then summarize our work
and suggest future extensions.
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Fig. 1. Function f = sinx cos y evaluated on a grid [0, 2π]× [0, 2π] using both the original function (left) and the sparse grid interpolant (right). The
interpolant was produced with a relative error of 0.44%, absolute error of 0.0087, and 321 support nodes.

II. SPARSE GRID INTERPOLATION

In sparse grid interpolation, the support nodes are selected
in a predefined manner; a nested, hierarchical sampling
scheme [6], [7], [28] recycles nodes from lower levels of
resolution to use in higher levels.

A mathematical formulation of sparse grids now follows
from [5]–[7], [29]–[31]. Consider a function f : [0, 1]d → R
that is to be interpolated on a finite number of support nodes.
Dimensions that are not of unit length can be rescaled. Here,
f represents the sample average and standard deviation of
multiple SDE trajectories sampled at discrete time points.
For a given f , a univariate interpolation function can be
constructed:

U i(f) =

mi∑
j=1

aij · f(xij) (2)

where i ∈ N, aij ∈ C([0, 1]), aij(x
i
l) = δjl, l ∈ N are the

univariate basis functions, xij ∈ Xi = {xi1, . . . , ximi
}, xij ∈

[0, 1], 1 ≤ j ≤ mi, are the support nodes.
Extending this interpolation function to multiple dimen-

sions, the multivariate formula, using the full tensor product
formulation, is:

(U i1 ⊗ · · · ⊗ U id)(f) =
mi1∑
j1=1

· · ·
mid∑
jd=1

(ai1j1 ⊗ · · · ⊗ a
id
jd

)f(xi1j1 , . . . , x
id
jd

). (3)

The number of support nodes required for the full tensor
product representation is

∏d
j=1mij , which is computation-

ally intractable for high dimensions d.
The Smolyak construction aims to substantially decrease

the number of support nodes used while preserving the
interpolation properties observed in the 1-dimensional case.
Define the difference function ∆i = U i−U i−1, U0 = 0 and
multi-index i ∈ Nd, |i| = ii1 + · · · + iid . Now, define the
Smolyak interpolant as:

An+d,d(f) =
n∑
k=0

∑
|i|=k+d

(∆i1 ⊗ · · · ⊗∆id)(f). (4)

The inner sum can be expressed as∑
|i|=k+d

∑
j

(ai1j1⊗· · ·⊗a
id
jd

)(f(xi
j)−Ak+d−1,d(f(xi

j))), (5)

where j is the multi-index (j1, . . . , jd), jl = 1, . . . ,m∆
il

, l =

1, . . . , d, and the nodes xi
j = (xi1j1 , . . . , x

id
jd

), xiljl is the jlth
element of Xi1

∆ = Xil\Xil−1, X0 = ∅, and m∆
il

= |Xil
∆|.

The support nodes can be chosen in an hierarchical fashion
such that Xi ⊂ Xi+1, i ∈ {i1, . . . , id}.

It is also useful to compute the absolute (Enabs) and relative
(Enrel) errors of the Smolyak interpolant using correction
terms known as hierarchical surpluses (wk,ij ):

wk,ij = f(xi
j)−Ak+d−1,d(f(xi

j)), (6)

Enabs = max
i,j

wn,ij , (7)

Enrel =

max
i,j

wn,ij

max
i,j

f(xi
j)−min

i,j
f(xi

j)
. (8)

The conventional sparse grid fails to consider the impact
errors can have on the quality of the interpolant produced.
Adaptive sparse grids [5] build on the conventional formu-
lation by using generalized error indicators that consider
the influence of the error in comparison to the necessary
computational work:

gj = max

{
w
|∆jf |
|∆1f |

, (1− w)
n1
nj

}
, (9)

where w ∈ [0, 1] is a weight for the error indicator gj, nk
is the number of function evaluations for an index set k.
Conventional sparse grids are formed when w = 0, and only
the number of function evaluations are considered. When
w = 1, the error indicators will decay with increasing
indices. Intermediate values of w compromise between ex-
cessive work and high error.

The approximation properties of the sparse grid rely
on basis functions to select the required support nodes.
Chebyshev-based node distributions can be used for higher-
order polynomial interpolation, where the function to be
interpolated is smooth and higher accuracy is required [32].
In this work, we use Chebyshev-Gauss-Lobatto nodes [30],
which are defined as follows:
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mi =

{
1, i = 1

2i−1 + 1, i > 1
(10)

xij =

{
− cos π·(j−1)

mi−1 , mi > 1

0, mi = 1.
(11)

For implementation purposes, Matlab was used as the
simulation environment for the models discussed here. The
Euler-Maruyama method, a first-order stochastic Taylor ex-
pansion, was used to integrate SDEs [33]–[35]:

X(tq+1) = X(tq) + f(X(tq), qδt,θ)δt+

g(X(tq), qδt,θ)(B(tq)−B(tq−1)), (12)

where δt is the integration time step, and q = 0, . . . , T/δt.
Sparse grid interpolation was performed using the Sparse
Grid Interpolation Toolbox [32].

