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Abstract—The magnetotelluric (MT) method has been widely
employed in the exploration of hydrocarbon and mineral
resources.Traditional linear iterative inversion method can de-
termine the electrical resistivity of the Earths subsurface from
MT data rapidly, but it relies on the gradient of the forward
operator and its result dependents on the initial model ex-
tremely. In order to avoid the disadvantages of traditional linear
inversion, a novel non-linear geophysical inversion algorithm
is proposed for the MT data based on improved differential
evolution. The proposed algorithm is applied to invert the
synthetic MT data of 1D layered geo-electrical models. The
consistent results are obtained in the noise-free cases. When
Gauss noises of 10% and 20% are added to the synthetic
data, the results of inversions remain fairly good. Numerical
experiment results demonstrate that the improved inversion
algorithm has the advantages of independent of initial model,
capable of global exploration, and anti-noise capability. It makes
MT data inversion more effective.

Index Terms—Non-linear inversion, geophysical inversion,
Magnetotelluric (MT) data, improved differential evolution.

I. INTRODUCTION

THE magnetotelluric (MT) method [1] is a kind of
geophysical methods which uses the natural electro-

magnetic field as the source to explore the electrical structure
of the Earth’s interior (illustrated in Figure 1, 2). It has
some advantages such as low cost, large probing depth, not
affected by high-resistivity shielding and high resolution to
the low-resistivity layer [2]. This technique has been widely
employed in the research of the structure in Earth’s interior,
exploration of hydrocarbon resources and survey for solid
mineral resources [3].

Data inversion is one of the core issues of the MT
exploration [3], which can be classified into linear and non-
linear categories. The linear inversion has a well-established
theory, fast convergence and lots of applications, but its
result depends on the initial model extremely, and easily
falling into local minimum. The nonlinear inversion can
search in the whole solution space and avoid local minimum
because it explores the whold search space directly, not
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relying on the information of gradients at all. At present the
most representative nonlinear inversion methods are Monte
Carlo (MC)[7][8], simulated annealing (SA) [9] [10], genetic
algorithm (GA)[11][12], and particle swarm optimization
(PSO)[13][14][15], which can overcome the flaws of the
linear inversion and obtain the global convergence. They
have, however, some disadvantages, for instance the MC and
SA algorithms require long computation time and converge
slowly, the GA is subject to gene loss and early-maturing,
and the PSO is subject to early-maturing too. Therefore, it
is necessary to develop new and more effective algorithms
for MT data inversion.

The differential evolution (DE) is a relatively new mem-
ber in the family of evolutionary algorithms. It is a
population-based stochastic parallel search evolutionary al-
gorithm which is very simple yet powerful[16][17]. The
main advantage of DE is its capability of solving op-
timization problems which require minimization process
with nonlinear, non-differentiable and multi-modal objective
functions[18]. At present DE has been successfully applied
to many fields of optimization[19][20][21][22][23]. In re-
cent years it has also been introduced into the geophysical
inversion[24][25][26][27].

Previous work indicates that the performance of DE
mainly depends on trial vector generation strategies including
mutation and crossover operators, and control parameters
such as size Np, scale factor F and crossover factor CR[28].
Inspired by the ideal of Basu[18], we propose a non-linear
improved differential evolution inversion algorithm for the
MT data. We benchmark the performance of improved DE
first. Then, we apply it to the inversion of synthetic MT data
and analyze its accuracy and anti-noise capacity.

II. PROBLEM FORMULATION

A. Forward Modeling

Assume an 1D layered model through a subspace sec-
tion of L layers, of which from up to down the resistiv-
ities are ρ1, ρ2, ..., ρL, respectively, and the thickness are
h1, h2, ..., hL−1, respectively, where hn = ∞. The n-layer
model (see Figure 3) can be described by the 2L-1 dimension
vector:

m = (ρ1, ρ2, ..., ρL, h1, h2, ..., hL−1)T (1)

MT data are generated by measuring the horizontal com-
ponents of the electric and magnetic fields at the surface (see
Figure1,2) to obtain the impendance Zxy(ω) as a function of

Engineering Letters, 26:1, EL_26_1_19

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



-

magnetospheric
induction

inner
core

outer core

lower
mantle

upper mantle

  Sq
induction

Sq induction

Fig. 1: The Earth’s electromagnetic environment (upper) and
the schematic layouts of MT experiment (lower) (Modified
from Constable and Constable, 2004 [4] and Constable, 2007
[5]).

Fig. 2: Typical MT equipment (from Nieuwenhuis, 2011[6]).

Fig. 3: The L layers geo-electrical model.

the frequency of the signal ω, which can be calculated for
1D case as:

Zxy(ω) =
Ex(ω)

Hy(ω)
(2)

where Ex(ω) and Hy(ω) are mutually perpendicular com-
ponents of the electric and magnetic fields, respectively. MT
data are expressed by the apparent resistiveity ρxy(ω) and

phase φxy(ω), which can be calculated as follows:

ρxy(ω) =
||Zxy(ω)||2

ωµ
, (3)

and
φ(ω) = arctan

Im[Zxy(ω)]

Re[Zxy(ω)]
, (4)

where ω = 2π/T is angular frequency, µ is the magnetic
permeability of the medium, Re(Z) and Im(Z) are the real
and imaginary parts of Z, respectively. MT data in the form
of apparent resistivity and phase, as functions of frequency
are used to model the subsurface resistivity.

