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Abstract— System models in general are developed to predict 

outcomes for given inputs. However, the models used in 

simulations necessarily involve random variables when 

knowledge of the system is probabilistic. Various optimization 

methods require randomly generated populations. Today, 

various pseudorandom and true random number generators 

(RNGs) are continually developed to improve performance in 

various fields of science, including mathematics, physics, and 

engineering. Here we propose two test metrics to measure the 

goodness of fit error and the quality of an RNG based on 

improved empirical cumulative distribution function (IECDF). 

An RNG based on the method of uniform sampling, MUS-

RNG, is proposed and demonstrated to provide high goodness 

of fit and randomness which is shown to have very small error 

even for a set of 10. MUS-RNG is compared with various true 

and pseudo-RNGs and tested on both uniform and standard 

normal distributions. Two quantitative benchmarking tests are 

proposed. It is also observed that MUS-RNG is also very 

successful for discontinuous cumulative distribution functions. 

The comparative results show that MUS-RNG has very small 

goodness of fit error and is easy to implement. The algorithm 

has the potential to provide higher convergence in optimization 

problems and accuracy in statistical simulations. 

 
Index Terms—Digital signal processing, method of uniform 

sampling (MUS), optimization, improved empirical cumulative 

distribution function (IECDF), improved empirical probability 

density function (IEPDF), probability distribution, random 

number generation (RNG) 

 

I. INTRODUCTION 

HE nature of chance has intrigued mankind since at least 

2500 BCE, when the Sumerians played the Game of 20 

Squares, which was discovered in the ruins of the ancient 

Mesopotamian city of Ur. The oldest commonplace random 

number generator may have been the talus or astragalus bone 

of animals, which seems to have been used as a four-sided 

die [1]. Today, probability is a rich branch of pure 

mathematics with a foundational role in science, 

engineering, and applied statistics [2]. Statistical 

mathematics lies at the center of many applications, 
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including signal, image, and video processing [3, 4]; 

detection and estimation [5]; and optimization. Systems are 

often analyzed using statistical simulations that rely on 

reference random data [6, 7]. Random number generators 

(RNGs) are not only selected for their randomness, but also 

for their goodness of fit (GOF) to a given distribution. Test 

statistics provide quantitative performance observations. 

There are numerous tests available, and generally, batteries 

of such tests are used [8-10]. The design of numerical 

simulation techniques is challenging, including practical 

constraints such as computer processing time and memory 

[11]. Such limitations can lead developers to use an 

insufficient number of iterations for Monte Carlo 

simulations [12-14] or insufficiently large populations for 

applications such as the genetic [15, 16], particle swarm 

optimization [17, 18], ant colony [19, 20], invasive weed 

[21], and gravitational search algorithms [22, 23]. Such 

critical decisions can easily affect the repeatability of 

numerical results. Insufficient numbers of trials are often 

used as in methods of validation without any quantitative 

confirmation by test statistics. 

True RNGs employ a kind of natural stochasticity. 

Generally, the least significant bits obtained from digital 

sampling of some physical phenomenon are concatenated to 

generate truly random numbers. Conversely, pseudo-RNGs 

are deterministic bit generators that rely on algorithms to 

generate sequences of numbers with the properties that 

approximate those of truly random numbers. It has been 

shown that both types of RNG, of high randomness, can fail 

GOF tests for observed numbers of samples as large as 

100,000 [24]. Random numbers with low GOF error are 

required in various fields, including mathematics, physics 

and engineering. 

The rest of this paper proceeds as follows:  

In Section II, the improved empirical cumulative distribution 

function (IECDF) and the improved empirical probability 

density function (IEPDF) are proposed. Test statistics for 

GOF are reviewed, and a novel statistic for the quality of 

RNGs is proposed in Section III. The method of uniform 

sampling (MUS) is improved for better GOF results in 

Section IV, and a novel random number generator based on 

MUS is proposed in Section V. Finally, the results of 

numerical tests are presented in Section VI. 