III. RESULTS

We examine two SDE-based models: a dynamic contrast
enhanced imaging (DCEI) model used in monitoring the
efficacy of cancer therapeutics [1], and a predator-prey (PP)
model commonly found in ecology [36]. We compare results
for 3-dimensional (3D, DCEI and PP), 7-dimensional (7D,
DCEI only), and 8-dimensional (8D, PP only) interpolants.
The dimensionality of the interpolant is the number of
parameters that were varied and explored by the interpolant.

A. Simulation Conditions and Convergence Error

Each model had to be tuned for compatibility with sparse
grid interpolation by choosing both the simulation conditions
and the number of realizations. Simulation conditions for the
model, such as initial conditions, durations of the simulation,
desired model states, and parameters to explore in the pa-
rameter space, were determined first. These conditions were
defined in large part to conform with the scope of the overall
study and are presented in the Appendix. The ranges of the
parameter space were chosen by perturbing the nominal value
of each parameter by 10%. Once the simulation conditions
were defined, the number of realizations for each model had
to be determined to capture the stochasticity present in the
models.

We used a convergence error (CE) metric to quantify
the difference between model states with successive number
of realizations, which is defined in the Appendix. The CE
metric is computed across all support nodes in the parameter
space used to construct the sparse grid. We then increase the
number of realizations incrementally by 10, until the mean
CE is less than some threshold ε, which we set to 10−3. 20
realizations were sufficient to achieve this threshold for both
models, as mean CE values of 9.2∗10−6 and 3.3∗10−4 were
found for the DCEI and PP models, respectively.

B. Interpolation Depth

The interpolation depth is a measure of the resolution
of the sparse grid; specifically, it is the degree of the
polynomial, which the univariate interpolation function can
exactly match [5], [30]. A conventional sparse grid can
undergo a series of symmetric subdivisions in order to sample

the parameter space more finely and systematically. We first
explore interpolation depth on a conventional sparse grid to
observe whether this basic feature provides significant error
reduction as it is increased. Fig. 2 shows the relative error and
the number of support nodes needed as the depth is increased
for both 3D and 7D interpolants with the DCEI model. As
expected, the 7D interpolant requires more support nodes to
provide a comparable level of accuracy to the 3D interpolant.
A monotonic relationship exists between the number of
support nodes and the relative error; more accuracy requires
more samples.

Fig. 2. Relative error and number of support nodes as a function of the
interpolation depth for the DCEI model. Blue lines with circles (triangles)
correspond to relative errors of the 3D (7D) interpolant. Orange dashed lines
with circles (triangles) correspond to number of support nodes with 3D (7D)
interpolant.

C. Dimensional Adaptivity

While increasing the depth of the interpolant will allow
more support nodes to be systematically sampled and evalu-
ated, it comes at an increased cost. Adaptivity provides an op-
portunity to tailor sampling and evaluation of support nodes
to each individual model. Adaptive sparse grids allow for
improvements in the accuracy of the interpolant to be made
in the regions of the parameter space where it is needed most.
The degree of dimensional adaptivity indicates the tendency
of the underlying algorithm to sample adaptively. A greedy,
adaptive approach will tend to sample points in the dimension
that presents the greatest potential in error reduction, while
a conservative, standard approach will ensure a conventional
sparse grid is constructed [5]. The degree-balancing approach
to dimensional adaptivity allows for gradual replacement of
conventionally sampled support nodes by adaptively sampled
ones as the degree of adaptivity is increased [32]. The degree
of adaptivity was varied to assess its influence on interpolant
accuracy with respect to the PP model.

Fig. 3 shows the relative error and the number of support
nodes sampled as the degree of adaptivity is increased.
The number of support nodes decreased steadily for both
interpolants. The relative error also decreased significantly
as adaptivity was increasingly employed. Fewer support
nodes are required as adaptivity predominates, suggesting
that sampling support nodes asymmetrically with respect to
the parameter space is useful and essential for error reduc-
tion. In contrast with interpolation depth, moving towards
more accurate interpolants does not necessarily require more
samples. In fact, the fully adaptive interpolant demands fewer
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support nodes than its non-adaptive counterpart, regardless of
dimensionality.