The forword calculation scheme for obtaining the 1-D MT
response is implemented by calculating the complex Z value,
uing the recurrence relation:

Zi = Z0i
Z0i(1− e−2kihi) + Zi+1(1 + e−2kihi)

Z0i(1 + e−2kihi) + Zi+1(1− e−2kihi)
, (5)

ZN =
ωµ

KN
= Z0N , (6)

where ki =
√
iωµ/ρi is the complex wave numbers of the

i− th layer, Z0i is the characteristic impedance of the i− th
layer, and Zi is the wave impedance of the top of the i− th
layer.

If we measure on the K frequence ω1, ω2, ..., ωK , we can
obtain the observation data with 2K dimension:

d = [ρxy(ω1), ..., ρxy(ωK), φ(ω1), ..., φ(ωK)]T (7)

The forward model can be written as

d = A(m), (8)

where m is a model parameter, A is forward functional
corresponding to the formula (2)-(6), and d is the theoretical
data corresponding to the model m.

B. Inversion Objective Function

Inversion is to solve the model parameter m from the
observed data dobs, which makes the fitness error between the
theoretical data d = A(m) and the observed data dobs least.
The objective function of inversion is defined as the norm L2

of the difference between the observed and theoretical data
to describe the fitness degree, which is expressed as

F (m) = ||dobs −A(m)||2 (9)

III. METHODOLOGY

A. Differential Evolution Algorithm

Differential Evolution (DE)[16] is a parallel direct search
method which utilizes Np n-dimension vectors

xi(k) = [xi1(k), xi2(k), ..., xin(k)]T (10)

as a population for each generation k, where i = 1, 2, ..., Np.
The basic DE algorithm can be described as follows:
Step 1. Initialization.
The initial population is chosen randomly and should

cover the entire parameter space. As a rule, we assume
a uniform probability distribution for all random decisions
unless otherwise stated.

Step 2. Mutation.
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DE generates new parameter vectors by adding the
weighted difference between two population vectors to a
third vector, named mutation. For each target vector xi(k),
a mutant vector is generated according to

vi(k + 1) = xr1(k) + F · [xr2(k)− xr3(k)] (11)

with random indexes r1, r2, r3 ∈ (1, 2, ..., Np), integer,
mutually different and F > 0. F is a real and constant factor
named scale factor.

Step 3. Crossover.
In order to increase the diversity of the perturbed param-

eter vectors, crossover is introduced and the trial vector:

ui(k + 1) = [ui1(k + 1), ui2(k + 1), ..., uin(k + 1)]T (12)

is formed, where:

uij(k + 1) =


vij(k + 1), if rand(bj) ≤ CR

or j = rang(i);
xij(k), if rand(bj) > CR

or j 6= rang(i)

(13)

where j = 1, 2, ..., n, rand(bj) is the j − th evaluation of a
uniform random number generator with outcome ∈ [0,1]. CR
is the crossover constant ∈ [0,1] which has to be determined
by the user. rang(i) is a randomly chosen index ∈ 1,2,...,n
which ensure that uij(k+1) gets at least one parameter from
vij(k + 1).

step 4. Selection.
To decide whether or not it should become a member of

generation k + 1, the trial vector uij(k + 1) is compared to
the target vector xij(k) using the greedy criterion as follow:

xi(k + 1) =

{
ui(k + 1), F [ui(k + 1)] > F [xi(k)];
xi(k), F [ui(k + 1)] ≤ F [xi(k)]

(14)
step 5. Stop Determination.
If the population convergent or reach the maximum itera-

tion kmax, stop; otherwise go to step 2, beginning the next
iteration.

B. Improvement Strategy

As pointed out in [28], the performance of DE mainly
depends on trial vector generation stategies including muta-
tion and crossover operators, and control parameters such as
population size Np, scale factor F , crossover factor CR and
so on. In order to improve the exploration and exploitation of
single mutation strategy, a Gaussian random variable scaling
factor is introduced by Basu[18].

The new mutation strategy is described as following:
For each target vector xi(k), a mutant vector is generated

according to

vi(k + 1) = xr1(k) +N(0, σ2
i ) · [xr2(k)− xr3(k)] (15)

with random indexes r1, r2, r3 ∈ (1, 2, ..., Np), integer,
mutually different. N(0, σ2

i ) represents a Gaussian random
variable with mean zero and standard deviation σi.

The standard deviation σi is given by expression

σi = f(Xi)/fmin (16)

where fmin is the minimum cost value amoung Np vectors.
f(Xi) is the value of the objective function associated with
i− th vector.

This Gaussin random variable controls the amount of
perturbation added to the parent vector and aids the algorithm
to escape from local optima. This maintains the diversity of
the population through out iterative process which guarantees
a high probability of achieving the global optimum.

C. Improved Differential Evolution Inversion Algorithm

One-dimensional inversion of layered models is a common
method in MT study, which can yield reliable results in a
survey area with little lateral variation in a fast and accurate
manner. In an area with relatively large lateral variations, this
inversion can describe the whole geo-electrical distribution
qualitatively and provide initial models for 2D and 3D inver-
sions. An improved differential evolution inversion algorithm
(IDE-I) is proposed as following:

Step 1: Define the population size Np, model
layer L, crossover factor CR;

Step 2: Initialize the Np individuals randomly
in the entire parameter space, each individual
correspond to a model vector m;

Step 3: Using formulas (2) - (8), conduct forward
calculation to yield theoretical data d = A(m);

Step 4: In terms of formula (9), calculate fitness of
each individual, respectively;

Step 5: Excute the mutation operation following the
formula (15)(16);

Step 6:Excute the crossover operation following the
formula (12)(13);

Step 7: Excute the selection operation following the
formula (14);

Step 8: if global convergence achieved or maximum
number of iteration is met, go to Step 9; Other
-wise return to Step 3 to perform next iteration;

Step 9: output result of inversion, finish.