II. THE IMPROVED ECDF AND THE IMPROVED EPDF  

The cumulative distribution function (CDF) and the 

probability density function (PDF) are theoretical asymptotic 
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functions that are accurate when the number of observed 

samples in a set approaches infinity. In applied digital signal 

processing, however, the acquired signals in, acoustics, 

telecommunications, and optical and geophysical 

applications are sampled for a limited time and at a given 

rate. Thus, every acquisition yields a finite number of 

observed samples, and the CDF and PDF cannot provide 

exact knowledge. The empirical cumulative distribution 

function (ECDF) is often used for analysis of finite data sets; 

the fundamental ideas for such testing are attributed to 

Kolmogorov, Smirnov, Cramér, and von Mises [25-27].  

The ECDF of a random sample is the uniform discrete 

measure on the observations [26]. For a real-valued 

independent and identically distributed (i.i.d.) random 

variable X:   , the ECDF of the ordered set of observed 

samples xn = { x1, x2 ... xN} is the function FX, N:   [0, 1] 

defined as 

,
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where I (xn  x) is the indicator function which is equal to 1 

if xn  x and 0 otherwise, and n = 1, 2 ... N. The ECDF is 

shown to converge in : [∞,∞] to the CDF in distribution 

using Donsker’s theorem [26, 28]. 

The ECDF is a stair-case function and the empirical 

probability density function (EPDF) is a train of impulses 

which are not very helpful. Let us consider the piecewise 

linear (PWL) test function as the improved empirical 

cumulative distribution function (IECDF) 

,
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for xn < x < xn+1 and 1  n  N – 1, where xn = xn+1 – xn, 

and GX,N(x) = 0 for  x < xn, and 1 for xN < x. The IECDF can 

be shown to converge FX(x) using Donsker’s theorem since 

the maximum bias between GX,N and FX,N (ECDF) is 1/(2N) 

at each sample, and converge to 0 for N →∞ [26] and  
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where GX(x) = FX(x). The CDF, ECDF and the IECDF are 

illustrated for uniform and standard normal distributions in 

Fig. 1 (a) and (b). The definition of GX,N(x) requires special 

care outside the region (x1, xN), as illustrated in Fig. 1 (a) for 

x1 = 1 and xN = 9 for N = 5. Equation (2) is nonzero in the 

leftmost region, where x1 – x1/2 < x < x1 for n = 1, and in 

the rightmost region where xN < x < xN +xN–1/2 for n = N. 

Note that the IECDF has zero bias and perfectly coincides 

with the CDF for the uniform distribution as shown in 

Fig. 1 (a) for the samples obtained using the method of 

uniform sampling (MUS) as described in Section IV.  

The IECDF is a continuous PWL function (first-order 

polynomial function) and its derivative can be analyzed 
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where gX(x) = fX(x) is the probability density function (PDF) 

of the random variable X. The improved empirical 

probability density function (IEPDF) can be defined as 
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
 (5) 

The PDF and the IEPDF are illustrated in Fig. 1 (c) for N 

= 10 and N = 1000. Note that the IEPDF is very successful 

in representing of the PDF for finite data. 

There are various studies on the estimation of the 

probability density function such as, design of tunable-kernel 

models based on orthogonal forward regression procedure 

[29], over-sampling approach using Parzen-window kernel 

function [30], a hybrid method of minimum frequency and 

maximum entropy [31], multi-rate signal processing 

approach [32]. It is interesting that the novel IEPDF is 

accurate and practical to be implemented, and yet a priori 

information and kernel optimization are not necessary for 

the estimation.  

III. TEST METRICS FOR GOODNESS OF FIT 

The discrepancy between a continuous one-dimensional 

CDF and the ECDF can be analyzed using some measure of 

the lack of fit [25-27]. Statistical tests are preferred to 

estimate whether a given sample was drawn from a given 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Test metrics defined by (1) and (2). (a) CDF (solid line), IECDF 

GX,N(x) (dot-dashed line; this overlaps with the CDF) from (4), and ECDF 

(dashed line). The set {1, 3, 5, 7, 9} was obtained using the method of 

uniform sampling (MUS) described in Section IV (N = 5). A uniform 

distribution in (0, 10) is assumed for the CDF. (b) Same as (a), but for 

normally distributed MUS samples (N = 4). (c) Comparison of the PDF 

and the IEPDF for N = 10 and N = 100. 
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probability distribution. For example, the area 
 

    



Err  [FX (x) FX ,N (x)]2w(x)dx
xA

xB


 

(6) 

is expected to be smaller for statistically more representative 

data, where FX(x) is the CDF, w is some weighting function 

and xA and xB are selected such that FX(xA) and FX(xB) are ≈0 

and ≈1, respectively, and where the ECDF is given in (1). 

