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Abstract—The unsteady magnetohydrodynamic (MHD) 

natural convection flow and heat transfer of an electrical 

conducting incompressible viscous nanofluid over a linear 

permeable shrinking sheet in the presence of electric field, 

thermal radiation, viscous dissipation, chemical reaction, slip 

and passively controlled conditions at the wall is studied. The 

boundary layer governing equations which are partial 

differential equations are converted into a system of nonlinear 

ordinary differential equations by applying a suitable similarity 

transformation. Implicit finite difference scheme is applied to 

investigate the numerical results how the various physical 

embedded parameters affect the nanofluid flow and heat 

transfer with the aid of different graphical presentations and 

tabular forms. The nanofluid flow is due to a decelerating 

shrinking sheet as the electric field reduced the nanofluid 

velocity, and the first solution is stable compared to the second 

solution. Thermal radiation and viscous dissipation boost the 

nanofluid temperature whereas thermal slip reduces. Thermal 

convective parameter and mass convective parameter 

demonstrated opposite behavior. The magnetic field, 

unsteadiness parameter, and the suction parameter widen the 

range for the solution existence. Comparisons with previously 

published works seen in literature were performed and found 

to be in excellent agreement. 

 
Index Terms—Magnetic nanofluid, unsteady flow, shrinking 

sheet, suction, dual solutions, thermal radiation 

 

I. INTRODUCTION 

HE conventional heat transfer fluids due to poor nature 

of thermal conductivity cannot meet up with the 
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expectations and requirement for cooling rate. As such leads 

to a new class of fluid known as nanofluid. It is colloidal 

suspensions of ultrafine nanoparticles into a base fluid. The 

application of additives enhance the convective heat transfer 

performance of the conventional fluids and also increase the 

thermal conductivity. 

Magnetic nanofluid contains the fluid and magnetic 

nanoparticle, features as result of its uniqueness. It plays a 

vital role as results of broad applications such as the 

processing of fusing metals due to the electric furnace 

through a magnetic field, and cooling of the initial plate 

enclosed nuclear reactor involving vessel where the hot 

plasma is separated from the plate by means of the magnetic 

field [1-11]. The nanofluids can be enriched through 

engineering system by different techniques involving 

plasma, synthesis and sheet processing. Some of these 

applications via aerodynamic extrusion of plastic sheets, the 

boundary layer against fluid film enclosed condensation 

mechanism and heat treated material that flows between 

wind-up rolls and feed, cooling of metallic wall seen in 

cooling bath, the boundary layer against material handling 

conveyors. The innovative work of Choi and Eastman [12], 

the enhancement of convective heat transfer according to 

Buongiorno [13] assumed that the volume fraction of 

nanoparticles in the nanofluid may not be uniform. 

Buongiorno [13] developed a two-phase model for 

convective transport in nanofluids incorporated the effects of 

Brownian motion and thermophoresis. Tiwari and Das [14] 

considered that thermophysical properties were viewed as 

functions of nanoparticle volume. After these mentioned 

works, different researchers have explored on nanofluid [15-

25] due to its substantially significant and applications. 

Boundary layer flow due to shrinking sheet in connection 

with nanofluid is an important type of flows as results of its 

crucial role. Conversely to stretching sheet, the shrinking 

case, the flow on the boundary is towards a fixed point, for 

instance, transforms the loose sleeves are wrapping of plastic 

that firmly fit into the shape of the sealed off contains in 

shrinking sheet, and rising and shrinking balloon. It is 

designed for various kinds of materials involving shrinking 

transparency, different strength, and luster. There are two 

conditions that the flow due to shrinking sheet can be 

noticed such as adequate suction [26] on the boundary or 

stagnation flow [27] so that the flow of the shrinking sheet is 

confined in the boundary layer. There is an extensive 
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literature material on the boundary layer flow against 

shrinking sheet as result of its modern industrial applications 

[28-34]. It has been extensively used in different engineering 

fields and industries for expanding and contracting of 

surfaces via shrinking wrapping, hot rolling, bundle 

wrapping, wire rolling, extrusion of sheet material and glass 

fiber.  