Fig. 4: Improved Differential Inversion (IDE-I) algorithm.

IV. EVALUATION IDE ALGORITHM

A. Benchmark functions and experimental setting

There are 27 benchmark functions[29] are used in the
following evaluation. The details of these benchmark func-
tions are described in Table I. These functions could be
classified into two categories. The benchmark functions
f1 ∼ f13 ,which introduced by [30], are commonly used
in the evolutionary computation community. The remaining
14 benchmark functions f14 ∼ f27 are the first 14 functions
proposed for the CEC 2005 by Suganthan et al. [31], which
are shifted and exceedingly difficult.

The parameters used in classical DE is NP=100, F=0.5,
CR=0.9. The parameters used in IDE is NP = 100,
CR=0.3. In our experiments, each algorithm runs 30 times
independently for each benchmark function and the maxi-
mum number of function evalution is set to 10000*D, where
D is the number of variables. All experiments are carried out
on a computer equipped Intel i5 420 processor and 4G RAM
with Windows 7 operation system.
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TABLE I: Testsuit with 27 benchmark functions.

Type Function Name Search range Global optimum

Unimodal functions

f1 Sphere [-100,100] 0
f2 Schwefel2.22 [-10,10] 0
f3 Schwefel1.2 [-100,100] 0
f4 Schewefel2.21 [-100,100] 0
f5 Rosenbrock [-30,30] 0
f6 Step [-1.28,1.28] 0
f7 Quartic with Noise [-100,100] 0

Multimodal functions

f8 Schewefel2.26 [-500,500] -418.98*D
f9 Rastrigin [-5.12,5.12] 0
f10 Ackley [-32,32] 0
f11 Griewank [-600,600] 0
f12 Penalized1 [-50,50] 0
f13 Penalized2 [-50,50] 0

Shifted unimodal functions

f14 Shifted Sphere Function [-100,100] -450
f15 Shifted Scwefels Problem 1.2 [-100,100] -450
f16 Shifted Rotated High Conditioned Elliptic Function [-100,100] -450
f17 Shifted Schwefels Problem 1.2 with Noise [-100,100] -450
f18 Schwefels Problem 2.6 with Global Optimum on Bounds [-100,100] -310

Shifted unimodal functions

f19 Shifted RosenBrocks Function [-100,100] 390
f20 Shifted Rotated Griewanks Function without Bounds [0, 600] -180
f21 Shifted Rotated Ackleys Function with Global Optimum on Bounds [-32,32] -140
f22 Shifted Rastrigins Function [-5,5] -330
f23 Shifted Rotated Rastrigins Function [-5,5] -330
f24 Shifted Rotated Weierstrass Function [-0.5,0.5] 90
f25 Schwefels Problem 2.13 [-π,π] -460
f26 Shifted Expanded Griewanks Plus Rosenbrocks Function [–3,1] -130
f27 Shifted Rotated Expanded Scaffers F6 Function [-100,100] -300

TABLE II: Experimental results of DE/rand/1, DE/best/1, and IDE for all test functions at D = 30.