The potential contribution to the integral from outside (xA, 

xB) can be assumed to be negligible. 

The total goodness-of-fit error for a set of observed 

samples statistic based on the distance between the nth 

observed sample xn and its theoretical CDF value has 

previously been proposed [24, 33], 
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(7) 

where errn is the lack of fit of the nth sample, given by 

    



errn  FX (xn) FX ,N (xn)
 

(8) 

and where FX and FX,N are the CDF and the ECDF, 

respectively. The ECDF FX,N(x) = 0 for x < x1, n/N for x1 < x 

< xN, and 1 for x < xN, respectively. It is shown to converge 

to the CDF as N  ∞ in [26, 27], and this is illustrated 

numerically in Section VI.  

For a set of N observed samples for a real-valued i.i.d. 

random variable X, each value xn is taken to have an equal 

observation probability of 1/N, and the empirical probability 

density function (EPDF) is the sum of N equal delta 

functions located at the points x = {x1, x2, …, xN}. Therefore, 

the ECDF is a stair step function obtained simply from the 

integral of the EPDF, as shown in Fig. 1 (a). The test metric 

(8) from [24, 33] is improved upon here. The improved, 

although similar, metric 

    



errn  FX (xn) GX ,N (xn)
 

(9) 

avoids this measurement bias, which can dominate the total 

GOF error of a set, especially when the number of samples is 

small.  

The ECDF and the IECDF  are illustrated Fig. 1 (b) for 

the standard normal distribution. It can be seen that the 

ECDF and the CDF have a bias of 1/(2N) at each sample 

point, and these contribute to the total GOF error through 

(7). This shows that the novel GOF test metric (9) is better 

than (8), especially for small sets, because the GOF error is 

not dominated by a superficial bias. 

It is possible to calculate the average GOF error for the 

nth sample of a RNG output of length N as 
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(10) 

where errn,S is calculated for the nth sample in the sth set 

using (9). The quality of the GOF of a RNG can be 

quantified, 
1/2
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(11) 

Note that Qn,S  ∞ if every Errn,S  0, which is expected. 

IV. METHOD OF UNIFORM SAMPLING  

An ordered set of numbers can be \obtained by simply 

sampling the CDF according to 

    



tn FX
1( pn)  (12) 

where the tn, n = 1, 2, …, N, are the quantiles for a given 

CDF obtained by sampling the probability axis, with N the 

total number of samples (quantiles), and the pn = (n –1/2)/N 

are the probability values, with the sampling interval being 

p = 1/N where p1 = d = 1/(2N). Here the sampling points on 

the probability (vertical) axis proposed in [24, 33] are 

improved by shifting them to the middle of each probability 

region defined by p such that FX(tn) = pn  GX,N(tn).  The 

method is corrected by omitting the use of the sampling 

parameter  and p of [28]. 

MUS is illustrated in Fig. 2 for the PDF 

2 /23 1
( ) ( 1).

44 2

x

Xf x e x
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(a) 

 

 
(b) 

 

Figure 2. Illustration of the method of uniform sampling. The probability 

(y-axis) of the CDF is sampled for the generation of quantiles tn (x-axis), 

as shown in (a). The method is illustrated for a discontinuous CDF with 

the PDF shown in (b), which is the sum of the standard normal 

distribution (mean and variance of 1) and a delta function at x = 1, with 

observation probabilities of 0.75 and 0.25, respectively. 

 

 
(a) 

 

 
(b) 

Figure 3. (a) A standard true RNG using solar RF emission; (b) random 

number generation using MUS-RNG. RFDC, RF down conversion; ADC, 

analog-to-digital conversion; TRNG, true RNG. 
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Method provides solutions for distributions where the PDF 

tails extend to infinity, xA = t1  –∞ and xB = tN  +∞, 

because the potential contribution to the integral outside 

(xA, xB) can be assumed to be negligible in accordance with 

(6). 