The aim of the present investigation is to study the flow 

and heat transfer problem of unsteady MHD natural 

convection flow and heat transfer, a two-dimensional 

laminar flow of a viscous nanofluid due to a linear 

permeable shrinking sheet, with slip effects in the presence 

of electric field, thermal radiation, viscous dissipation, and 

chemical reaction. The momentum and energy fields at the 

wall are the slip conditions. The no-slip assumption is 

inconsistent with physical behavior that is more practically 

flow situations. It is of paramount importance to replace the 

no-slip boundary condition with partial slip conditions. The 

nanoparticle volume fraction on the boundary is passively 

controlled rather than actively [35]. The combination of 

nanoparticles and conventional fluids depends on the 

intention and purpose, our base fluid is water [17]. In the 

analysis, the constitute boundary layer governing equations 

have been converted to a two-point boundary layer value 

problem with the aids of defined similarity variables. The 

resultant nonlinear ordinary differential equations are solved 

using implicit finite difference scheme known as Keller box 

method [36]. The impacts of the entrenched physical 

parameters on the nanofluid velocity, temperature and 

concentration have been discussed and displayed in graphs 

and tables. Unlike stretching sheet, the solutions for 

shrinking sheet are not unique. Furthermore, the combined 

effects of the embedded parameters on the boundary layer 

flow and heat transfer due to nanofluid have been examined. 

Based on the author’s knowledge, the present investigation 

is of essential values in the modern industries and not earlier 

reported in the literature.  

II. MATHEMATICAL FORMULATION  

Consider the unsteady electrical magnetohydrodynamic 

(MHD) natural convective, two-dimensional incompressible 

electrically conducting viscous and laminar flow of a water-

based nanofluid over a permeable shrinking sheet in the 

presence of thermal radiation, viscous dissipation, and 

chemical reaction. The flow is subjected to applied electric 

and magnetic fields E  and B  which are assumed to be 

applied in the direction 0y  , normal to the surface see Fig. 

1. The electric and magnetic fields confirm the Ohm's 

law  J E V B   , where J  stand for the Joule current, 

V is the fluid velocity and   denote the electrical 

conductivity. The induced magnetic field and Hall current 

impacts are overlooked due to small magnetic Reynolds 

number. The velocity of the linearly shrinking sheet is 

assumed in the form  ,wu x t , where 0   for a shrinking 

sheet and the velocity of the mass transfer denoted  wv t , 

here x  and y  axes are measured along the shrinking sheet 

and t are the time. It is also assumed that the temperature at 

the surface of the sheet denoted by 
wT  and the ambient 

temperature and concentration denoted by T
and 

w respectively. Using the Buongiorno model with 

aforementioned assumptions, the boundary layer governing 

equations are expressed as follows:  

Boundary Layer

Nanofluid

Slit

permeable Shrinking  Sheet                     Force

Magnetic field    Electric field      Magnetic field

 
 Fig. 1 Physical configuration of the geometry  
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Energy equation 
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Concentration equation 
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The boundary conditions at the sheet for the physical model 

are presented by 
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: 0, ,y u T T                                                    (6) 

Here    , 1wu x t bx at  denotes the velocity of the 

shrinking sheet,    0 1wv t v at   is the wall mass transfer, 

when 0wv  represent the injection 0wv   indicates the 

suction. Where u and v  stands for the velocity components 

along the x and yaxes respectively. For 

g, ,p   ,
f

k c  , , ,f and
p  is the gravitational 

acceleration, the pressure, the thermal diffusivity, the 
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kinematic viscosity, the density, the fluid density and 

particles density respectively. We also have '

1 1 1l l at  , 

   '

2 2 1 , , ,B T p f
l l at D D c c     which represents the 

velocity slip factor, temperature slips factor, Brownian 

diffusion coefficient, the thermophoresis diffusion 

coefficient, the ratio between the effective heat transfer 

capacity of the ultrafine nanoparticle material and the heat 

capacity of the fluid and  1 0 1k k at   is the rate of 

chemical reaction respectively.     

The radiative heat flux 
rq  via Rosseland approximation [7] 

is applied to equation (4), such that, 
* 4

*
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T
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k y
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                                                                   (7)  

Where * represent the Stefan-Boltzmann constant and *k  

denote the mean absorption coefficient. Expanding 4T  by 

using Taylor’s series about T
and neglecting higher order 

terms, we have, 
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Using equation (8) into (7), we get, 
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Use equation (9) in equation (4), we have,        
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Using the order of magnitude analysis for the y  direction 

momentum equation which is normal to the shrinking sheet 

and boundary layer approximation [37], such as  
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reduced to the following as: 
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The resulted equations are reduced into the dimensionless 

form by introducing the following dimensionless quantities 

[38-41]. 
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The stream function  can be defined as: 
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The equations of momentum, energy and nanoparticle 

concentration in dimensionless form become: 
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The boundary conditions are given by 
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Here ', ,f   and  is the dimensionless velocity, temperature, 

and concentration respectively. We have the following 

parameters: 

a b   denote the unsteadiness parameter, 

'