F DE/rand/1 DE/best/1 IDE
Ave Err ± Std Dev Ave Err ± Std Dev Ave Err ± Std Dev

f1 2.68E-36±2.68E-36- 5.40E-323±0.00E+00+ 6.47E-95±1.93E-95-
f2 5.40E-18±3.59E-18- 2.82E-84±1.37E-83≈ 3.42E-84±2.76E-83≈
f3 3.33E-05±2.73E-05- 9.48E-70±3.59E-69+ 5.29E-14±2.65E-14-
f4 2.53E-01±7.73E-01- 6.58E-09±1.95E-08- 3.22E-09±5.95E-09+
f5 2.29E-02±6.33E-02- 1.33E+00±1.88+00- 2.16E-12±3.68E-14+
f6 0.00E-00±0.00E-00≈ 7.53E+00±8.31E+00- 0.00E-00±0.00E-00≈
f7 4.53E-03±1.47E-03- 7.36E-03±4.67E-03- 2.71E-03±7.64E-04+
f8 6.57E+03±6.04E+02- 5.00E+03±6.27E+02- 7.39E-04±8.47E-05+
f9 1.38E+E02±2.78E01- 5.26E+01±1.34E+01- 0.00E+00±0.00E+00+
f10 4.14E-15±1.32E-15- 4.67E+00±1.29E+00- 4.78E-15±0.00E+00+
f11 0.00E+00±0.00E+00≈ 4.82E-02±4.94E-02- 0.00E+00±0.00E+00≈
f12 1.57E-32±5.47E-48≈ 2.36E+00±2.84E+00- 1.58E-32±8.75E-48≈
f13 1.35E-32±5.47E-48≈ 1.45E+00±1.74E+00- 1.35E-32±5.27E-48≈
f14 0.00E+00±0.00E+00≈ 3.64E-13±2.62E-13- 0.00E+00±0.00E+00≈
f15 4.15E-05±3.95E-05- 1.18E-12±7.06E-13- 3.55E-13±7.93E-14+
f16 3.54E+05±1.86E+05- 1.39E+04±10.8E+04+ 1.65E+05±1.08E+05-
f17 1.82E-02±2.54E-05- 2.06E+02±3.50E+02- 2.66E-04±4.74E-04+
f18 5.78E+01±6.46E+01≈ 2.09E+03±7.14E+02- 5.61E+01±6.58E+01≈
f19 1.90E-01±8.27E-01- 1.06E+00±1.76E+00- 1.26E-01±6.82E-01+
f20 1.99E-14±1.30E-14+ 2.04E-02±1.92E-02- 2.79E-03±5.14E-03-
f21 2.09E+01±4.78E-02≈ 2.09E+01±5.92E–02≈ 2.09E+01±5.20E–02≈
f22 1.34E+02±2.23E+01- 1.06E+02±1.84E+01- 2.73E-15±2.20E-15+
f23 1.83E+02±8.39E+00- 1.53E+02±3.95E+01- 1.00E+02±1.30E+00+
f24 3.97E+01±1.13E+00- 2.12E+01±3.14E+00≈ 2.36E+01±2.94E+00≈
f25 1.42E+03±2.98E+03≈ 1.27E+03±1.32E+03≈ 5.58E+03±2.24E+04≈
f26 1.53E+01±9.23E-01- 6.53E+00±2.24E+00- 3.77E+00±2.76E-01+
f27 1.33E+01±1.21E-01- 1.19E+01±5.42E-01≈ 1.17E+01±5.61E-01≈
- 18 19 4
+ 1 3 12
≈ 8 5 11
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TABLE III: Mean errors of DE/rand/1, DE/best/1, and IDE for all functions at D=50 and D=100.

F D=50 D=100

DE/rand/1 DE/best/1 IDE DE/rand/1 DE/best/1 IDE
f1 2.35E-39- 1.46E-266+ 1.43E-143- 8.73E-44- 7.80E-100- 3.21E-126+
f2 7.03E-20- 4.80E-05- 2.68E-56+ 2.36E-24- 3.05E-01- 2.72E-65+
f3 1.02E+00- 5.29E-32+ 8.17E-06- 1.37E+03- 1.27E-06+ 1.57E-01-
f4 5.87E+00- 1.60E+01- 1.25E-01+ 1.89E+01- 4.06E+01- 1.18E+01+
f5 1.79E+01- 1.99E+00≈ 2.07E-01+ 1.22E+02- 1.46E+00+ 5.52E+01-
f6 0.00E+00≈ 6.32E+02- 0.00E+00+ 2.43E+00- 6.64E+03- 0.00E+00+
f7 6.61E-03- 3.93E-02- 2.87E-03+ 1.73E-02- 7.49E-01- 6.99E-03+
f8 1.19E+04- 9.82E+03- 5.89E-04+ 2.33E+04- 2.16E+04- 1.82E-03+
f9 2.18E+2- 1.05E+02- 4.44E+00+ 8.80E+01+ 2.38E+02- 1.72E+02-
f10 6.99E-15- 8.28E+00- 5.62E-15+ 1.67E-14≈ 1.33E+01- 1.60E-14≈
f11 0.00E+00≈ 8.87E-02- 0.00E+00≈ 2.63E-03- 4.77E-01- 1.28E-03+
f12 9.45E-33≈ 1.86E+00- 9.40E-33≈ 6.22E-03- 1.60E+00- 2.00E-30+
f13 1.37E-32+ 2.95E+00- 4.07E-32- 7.32E-04≈ 3.14E+00- 7.44E-04≈
f14 5.12E-14≈ 6.25E-11- 3.99E-14≈ 8.53E-14≈ 7.84E-09- 8.66E-14≈
f15 3.29E+00- 1.29E-11+ 4.01E05- 4.47E+03- 3.57E-08+ 1.53E+00-
f16 2.58E+06- 8.18E+04+ 2.82E+5- 6.36E+06- 1.10E+06≈ 1.08E+06≈
f17 3.39E+02- 6.84E+03- 1.34E+02+ 3.61E+04- 6.83E+04- 2.12E+04+
f18 1.84E+03+ 6.86E+03- 2.74E+03- 4.79E+03- 2.11E+04- 3.47E+03+
f19 3.69E+01- 1.59E+00- 1.52E-01+ 1.18E+02- 1.33E+00+ 5.68E+01-
f20 5.75E-04+ 1.23E-02- 3.52E-03- 2.96E-03- 7.80E-03- 2.72E-03+
f21 2.11E+01≈ 2.11E+01≈ 2.11E+01≈ 2.13E+01≈ 2.13E+01≈ 2.13E+01≈
f22 2.02E+02- 2.49E+02- 6.13E-01+ 1.25E+02+ 6.14E+02- 1.27E+02≈
f23 3.63E+02- 3.83E+02- 2.84e+02+ 8.48E+02- 1.04E+03- 6.28E+02+
f24 7.26E+01- 4.71E+01+ 6.48E+01- 1.60E+02- 1.17E+02≈ 1.19E+02≈
f25 7.92E+03- 4.77E+03+ 4.64E+04- 2.98E+04 - 2.30E+04+ 8.33E+05-
f26 3.00E+01- 2.20E+01- 8.38E+00+ 6.54e+01- 1.03E+02- 2.88E+01+
f27 2.30E+01- 2.14E+01≈ 2.18E+01≈ 4.76e+01- 4.55E+01≈ 4.58E+01≈
- 19 18 9 21 18 6
+ 3 6 13 2 5 13
≈ 5 3 5 4 4 8

TABLE IV: Experimental results of DEGL/SAW, EPSDE, MGBED, and IDE for all test functions at D = 30.