V. RANDOM NUMBER GENERATION USING MUS  

True RNGs make use of natural sources of entropy, which 

are assumed to be unaffected by deterministic human 

artifacts. Unfortunately, these natural sources provide 

randomness but can lack GOF to a uniform distribution, 

especially when the number of observed samples is small. 

For example, in Monte Carlo or similar simulations, the total 

number of observed samples for a desired random variable 

used in the initialization and iteration steps could be 

insufficient. This is a result of physical limitations  ̧namely, 

computer time and memory, and could threaten the 

replicability of a study, especially if the GOF error is 

unexpectedly large. 

 

The proposed method-of-uniform-sampling true RNG 

(MUS-RNG) is illustrated schematically in Fig. 3. Data from 

the San Vito Solar Observatory (SVSO) are used as an 

example of a natural entropy source, but any type of RNG 

can be used for this initial step. Solar radio emissions and 

the physical mechanisms behind this RF radiation have been 

reviewed by Shibasaki et al. [34]. SVSO is one of the 

observatories of the Radio Solar Telescope Network [35]. In 

short, the sun can be used as a source of natural entropy to 

generate truly random numbers. The archival data used in 

this study consist of 1 s binned radio flux measurements 

from eight distinct frequency bands obtained over 31 days in 

January 1990. 

RF signals are generally down converted (demodulated 

and low-pass filtered) to the baseband. They are sampled by 

an analog-to-digital converter to produce raw digital 

samples, as shown in Fig. 3 (a). The least significant decimal 

digits of successive samples are then concatenated to 

produce random numbers rn as illustrated in Fig. 4. MUS is 

used to generate the quantiles tn as shown in Fig. 3 (b). The 

simple procedure required for sorting the rn provides the 

unsorting (shuffling) information for the tn, which yields the 

final MUS-RNG samples Mn. The GOF measures for tn and 

 

 

Figure 4. Practical true random number generation using digital samples 

of solar RF emission observed at the output of the analog-to-digital 

converter (ADC IN) illustrated in Fig. 3 (a). The least significant digits for 

every M samples are concatenated to generate each M-digit random value 

(here M = 4) (TRNG OUT). True random numbers uniformly distributed 

in (0, 1), rn, are obtained by normalization to 1. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. IECDF for the observed samples (uniform in [–0.5, 0.5]). (a) N 

= 10; (b) N = 103; (c) N = 105 (S = 1000). Each dot corresponds to an 

observed sample in the set. The dots were selected to be very small in (c). 

 

 

 
(a) 

 
(b) 

Figure 6. (a) IECDF for the observed (uniform in [−0.5, 0.5]) samples; (b) 

GOF error ErrN defined by (5). Plus signs, N = 10; dashed lines, N = 103; 

solid lines, N = 106. 
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Mn are equal according to (5), because they both have 

exactly the same ECDF. In addition to very high GOF 

qualities, every element of Mn has also very high 

randomness as a result of the shuffling of the information 

transferred from the true random numbers rn, as 

demonstrated in Section VI. 

VI. RESULTS AND DISCUSSIONS 

In this section, the GOF and randomness of the proposed 

MUS-RNG technique [Fig. 3 (b)] are compared with 

pseudo-RNG data generated using the rand function of the 

Matlab software package, true-RNG data from the 

random.org service, and the solar-RF true RNG illustrated in 

Fig. 3 (a). 

A. Goodness of fit tests for RNGs  

The IECDFs for uniformly distributed random numbers are 

shown for total samples of 10 to 100,000 in Fig. 5, and the 

lack-of-fit errors for the observed samples defined by (9) are 

illustrated in Fig. 6. The numerical results for the Matlab 

pseudo-RNG, the true RNG illustrated in Fig. 3 (a), and the 

random.org true RNG were very similar, and the results for 

the first two RNGs have been omitted for brevity. The 

results for (8) and (9) are very similar for N > 100. It can be 

seen that the GOF error decreases (errn  0) for increasing 

data lengths (N  ∞) and that the IECDF (GX,N) converges 

to the CDF (FX), as expected. It is interesting that there is 

noticeable error even for N = 1,000,000. The numerical 

results for the test metric given in (9) show that the GOF 

error becomes unpredictable for standard RNGs when the 

total number of samples is decreased, as shown in Fig. 6 (b). 