1 1L l b v  is the velocity slip parameter, 

'

2 2L l b v  depicts the thermal slip parameter, 
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34 * * Rd T k k  denote the radiation parameter, 

 
0  k b  is the chemical reaction, for 0   associates to 

destructive chemical reaction while 0   corresponds to 

generative chemical reaction respectively. Where prime 

represents differentiation with respect to .  

 The skin friction coefficient and the local Nusselt number 

are 
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Here 
w is the shear stress for the shrinking surface, 

wq is the 

surface heat flux, while Re wu l  is the Reynolds number 

and k  the thermal conductivity of the nanofluid. For the local 

skin-friction coefficient and local Nusselt are presented in 

non-dimensional form as 
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III. RESULTS AND DISCUSSION 

Following Cebeci and Bradshaw [36] the system of 

ordinary differential equations (18)-(20) subject to the 

boundary conditions (21) are solved numerically using 

implicit finite difference scheme known as Keller box 

method for different values of the parameters. It is worth 

mentioning that the step size   along with the boundary 

layer thickness is selected rendering to the values of 

parameters. These calculations are repeated until 

convergence criteria are satisfied at 510 is used. The 

numerical values of the skin friction with the available 

published data by Yasin et al. [32], Bhattacharyya [42] and 

Dhanai et al. [43] are displayed in Tables 1 and 2. In Table 1 

is the comparison of the numerical values for the skin 

friction  '' 0f , whereas Table 2 supporting the existence of 

multiple solutions of the present study. The present 

computation scheme in some limiting sense to that of the 

previous investigation noticed a perfect agreement. 

The effects of the sundry parameters due to the 

decelerating sheet  0  on the velocity, temperature, and 

nanoparticle concentration are given in Figs. 2-17. Fig. 2 

reveal the variation of magnetic field M  on the velocity 

profile  'f  . The water-based nanofluid velocity along the 

shrinking sheet increases with M  in the first solution, 

whereas in the second solution its decreases. The nanofluid 

due to the resistive force associated with Lorentz force has 

the tendency to retard the flow of the nanofluid. Intense 

magnetic field contributes resistance to flow. Physically, the 

effect of magnetic field is such that it gives rise to Lorentz 

force in a direction which opposes the flow in either 

direction as such leads to a reduction in the nanofluid 

velocity. In Figs. 3 and 4 demonstrate the effects of electric 

field 
1E  and unsteadiness parameter   on the velocity 

profiles  'f  . In the first solution, the water-based 

nanofluid velocity shrinkages with an increase in electric 

field and unsteadiness parameters towards the sheet surface. 

The second solutions, close to the wall the nanofluid 

velocity intensified with the electric field and along the 

surface, after some distance, it’s weakening. The Lorentz 

force acts as accelerating body force which accelerates the 

flow behavior due to interaction with electrically conducting 

nanofluid. The unsteadiness parameter   designates a 

reduction in both solutions near the sheet due to decelerating 

flow. This depicts that first solution is stable as related to the 

second solution. The effect of a suction parameter s on the 

nanofluid velocity profile  'f   is portrayed in Fig. 5. In the 

first solution, the velocity is a decreasing function whereas 

in the second solution illustrates an increasing function. It 

means that augmentation of suction leads to more separation 

due to the dual solution on the water base nanofluid velocity 

with decelerating shrinking. In Fig. 6, the impact of velocity 

slip parameter 
1L on the nanofluid velocity profile  'f   is 

publicized. The profile reveals that the velocity produces 

resistance to flow of nanofluid by virtue of higher values of 

1L  for both solutions however after some distance along the 

shrinking sheet second solution supplements for smaller 

values of 
1L . These thicknesses are higher for the second 

solution than the associated thicknesses of the first solutions.  