F DEGL/SAW EPSDE MGBDE IDE
Ave Err ± Std Dev Ave Err ± Std Dev Ave Err ± Std Dev Ave Err ± Std Dev

f1 6.01E-101±2.10E-100- 8.47E-174±0.00E+00+ 1.51E-91±6.81E-91- 6.47E-95±1.93E-95-
f2 1.63E-49±1.53E-49- 8.69E-86±3.84E-85- 1.52E-53±8.15E-53- 3.42E-84±2.76E-83+
f3 3.35E-24±6.82E-24- 4.48E-36±2.40E-35+ 8.23E-05±4.36E-04- 5.29E-14±2.65E-14-
f4 5.18E-25±9.15E-25+ 2.68E+00±1.43E+00- 2.01E-08±3.08E-08- 3.22E-09±5.95E-09-
f5 6.64E-01±1.49E+00- 3.99E-01±1.20E+00- 3.25E+00±1.25E+01- 2.16E-12±3.68E-14+
f6 0.00E-00±0.00E-00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E-00±0.00E-00≈
f7 1.20E-03±3.52E-04- 8.88E-04±3.37E-04+ 2.37E-03±6.43E-04- 2.71E-03±7.64E-04-
f8 7.30E+03±2.94E+02- 3.82E-04±0.00E+00≈ 4.88E+02±2.89E+02- 7.39E-04±8.47E-05≈
f9 1.01E+02±5.12E+01- 0.00E+00±0.00E+00≈ 6.27E+00±2.33E+00- 0.00E+00±0.00E+00≈
f10 3.67E-15±6.38E-16≈ 4.86E-15±1.71E-15≈ 7.22E-15±1.45E-15- 4.78E-15±0.00E+00≈
f11 3.61E-03±5.46E-03- 7.40E-04±2.22E-03- 9.86E-04±2.51E-03- 0.00E+00±0.00E+00+
f12 1.57E-32±5.47E-48≈ 1.57E-32±2.01E-35≈ 3.46E-03±1.86E-02- 1.58E-32±8.75E-48≈
f13 3.66E-04±1.97E-03- 3.66E-04±1.97E-03- 1.37E-32±8.85E-34≈ 1.35E-32±5.27E-48≈
f14 3.79E-15±1.42E-14- 5.68E-15±1.71E-14- 5.31E-14±1.42E-14- 0.00E+00±0.00E+00+
f15 4.74E-14±2.1+ 1.74E-12±4.60E-12- 1.01E-04±3.78E-04- 3.55E-13±7.93E-14-
f16 5.80E+04±3.44E+04+ 1.84E+06±4.73E+06- 2.64E+05±1.67E+05- 1.65E+05±1.08E+05-
f17 6.44E-14±3.51E-14+ 2.52E+01±1.18E+02- 3.30E+01±3.12E+01- 2.66E-04±4.74E-04-
f18 1.06E-01±2.60E-01+ 1.98E+03±9.66E+02- 2.82E+03±7.10E+02- 5.61E+01±6.58E+01-
f19 1.06E+00±1.76E+00- 7.97E-01±1.59E+00- 2.56E+00±3.87E+00- 1.26E-01±6.82E-01+
f20 6.90E-03±8.65E-03- 1.32E-02±1.13E-02- 1.84E-02±1.40E-02- 2.79E-03±5.14E-03+
f21 2.09E+01±4.61E-02≈ 2.09E+01±6.84E-02≈ 2.10E+01±4.23E-02≈ 2.09E+01±5.20E–02≈
f22 5.91E+01±5.03E+01- 0.00E+00±0.00E+00+ 7.89E+00±3.03E+00- 2.73E-15±2.20E-15-
f23 1.67E+02±9.65E+00- 4.95E+01±1.06E+01≈ 6.21E+01±1.36E+01≈ 1.00E+02±1.30E+00-
f24 3.97E+01±1.13E+00≈ 2.73E+01±1.92E+00≈ 2.52E+01±3.13E+00≈ 2.36E+01±2.94E+00≈
f25 1.98E+03±3.01E+03≈ 2.18E+04±6.19E+03- 3.03E+03±3.84E+03≈ 5.58E+03±2.24E+04≈
f26 1.29E+01±2.05E-01- 1.92E+00±1.63E-01≈ 2.39E+00±6.16E-01≈ 3.77E+00±2.76E-01≈
f27 1.31E+01±2.05E-01≈ 1.28E+01±2.63E-01≈ 1.28E+01±3.86E-01≈ 1.17E+01±5.61E-01≈
- 15 13 19 10
+ 5 4 0 6
≈ 7 10 8 11
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TABLE V: Experimental results of SaDE, ODE, OXDE, and IDE for all test functions at D = 30.