The average statistical error for the uniform distribution in 

[−0.5, 0.5] and the negative of the statistical quality defined 

by (10) and (11), respectively, are shown in Fig. 7. The 

results show that GOF error increases and the quality 

decreases as the number of samples decreases, as expected. 

This shows that even true RNGs can generate output with 

insufficient GOF and quality if the total number of samples 

is small. This error could be intolerable even for a set of 

1,000,000 samples, depending on the specific application. 

B. Goodness of fit tests for the MUS output  

Method of uniform sampling (MUS) can be used to generate  

quantiles directly by sampling the CDF [Fig. 2 (a)]. The 

MUS-generated numbers have zero error as defined by (9) 

for a uniform distribution, because FX(xn) = GX,N(xn). Next, 

the MUS-RNG approach is applied to the standard normal 

distribution. The observed mean and variance for the true-

RNG output using 100,000 independent sets obtained from 

random.org are compared with the MUS-RNG output in Fig. 

8. It can be seen that the MUS-RNG numbers are very 

accurate even for N = 10. It is interesting to observe that this 

is not the case for the true-RNG output, especially for 

smaller data lengths. This shows that MUS-RNG is also 

successful for the standard normal distribution. 

C. Tests for randomness  

MUS provides quasi-random samples that have very high 

GOF and quality. Unfortunately, they are not random. MUS-

RNG, however, generates a set of numbers with the same 

values (and EPDF) as the MUS numbers and also the same 

information as a result of its ordering. MUS-RNG’s output 

 
Figure 7. Average statistical error for a uniform distribution in [−0.5, 0.5] 

and the negative of the statistical quality (S = 10,000) as a function of data 

length N. The average GOF error, Errn,S, and the GOF quality, QN,S, are 

defined in (10) and (11), respectively. The same set of observed samples 

as in Figs. 4 and 5 is used. 

 
(a) 

 

 
(b) 

 

Figure 8. Observed (a) mean µ and (b) variance σ vs. data length N for the 

standard normal distribution. Dots, true RNG (S = 100,000); dashed lines 

and circles, the MUS-RNG samples, for N = 10, 50, 100, 103, and 105. 

 
 

 
 

Figure 9. Pval for the block frequency test of randomness. There are 1000 

sets total, and N = 10. The test results are better when N > 10 and for the 

monobit test. 
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has been tested for randomness using NIST’s monobit and 

block frequency tests [10]. It can be seen from Fig. 9 that all 

test results (Pval) are greater than 0.01. This shows that every 

set is accepted as random. Similar results for different data 

lengths and the monobit test have been omitted for brevity. 

D. Benchmarking tests 

It was shown that both uniform and standard normal 

distributions can be used for GOF testing for the comparison 

of different RNGs in the Appendix. The GOF test results are 

generally better for larger sets, and worse for smaller sets. 

Better test CDFs could be helpful for quantitative 

comparisons in order to assess the relative performance of 

two RNGs. This may be possible if a test CDF is selected 

such that values with low observation probability are present 

(e.g., the tail regions of continuous probability density 

functions or discrete random values with low probabilities). 

It would be almost impossible to observe samples with low 

probabilities when the total number of observed samples is 

low. Thus, different performance results can be observed. It 

would be practical to observe a single parameter as an 

indicator. Indicators for different RNGs can be used for 

quantitative comparisons. 

A practical benchmark for the GOF can be constructed as 

follows. First, define a test PDF in terms of increasing 

positive integers with probabilities converging to zero, 

test,1

1

( ) (1/2) ( ).k

k

f x x k



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(14) 

The test CDF can be obtained from the integral of its 

PDF, 

test,1

1

( ) (1/2) ( ),k

k

F x u x k




 
 

(15) 

where u(x – k) = 1 for x > k and 0 otherwise. Note that for a 

finite set of generated random numbers, it is impossible to 

observe all the positive integers that contribute to the upper 

limit of the summation. Thus, the larger values of k, with 

lower probabilities, (1/2)k, are not expected to be observed. 

It can be assumed that a RNG providing a greater number of 

observed integers is better in terms of its GOF. The largest 

observed integer can be selected as the indicator. 