The effects of thermal radiation Rd , Eckert number Ec , 

thermal convective parameter ,T unsteadiness parameter 

 and thermal slip
2L  parameter on the temperature profiles 

are displayed in Figs. 7-11. Figs. 7 and 8 established how the 

thermal radiation Rd and Eckert number Ec  affects the 

nanofluid temperature profile    . It is observed that the 

effect of thermal radiation enhances the water base nanofluid 

temperature for an increase in the values of thermal radiation 

Rd and Eckert number Ec . The reason is a result of emission 

due to heat transfer in the boundary layer region with a 

magnitude of decelerating shrinking. Consequently, the 

thermal boundary layer becomes thicker in the second 

solution compared to the first solution. The variation of 

thermal convective parameter
T on the nanofluid 

temperature profile     is revealed in Fig. 9. Temperature 

is an increasing function with thermal convective parameter 

for the case of the second solution whereas for the first 

solution there is an insignificant behavior on the water-based 

nanofluid. It’s represents the relative strength of thermal 

buoyancy force to viscous force. Increases when thermal 

buoyancy force upsurge. This implies that thermal buoyancy 

force tends to accelerate the nanofluid temperature in the 

thermal layer region as result of high density. The thermal 

boundary layer thickness becomes larger for greater values 

of thermal convective parameter due to a decelerating 

shrinking sheet. Fig. 10 represent the result of unsteadiness 

parameter  on the temperature profile    . It worth 

noticed that the unsteadiness parameter gain the water base 

nanofluid temperature. The second solution amplified and 

after some distance away from the wall shrinkage, that is 

crossing over. The first solution is more stable to the second 

solution. In Fig. 11 exhibit the outcome of thermal slip 

parameter
2L  on the nanofluid temperature profile    . 

Both solutions diminish for higher values of thermal slip 

parameter. Higher values of thermal slip parameters resulted 

to thinner thermal boundary layer thickness due to water-

based nanofluid temperature. 

The effects on thermophoresis parameter Nt , Brownian 

motion Nb , Lewis number Le , chemical reaction , mass 

convective parameter 
M , and unsteadiness parameter  on 

the nanoparticles concentration profiles     are presented 

in Figs. 12-17. In Fig. 12 unveil the variation of 

thermophoresis parameter Nt  on the concentration profile 

   . It is noticed that along the surface of the shrinking 

sheet, distance away from the wall both solutions increases 

for higher values. Due to a decelerating shrinking sheet of 

the water base nanofluid, for larger values of thermophoresis 

parameter creates a greater mass flux that enhances the 

nanoparticle volume fraction profile. Brownian motion 
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parameter Nb  on the concentration profile     has a 

decreasing upshot see Fig. 13. In both solutions, it reduced 

along the surface for higher values of Brownian motion. The 

increment in Brownian motion parameter enhances the 

temperature which leads to the decrement in nanoparticle 

concentration profile of the water-based nanofluid. Thus, it 

tends to reduce the separating, due to the nanoparticle 

concentration at the wall is passively controlled by mass 

transfer parameter and decelerating shrinking sheet. In Fig. 

14 illustrates the influence of Lewis number Le  on the 

concentration profile    . It worth noticed that thermal 

boundary layer thickness is thicker to the solutal boundary 

layer thickness, which resulted in a reduction in the 

nanoparticle concentration of the water-based nanofluid. 

Lewis number denotes the ratio of the viscous diffusion rate 

to the molecular diffusion rate. Physically, deals with the 

virtual thickness of the momentum and concentration 

boundary layers. So, intense Lewis number substantially 

decreases solutal boundary layer thickness. This implies that 

there is a much faster viscous diffusion rate compared with 

nanoparticle mass diffusion rate. In the decelerating 

shrinking sheet due to increase in Lewis number, the 

concentration distribution decreases in both solutions (that is 

the first and second solutions). Figs. 15 and 16 are the 

impacts of chemical reaction   and mass convective 

parameter 
M  on the concentration profiles    . The 

nanoparticle concentration condenses with chemical reaction 

and mass convective parameter for higher values. It’s 

represent the virtue strength of solutal buoyancy force to 

viscous force. Thus, higher values decrease solutal buoyancy 

force. This implies that viscous force tends to shrink the 

water base nanofluid flow in the solutal layer region. This is 

more pronounced in the second solution with an insignificant 

effect in the first solution. In Fig. 17 demonstrated the power 

of unsteadiness parameter  on the nanoparticle 

concentration    . In the second solution near to the wall it 

growths and after some distance along the sheet, surface 

reduces substantially for higher values of unsteadiness 

parameter within the water-based nanofluid and the 

shrinking sheet. While in the case of the first solution 

insignificant drops consequence due to a decelerating 

shrinking sheet and passively controlled behavior.  