F SaDE ODE OXDE IDE
Ave Err ± Std Dev Ave Err ± Std Dev Ave Err ± Std Dev Ave Err ± Std Dev

f1 1.22E-130±4.14E-130+ 9.94E-58±3.19E-57- 2.66E-59±5.94E-59- 6.47E-95±1.93E-95-
f2 2.97E-79±5.46E-79- 5.86E-18±4.68E-18- 2.96E-33±2.33E-33- 3.42E-84±2.76E-83+
f3 1.14E-06±2.93E-06- 3.06E-05±3.35E-05- 2.38E-05±2.33E-05- 5.29E-14±2.65E-14+
f4 5.59E-07±3.01E-06- 1.98E-03 ±1.07E-02- 7.44E+00±3.32E+00- 3.22E-09±5.95E-09+
f5 2.89E+01±2.34E+01- 2.55E+01±8.29E-01- 1.20E+00±1.83E+00- 2.16E-12±3.68E-14+
f6 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E-00±0.00E-00≈
f7 2.77-03±1.19E-03≈ 9.20E-04±3.21E-04- 4.08E-03±1.94E-03- 2.71E-03±7.64E-04≈
f8 3.82E-04±0.00E+00≈ 6.94E+03±3.85E+02- 3.82E-04±0.00E+00≈ 7.39E-04±8.47E-05-
f9 3.32E-02±1.79E-01- 3.36E+01±2.25E+01- 9.32E+00±3.02E+00- 0.00E+00±0.00E+00+
f10 9.31E-02±2.79E-01≈ 3.55E-15±0.00E+00≈ 3.10E-02±1.67E-01- 4.78E-15±0.00E+00≈
f11 3.36E-03±9.03E-03- 7.39E-04±2.78E-03- 2.46E-03±4.17E-03- 0.00E+00±0.00E+00+
f12 1.04E-02±3.11E-02- 1.58E-32±2.52E-34≈ 1.57E-32±2.32E-34≈ 1.58E-32±8.75E-48≈
f13 1.83E-03±8.07E-03- 1.35E-32±5.47E-48≈ 1.56E-32±5.93E-33≈ 1.35E-32±5.27E-48≈
f14 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈
f15 8.07E-06-±1.69E-05- 3.33E-04±3.31E-04- 5.66E-05±5.70E-05- 3.55E-13±7.93E-14+
f16 4.86E+05±1.85E+05- 5.98E+05±3.67E+05- 4.78E+05±2.21E+05- 1.65E+05±1.08E+05+
f17 1.14E+02±1.49E+02- 2.08E-01±2.55E-01- 1.26E+00±1.10E+00- 2.66E-04±4.74E-04+
f18 3.30E+03 ±5.49e+02- 1.45E+02±8.04E+01- 2.14E+01±5.84E+01+ 5.61E+01±6.58E+01-
f19 4.64E+01±3.23E+01- 5.38E+01±3.22E+01- 6.64E-01±1.49+00- 1.26E-01±6.82E-01+
f20 2.61E-02±2.83E-02- 6.57E-03±9.24E-03- 1.34E-02±9.54E-03- 2.79E-03±5.14E-03+
f21 2.09E+01±4.08E-02≈ 2.10E+01±5.75-02≈ 2.09E+01±4.17E-02≈ 2.09E+01±5.20E–02≈
f22 1.66E-01±3.71E-01- 7.54E+01±2.89E+01- 1.39E+01±3.84E+00- 2.73E-15±2.20E-15+
f23 4.89E+01±1.02E+01- 6.57E-03±9.39E+00+ 3.73E+01±3.24E+01- 1.00E+02±1.30E+00-
f24 1.70E+01±3.14E+00- 8.99E+00±9.39E+00+ 3.73E+01±8.18E+00- 2.36E+01±2.94E+00-
f25 3.92E+03±2.81E+03≈ 2.02E+03±2.35E+03≈ 3.34E+03±5.14E+03- 5.58E+03±2.24E+04-
f26 3.92E+00±3.95E-01- 7.58E+00±2.15E+00- 2.08E+00±6.28E-01+ 3.77E+00±2.76E-01-
f27 1.26E+01±2.69E-01≈ 1.31E+01±2.57E-01≈ 1.33E+01±1.72E-01≈ 1.17E+01±5.61E-01≈
- 18 17 18 7
+ 1 2 2 12
≈ 8 8 7 8

B. Benchmark results

The results of DE/rand/1, DE/best/1, and IDE at D=30
for the test suite are listed in Table II, where “Ave Err” and
“Std Dev” indicated the mean and standard deviation of the
function error values obtained in 30 runs, respectively. The
best results are shown in boldface. The Wilcoxon’s runk sum
test results amoung IDE and others are summaried at the
bootom of the table, in which “-”, “+”, and “≈” indicate
that the performance of the compared algorithm is worse
than, better than, and similar to that of IDE, respectively.

Based on the results, IDE achieves better results than
DE/rand/1 and DE/best/1 on the majority of test functions.
Compared with DE/rand/1, IDE is significantly better than
it on 18 out of 27 test functions, and similar to it on 8
test functions. DE/rand/1 beat IDE on only 1 test function.
Compared with DE/best/1, IDE is also significantly better
DE/best/1 on 19 out of 27 test functions, and similiar to
it on 3 test functions. DE/best/1 beat IDE only on 3 test
functions. Comparing the three algorithms together, IDE beat
both of two algorithms at the same time on 12 out of 27 test
functions and similiar with one of other two algorithms on
11 test functions.