A second, similar test CDF can be defined in terms of 

equal-probability integer observables {1, 2 ... N} 

    



Ftest,2(x) 
1

N
u(x  k)

k1

N

 ,

 

(16) 

where N is the number of observed samples in the set. Note 

that the probability of each random integer is equal to 1/N. 

An integer k that is observed n times in the set has an 

observation probability of n/N. For this test CDF, the total 

number of observed integer values can be selected as the 

GOF indicator. The observed probabilities for each integer 

can also be analyzed. 

Let us use the first benchmarking test to compare the 

MUS-RNG and the reference RNGs illustrated in Figs. 5 and 

6. Equation (15) can be used to generate positive integers for 

each RNG. As the total number of samples increases, the 

larger k-values with lower observation probabilities are also 

expected to be in the set. The largest number in the set can 

be selected to be the GOF indicator for that RNG (one could 

also analyze the missing integers). 

The ECDF and the observed probability of each integer 

are illustrated in Fig. 10 for increasing data lengths. The 

benchmarking indicator of (15) is analyzed. The numerical 

results for the MUS-RNG and the reference RNGs of Fig. 5 

are compared using the GOF indicator in Fig. 10 (a, b) and 

Fig. 10 (c, d), respectively. The ECDF’s slow convergence 

to 1 becomes clear when 10 log [1 – Ftest,1(x)] is calculated, 

as shown in Fig. 10 (a, c). It can be seen that by increasing 

the total number of samples in a set, integers with lower 

observation probabilities are also generated. The largest 

integer in every set is selected to be the GOF indicator. The 

theoretical probability for the random integer k on the other 

hand, is (1/2)k as defined by (14) and (15). This probability 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 10. (a) IECDFs and (b) normalized probabilities for the observed 

samples tn generated using MUS-RNG. Circles, N = 10; diamonds, N = 

102; squares, N = 103; triangles, N = 104; asterisks, N = 105; five-pointed 

stars, N = 106. The groups are shifted vertically by a constant C to avoid 

overlap; in (a) C = 10, 20, …, 60, and in (b) C = 5, 4, …, and 0 for N = 

10, 102, …, 106, respectively. (c, d) Results for the standard true RNG. 
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can be normalized to 1 by multiplication by 2k. These 

normalized probabilities for each observed integer are 

analyzed for different data lengths in Fig. 10 (b) and (d). 

It can be seen that for larger N, the ECDFs show the 

presence of more observed integers, and similarly, the 

normalized probabilities for smaller integers are more 

accurate (closer to 1) for both RNGs as shown in Fig. 10. It 

is shown that the observed integers for the MUS-RNG 

output span the probability axis of the EPDF more 

uniformly, and thus, there are fewer missing integers with 

MUS-RNG. It is interesting that the largest MUS-RNG 

integer for each N (indicators) are observed to have 

normalized observation probabilities that are always greater 

than 1, as shown in Fig. 10 (b). For example, for N = 10, 

102, …, 106, the MUS-RNG indicators are 5, 8, 11, 15, 18, 

and 21 with normalized observation probabilities of 3.2, 

2.56, 2.048, 3.2768, 2.6214, and 2.0972, respectively. For 

example, for N = 10, the MUS-RNG outputs are {1, 1, 1, 1, 

1, 2, 2, 3, 3, 5}. Integer k = 1 has an exact observation 

probability of 0.5. The actual probabilities are 5/10, 2/10, 

2/10, 0, and 1/10. These become 1, 0.8, 1.6, 0, and 3.2 when 

normalized with (1/2)k. Note that k = 4 is missing from the 

set. 

The test CDF results for the reference RNG of Fig. 5 are 

shown in Fig. 10 (c) and Fig. 10 (d). It can be seen that the 

indicators and corresponding probabilities obtained with 

MUS are better than those of the standard RNGs. For 

example, for N = 10, 103, and 106 (C = 5, 2, and 0), the 

probabilities of the expected indicators are all 0. This means 

that the maximum values of the integers are less than the 

MUS-RNG indicators. 