Fig. 3. Relative error and number of support nodes as a function of
degree of dimensional adaptivity for the PP model. Blue lines with circles
(triangles) correspond to relative errors of 3D (8D) interpolant. Orange
dashed lines with circles (triangles) correspond to number of support nodes
with 3D (8D) interpolant.

D. Number of Support Nodes

Having shown that an adaptive interpolant can reduce the
error of the interpolant more than the interpolation depth, we
proceed a step further by examining the effect of changing
the number of support nodes. Specifically, we study how
imposing caps on the number of support nodes influences
accuracy for a fully adaptive interpolant. Fig. 4 illustrates that
the 3D interpolant obtains a relative error almost two orders
of magnitude lower than the 8D version. The 3D interpolant
has achieved an error of less than 10−3 with less than 1,000
nodes. However, the 8D interpolant can be constructed with
low error as well, settling near 10−3 when 10,000 nodes are
used. With a sufficient number of nodes, a suitable error can
be achieved for models with higher dimensionality.

Fig. 4. Relative error as a function of the support nodes for the PP model
with a fully adaptive sparse grid. The blue line with circles represent values
obtained from a 3D interpolant, while the orange line with triangles indicate
values obtained from an 8D interpolant.

IV. CONCLUSION
With surrogate models, researchers can fully study the

spectrum of possible hypotheses coded by different model
parameter values, without having to directly integrate the un-
derlying model, which is often computationally prohibitive.
The approach discussed here interpolates the first two statis-
tical moments of an ensemble of SDE trajectories simulated

at each support node. It does so by analyzing a variety of
computational factors that influence the accuracy of the solu-
tion, in order to suggest possible configurations that produce
superior interpolants. Results suggest that the interpolation
depth may confer fewer advantages in accuracy per point
sampled, compared to the degree of dimensional adaptivity;
more model evaluations do not necessarily translate to a more
accurate surrogate model. Future work will attempt to sample
multiple realizations of the SDE solver at each support node
adaptively. This letter serves as an exploration of the true
stochastic dynamics of SDE models using computationally
expedient surrogate modeling.

APPENDIX

A. Dynamic Contrast Enhanced Imaging (DCEI) Model

[QP (0), QI(0)] = [0, 0] (13)

dQP =

(
FTVB − PS
VB(1− h)

QP+
PS

Ve
QI−

FT
VB(1− h)

QP

)
dt+

σ1dB1 (14)

dQI =

(
PS

VB(1− h)
QP −

PS

Ve
QI

)
dt+ σ2dB2 (15)

where QP (QI ) is the quantity of contrast agent in the blood
plasma (interstitial space), FT is the blood perfusion flow,
h is the hematocrit fraction, PS is the permeability surface
area product of tissue, and Vb (Ve) is the blood (extracellular)
volume. σ1 and σ2 are the intensities of the noise processes.

TABLE I
SIMULATION CONDITIONS FOR DYNAMIC CONTRAST ENHANCED

IMAGING (DCEI) MODEL.

Timespan of Simulation [0, 300]
Number of Time Points 1000
Model Outputs QP ,QI

Parameters of Interest [Range] FT [43.83, 5.57]
h [0.36, 0.44]
Vb [36.45,44.55]
PS [11.97, 14.63]
Ve [26.46, 32.34]
σ1 [0, 0.1]
σ2 [0, 0.1]

B. Predator-Prey (PP) Model

[x(0), y(0)] = [0.6, 0.8] (16)

dx = x

(
a− bx− cy

m+ x

)
dt+ αxdB1 (17)

dy = y

(
r − fy

m+ x

)
dt+ βydB2 (18)

where x (y) is the prey (predator) population, a is the growth
rate of x, b measures the strength of intra-species competition
among x, f and c are the maximum values of the per-capita
reduction rate of x due to y, m is the environment protection
rate of x and y, r is the growth rate of y, α and β are the
intensities of the noise processes.
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TABLE II
SIMULATION CONDITIONS FOR PREDATOR-PREY (PP) MODEL.

Timespan of Simulation [0, 100]
Number of Time Points 1000
Model Outputs x,y
Parameters of Interest [Range] a [1.8, 2.2],

b [0.72, 0.88],
c [0.63, 0.77],
f [1.44, 1.76]
m [1.8, 2.2]
r [1.44, 1.76]
α [0, 0.1],
β [0, 0.1]

C. Convergence Error (CE)

CE =

∣∣∣∣∣xθ,K(t)− xθ,K−δ(t)
xθ,K(t)

∣∣∣∣∣ (19)

where xθ,K(t) is the interpolated model state at time t with
K realizations and parameters θ, and δ is the increment in
the number of realizations.
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