Table 1: Numerical values of shear stress at the wall  '' 0f  

for different values of a suction parameter 

when 2,M 
1 1 0T M E L        and 1   . 

s  Ref [42] Ref [32] Present results 

1 - 1.6180 1.618034 

2 2.414300 2.4142 2.414214 

3 3.302750 3.3028 3.302776 

4 4.236099 4.2361 4.236068 

5 - - 5.192582 

6 - - 6.162278 

7 - - 7.140055 

8 - - 8.123106 

9 - - 9.109772 

10 - - 10.09902 

Table 2: Numerical values of shear stress  '' 0f  for different 

values of s and M  when
1 1 0T M E L        

and 1   . 

s  M  First 

solution 

Ref[43] 

Second 

solution 

Ref[43] 

Present 

first 

solution 

Present 

second 

solution 

3.0 0.01 2.622498 0.377503 2.622497 0.377503 

 0.09 2.657584 0.342416 2.657584 0.342416 

 0.25 2.724745 0.275255 2.724745 0.275255 

4.0 0.01 3.734935 0.265065 3.734935 0.265079 

 0.09 3.757840 0.242160 3.757840 0.242161 

 0.25 3.802776 0.197224 3.802776 0.197224 

5.0 0.01 - - 4.793469 0.206546 

 0.09 - - 4.810844 0.189168 

 0.25 - - 4.845208 0.154792 

 

 
Fig.2 Influence of M on the velocity profile  ' f  

 
Fig.3 Influence of 

1E on the velocity profile  ' f  
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Fig.4 Influence of  on the velocity profile  ' f  

 
Fig.5 Influence of s on the velocity profile  ' f  

 
Fig.6 Influence of 

1L on the velocity profile  ' f  

 
Fig.7 Influence of Rd on the temperature profile     

 
Fig.8 Influence of Ec on the temperature profile     

 

Fig.9 Influence of 
T on the temperature profile     
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Fig.10 Influence of  on the temperature profile     

 
Fig.11 Influence of 

2L on the temperature profile     

 
Fig.12 Influence of Nt  on the concentration profile     

 
Fig.13 Influence of Nb on the concentration profile     

 
Fig.14 Influence of Sc on the concentration profile     

 
Fig.15 Influence of  on the concentration profile     
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Fig.16 Influence of 
M on the concentration profile     

 
Fig.17 Influence of  on the concentration profile     

IV. CONCLUSION 

The unsteady magnetohydrodynamic (MHD) natural 

convective flow of electrical conducting nanofluid over a 

permeable shrinking sheet in the presence of electric field, 

thermal radiation, viscous dissipation and chemical reaction 

with slips and passively controlled conditions at the wall are 

investigated. The decelerating shrinking sheet, slips and 

passively controlled conditions have been employed. The 

boundary layer governing the flow are partial differential 

equations are transformed into nonlinear ordinary 

differential equations and then solved numerically using 

implicit finite difference scheme. The effects of various 

physical parameters involved in the system of the equations 

namely: electric field, magnetic field, unsteadiness 

parameter, suction, velocity slip, thermal radiation, Eckert 

number, thermal convective parameter, thermal slip, 

thermophoresis, Brownian motion, Lewis number, mass 

convective parameter, and chemical reaction are obtained. 

The following conclusions are drawn in this investigation. 

1. The effects of the wall suction and decelerating 

shrinking sheet revealed dual solutions. 

2. The magnetic field, unsteadiness parameter, and the 

mass suction parameter widen the range of the 

solution existence. 

3. Thermal radiation and Eckert number heighten the 

temperature and thermal boundary layer thickness. 

4. The skin friction is sensitive to an increase in magnetic 

field and suction parameters. 

5. Electric field and unsteadiness parameters decrease the 

velocity near the surface of the sheet, the first 

solution (upper solution branch) are stable to 

compare with the second solution (lower solution 

branch). 

6. The thermal slip parameter reduces the nanofluid 

temperature and thermal boundary layer thickness in 

both solutions while opposite trend occurred with 

unsteadiness parameter. 

7. Opposite behavior of the nanoparticle concentration is 

noticed with Brownian motion and thermophoresis 

parameters. 

8. The thermal convective parameter and mass convective 

parameter exhibit opposite behavior whereas 

chemical reaction reduced the nanoparticle 

concentration with insignificant effect for the first 

solutions.  
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