VII. CONCLUSION 

Two novel statistical functions; the improved empirical 

cumulative distribution function (IECDF) and the improved 

empirical probability density function (IEPDF) are proposed 

for the statistical analysis of finite data where the IECDF 

forms the basis for the Section III. It is shown that these 

tools are very helpful to represent finite data accurately for 

uniform and standard normal distributions. It is also shown 

that apriori information and kernel optimization are not 

necessary to estimate the PDF accurately. 

Novel test metrics for the GOF and quality of RNGs have 

been proposed, as defined in (10) and (11), respectively. It is 

shown that the GOF error measures increase for decreasing 

number of samples, as expected. Analysis was carried out 

for both uniform and standard normal distributions. It is 

interesting that this error is still noticeable even when the 

total number of samples is increased to 1,000,000. It was 

found that for a set of only 10 samples, the GOF error 

becomes large, as shown in Figs. 5 (a) and 6 (b). 

The method of uniform sampling was proposed using new 

parameters in Section IV and the sampling parameters given 

in [24, 33] were improved to use the IECDF. Here the 

improved quantiles are selected closer to FX(x), which are 

the samples of GX,N for the uniform distribution. The method 

of uniform sampling random number generator (MUS-RNG) 

was also proposed, as illustrated in Fig. 3 (b). The GOF 

errors of the MUS-RNG outputs are tested for the standard 

normal distribution in Fig. 8. It can been seen that MUS is 

also very accurate for this distribution. 

MUS is used to develop a novel random number generator 

(MUS-RNG) in Section V. MUS-RNG was shown to be 

successful for the uniform and standard normal distributions, 

and for discontinuous CDFs. The MUS-RNG output 

generated for the standard normal distribution is observed to 

have very accurate (almost exact) mean and variance values. 

The results show that very high GOF is possible even for a 

set of 10 samples, as shown in Fig. 8. 

The MUS-RNG outputs were tested using NIST’s 

monobit (not shown) and block frequency tests for 

randomness [10]. The Pval values were calculated for 1000 

independent sets. The numerical results are shown in Fig. 9. 

All of the sets yield Pval > 0.01, and the test results indicate 

that they are random. 

Two test CDFs are proposed for testing GOF, in (15) and 

(16). The proposed benchmarking indicators are the largest 

observed integer value and the total number of different 

observed values. MUS-RNG was tested to generate samples 

using these two test CDFs. The first test CDF was used to 

compare MUS-RNG and the reference RNGs in Fig. 10. The 

numerical results obtained from 1000 independent analyses 

show that MUS-RNG provides better indicators and more 

accurate observed probabilities. Both test CDFs and the 

indicators for the GOF tests are found to be successful. 

It can be concluded that MUS-RNG is a valuable source 

of random numbers, especially for applications where the 

data length is small and the number of iterations are few, for 

example, as a result of limitations of CPU cycles or memory. 

MUS-RNG produces outputs with very high GOF and 

randomness. Moreover, MUS is simple and thus easy to 

implement; MUS-RNG can be used for any type of 

distribution as long as the quantiles can be obtained for a 

given list of probability values or, similarly, the inverse of 

the desired CDF is known. It could provide a better 

approach to generating random numbers for distributions 

that have mathematically simpler inverse CDF functions. 

In the future, MUS-RNG can be demonstrated to use 

almost any type of entropy source, including computer fan 

noise, electronic noise, received RF signal, optical/infrared 

detections, and data received from the web. Providing very 

high GOF quality, its advantages could be analyzed in 

different applications, including statistical signal processing 

and optimization. MUS-RNG could improve initialization 

and iteration steps, providing faster convergence. Finally, 

MUS-RNG can be applied to a wide range of probability 

distributions. 

APPENDIX 

Pseudocodes for the GOF error and quality analyses, the 

generation of the MUS-RNG numbers, and the GOF 

indicators for the first test function, defined by (15), are 

given below. 