We alse present scalable tests of DE/rand/1, DE/best/1,
and IDE on the test suites for D=50 and D=100. The mean
errors and comparison results between IDE and the others
based on Wilcoxon’s rank sum test are listed in Table III. IDE
outperforms DE/rand/1 on 19 and 21 out of 27 test functions
for D=50 and 100, while IDE beats DE/best/1 on 18 and 18
out of 27 test functions for D=50 and 100. When the problem
dimension increases from 50 to 100, the performance of IDE
has not affected by the increasing of dimension.

We also compare the IDE with six other state-of-art DE
variants, including DEGL/SAW [32], DPSDE [33], MGBDE

[34], OXDE [35], SaDE [36], and ODE [37]. In EPSDE and
SaDE, the parameter F and CR are free to set and self-
adaptive. To have a fair comarison, we set the maximum
number of functions in all of these algorithms to 10,000 ×
D, and use the same parameter settings as described in their
original literatures for these six cometitors as following:

(1) MGBDE: NP =100, F =0.5, CR =0.9
(2) OXDE: NP =D, F =0.9, CR =0.9
(3) SaDE: NP = 50, LP = 50

(4) ODE: NP = 100, F = 0.5, CR = 0.9, Jr = 0.3

(5) EPSDE: NP = 50

(6) DEGL/SAW: NP = 10×D, α = β = F=0.8, CR =
0.9

The results of the seven DE varians on each test function
on D=30 are summarized in Table IV, and V. The results
indicates that IDE is significantly better than DEGL/SAW,
EPSDE, MGBDE, SaDE, ODE, and OXDE on 15,13, 19,
18, 17, 18 respectively, but they beat IDE on only 5, 4, 0, 1,
2, 2, respectively. It is obvious that the IDE is the best one
among the seven methods on the test suite.

V. EVALUATION IDE-I FOR MT DATA INVERSION

To test the effectiveness of the IDE-I algorithm presented
above, we have implemented it using the C++ programming
language. We conducted theoretical models computation on
a PC for two-layer (type G), three-layer (type K), four-layer
(type HK) and five-layer (type HKH) models, respectively,
and compared the results with previous works.

The platform for numerical experiment is a PC equipped
Intel i5 420 processor and 4G memory with the Windows 7
operation system.
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TABLE VI: Comparison of inversion results by IDE-I and
other algorithms (noise free) on the two-layer model.

algorithm ρ1(Ωm) ρ2(Ωm) h1(m) CPU time(s)
Real model 10 100 600 –

MC[13] 10.5177 100.2022 632.4447 37.4375
SA[13] 10.7115 100.4541 643.3216 36.3297

DPSO[13] 10.0000 99.9999 600.0000 8.5087
APSO-I[14] 10.0000 99.9999 600.0000 7.3945

IDE-I 10.0000 100.0000 600.0000 5.421

TABLE VII: Comparison of anti-noise capabilities between
IDE-I, DPSO and APSO-I algorithms on the two-layer geo-
electrical model.

ρ1(Ωm) ρ2(Ωm) h1(m) NRE (%)
Real model 10 100 600 –

10% noise
DPSO[13] 9.79 99.65 559.69 7.05

APSO-I[14] 9.93 103.09 592.28 3.34
IDE-I 9.95 102.21 595.47 2.35

20% noise
DPSO[13] 10.54 108.79 728.01 20.02

APSO-I[14] 9.83 102.76 587.87 3.82
IDE-I 9.88 101.54 590.36 2.53

A. Two-layer (type G) geo-electrical model

1) Comparison of various algorithms: In the noise-free
case, we uses the IDE-I algorithm to invert the MT data
of a two-layer geo-electrical model, and compared its re-
sult with those of Monte Carlo(MC), simulated anneal-
ing(SA), genetic algorithm(GA), damping PSO(DPSO)[13],
and Adaptive PSO Inversion(APSO-I)[14] algorithm, in order
to evaluate the performance of IDE-I in the issues of accuracy
and computation time.

We took 50 individuals for inversion with a maximum
iteration number 1000 and crossover factor CR = 0.3. In
inversion, the value ranges taken for ρ1, ρ2 and h1 are
1∼50Ωm, 10∼500Ωm and 100∼1000m, respectively. The
comparison is shown in Table VI.

Table VI indicates that the inversion accuracy of the IDE-
I is much better than those of MC and SA algorithms, and
slightly superior to the DPSO and APSO-I algorithm. On the
issue of computation time, the IDE-I is remarkably faster
than the MC and SA, and a little faster than those of the
DPSO and APSO-I algorithm.

2) Analysis of anti-noise capability: To simulate real MT
data, we invert the data added 10% and 20% Gauss random
noise, respectively.

For the two vectors, x = [x1, x2, ..., xn] and y =
[y1, y2, ..., yn], the Norm of Reletive Error (NRE) is used
to evaluate the inversion accuracy, which is defined as
following:

NRE(x, y) = (x1 − y1)/x1)2 + (x2 − y2)/x2)2+
...+ (xn − yn)/xn)2

(17)

We analyze the anti-noise capability of the IDE-I algorithm
with same model parameters, and compare it with that of the
DPSO, and APSO-I (Table VII), where the norm of relative
error(NRE) is that of inversion model parameters and real
model parameters.

As shown in Table VII, after the Gauss noise of 10% and
20% levels is added to the data, the inversion result of IDE-I
is better than the DPSO and APSO-I, implying its stronger
anti-noise capability than the others.
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Fig. 5: Two-layer-model synthetic observation data with 20%
Gause noise (blue) and its inversion result (red) using IDE-I.