The ECDF and the improved ECDF (GX,N): 

Given; N, Data → Output; ECDF and improved ECDF  

sData = Sort(Data)                            /* from small to large 

ECDF = [1∶N]                                     /* probability values 

deltap = (1−1/(2N))/(N−1);  
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first = 1/(2N); last = 1−1/(2N) 

GXn = [first∶deltap∶last] 

plot(sData, ECDF)                        /* the ECDF as in Fig. 5 

plot(sData, GXn)              /* data on x and pn on the y-axis 

Total GOF error for a given set and the reference CDF: 

Given; N, sData, ECDF, GXN → Output; Total GOF of the 

given set error defined by (8) 

ErrN1 = ErrN2 = 0    /* 1 and 2 denote old and proposed 

for in = 1∶N 

  ErrN1(in) =ErrN1(in) + abs(sData(in) − ECDF(in))^2 

  ErrN2(in) =ErrN2(in) + abs(sData(in) − GXn(in))^2 

end 

ErrN1 =sqrt(ErrN1/N); ErrN2 = sqrt(ErrN2/N) 

ErrN1 and ErrN2 of (9) are for the novel metrics 

proposed in this paper. 

Quality analysis for a given RNG and the reference CDF: 

Given; N, S, sData, ECDF, GXN → Output; GOF quality of 

the RNG defined by (10) and (11) 

ErrS1 = ErrS2 = 0          /* 1&2 denote old and proposed 

for in = 1∶N 

  for is = 1∶S  

     ErrS1(in) =ErrS1(in) +abs(sData(in) −ECDF(in))^2 

     ErrS2(in) =ErrS2(in) +abs(sData(in) −GXn(in))^2 

  end 

ErrS1 = sqrt(ErrS1/S); ErrS2 = sqrt(ErrS2/S) 

end 

Qtmp = sum(ErrS1^2);                               /* (or ErrS2^2) 

QNSlinear = Qtmp/N                         /* as shown in Fig. 7 

QNSlog = −5*log10(Qtmp)           /* factor of 1/2 for sqrt 

Practical calculation of MUS numbers for a desired CDF: 

Given; N, CDFinv → Output; MUS numbers using (12) 

Prob_samples = [first∶deltap∶last] 

MUSdata = CDFinv(Prob_samples)    /* obtain quantiles 

Random number generation utilizing MUS: 

Given; RNGdata → Output; MUSRNGdata as in Fig. 3 (b) 

Load(RNGdata, N); N = length(RNGdata) 

Calculate(MUSdata, N) 

Unsort_while_sorting(MUSdata, RNGdata) 

                                                /* obtain MUS-RNG output 

Unsorting one data set while sorting the other: 

Given; data {MUS, RNG}, N → Output; MUSRNGdata 

for ii = 1∶N 

  for jj = N∶–1∶2 

    if (RNGdata(jj) > rRNGdata(jj-1)) 

      dum1 = RNG(jj); dum2 = MUSdata(jj) 

      RNGdata(jj) =RNGdata(ii-1); RNGdata(jj-1)=dum1 

      MUSdata(jj) =MUSdata(jj-1); MUSdata(jj-1)=dum2 

    end; end; end 

MUSRNGdata = MUSdata;  

Delete(RNGdata)   

Benchmarking for GOF test defined by (11): 

Let us first calculate the value of the indicator K = (k)max for 

a given ECDF value A, where 

test,1

1

( ) (1/2) ( ).
K

k

n

k

A F x u u k


  
 

(A.1) 

Multiplying each side by 2 yields 2A = 1 + A − (1/2)K. This 

gives A = 1 − (1/2)K, and K = log2[1/(1 − A)]. Hence, for a 

given A the corresponding K = (k)max can be evaluated. 

This result can be used to generate the random numbers of 

(11) for a given set of input random numbers uniform in 

(0, 1), and also to find the GOF benchmarking indicator, K 

= (k)max. This process can be iterated for every set of 

observed samples under the GOF test. Thus, the indicators 

for different sets generated by the same RNG, different N, 

and also indicators for different RNGs can be analyzed. 

Given; raw random numbers of length N uniform in (0, 1) 

{RNGdata} → Output; the reference random data with 

ECDF given in (11) and the indicator [K = (k)max] for the 

GOF benchmarking as shown in Figs. 10 (c) and (d)) 

A = Sort(RNGdata)            /* input numbers as the ECDF 

for in = 1:N    /*then calculat. the corresponding k-values 

  k(in) = floor(log2(1/(1−A(in)))) 

end 

Kmax = max(k)      /* all k’s and Kmax can now be analyzed. 
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