Fig.5 displays the two-layer-model synthetic observa-
tion data with 20% Gause noise (apparent resistivity and
impedance phase) and its inversion result. The figure exhibits
good fitting of synthetic data and inversion result.

B. Three-layer (type K) geo-electrical model

IDE-I inversion is employed to the noise-free MT data
as well as the data added by 10% and 20% Gauss random
noise, with 50 individuals, maximum iteration number 1000
and crossover factor CR = 0.3. In inversion, the value ranges
taken are ρ1 = 1∼ 100Ωm, ρ2 = 10 ∼ 500Ωm, ρ3 = 1 ∼
50Ωm, h1 = 100 ∼ 1000m, and h2 = 1000 ∼ 10000m,
respectively. The inversion result is compared with that of
APSO-I [14] shown in Table VIII.

The data listed in Table III demonstrate that in the case of
no noise, the inversion result of IDE-I is as good as that of
APSO-I. When after 10% and 20% Gauss noise is added to
the data, The inversion result of IDE-I is better than that of
APSO-I. It indicates the good anti-noise ability of IDE-I.

The Fig.6 shows apparent resistivity and phase curves from
IDE-I inversion on the three-layer model after adding 20%
Gauss noise, exhibiting a good fit between the inverted and
synthetic observed data.

C. Four-layer (type HK) geo-electrical model

IDE-I algorithm is employed to the noise-free MT data of
the four-layer (type KH) model, as well as the data added
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TABLE VIII: Comparison of anti-noise performance between IDE-I, DPSO and APSO-I algorithms on the three-layer model.

ρ1(Ωm) ρ2(Ωm) ρ3(Ωm) h1(m) h2(m) NRE(%)
Real model 30 200 10 500 2000 –

0% noise APSO-I[14] 30.00 200.00 10.00 500.00 2000.00 0.00
IDE-I 30.00 200.00 10.00 500.00 2000.00 0.00

10% noise APSO-I[14] 28.94 170.59 10.29 476.72 2047.50 16.26
IDE-I 30.45 181.72 9.86 481.17 2020.37 10.15

20% noise APSO-I [14] 30.86 248.71 9.64 493.85 1860.07 25.78
IDE-I 30.42 231.68 9.73 495.28 1898.35 16.94
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Fig. 6: Three-layer-model synthetic observation data with
20% Gause noise (blue) and its inversion result (red) using
IDE-I.

by 10% and 20% Gauss random noise. The result of IDE-
I, DPSO[13], and APSO-I [14] are listed in TableIX. In
inversion, 50 individuals, maximum iteration number 1000
and crossover factor CR = 0.3 are adopted, and the value
ranges are ρ1 = 1 ∼ 50Ωm, ρ2 = 10 ∼ 500Ωm,
ρ3 = 1 ∼ 50Ωm, ρ4 = 10 ∼ 500Ωm, h1 = 10 ∼ 50m,
h2 = 100 ∼ 4000m, h3 = 1000 ∼ 10000m, respectively. In
these ranges, 50 initial individuals are generated randomly.

The data listed in table IX indicates that in the case of no
noise, IDE-I is superior to DPSO and same as APSO-I. After
10% and 20% Gauss noise is added to the data, the NREs
of IDE-I are all less than those of APSO-I, which indicate
IDE-I has a better anti-noise ability than APSO-I.

Fig.7 shows apparent resistivity and phase curves from
IDE-I inversion on four-layer-model after adding 20% Gauss
noise, which demonstrates good fitting between inverted and
synthetic observed data.
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Fig. 7: Four-layer-model synthetic observation data with 20%
Gause noise (blue) and its inversion result (red) using IDE-I.

D. Five-layer (type HKH) geo-electrical model

Inversion using IDE-I is made on a five-layer (HKH) geo-
electrical model and compared with the inversion results
by other algorithms[14] (Table X). For this inversion, the
following parameters are adopted: 80 individuals, maximum
iteration number 2000, crossover factor CR = 0.3, ρ1 =
1 ∼ 100Ωm, ρ2 = 1 ∼ 10Ωm, ρ3 = 1 ∼ 100Ωm,
ρ4 = 1 ∼ 10Ωm, ρ5 = 1 ∼ 100Ωm, h1 = 100 ∼ 4000m,
h2 = 100 ∼ 4000m, h3 = 1000 ∼ 10000m, h4 = 100 ∼
4000m.

The data in table X indicate that the inversion result of
IDE-I is considerably superior to that of the generalized
inverse and Bostick algorithms, and slightly better than HGA
and APSO-I.

In order to evalute the anty-noise performance between
APSO-I and IDE-I, they are employed to invert the noise-
free MT data of five-layer model, as wellas the data added by
10% and 20% Gauss random noise, respectively. The results
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TABLE IX: Comparison of inversion results by IDE-I, DPSO and APSO-I algorithms on the four-layer model (type HK)
with different Gauss noise levels.

ρ1(Ωm) ρ2(Ωm) ρ3(Ωm) ρ4(Ωm) h1(m) h2(m) h3(m) NRE (%)
Real model 30 200 10 100 100 2000 3000 –

0% noise
DPSO-I[13] 30.53 198.07 8.38 103.70 106.80 2072.00 2580.10 2.58
APSO-I[14] 30.00 200.01 9.99 99.99 100.01 1999.91 2999.64 0.10

IDE-I 30.00 200.00 9.99 100.01 100.00 1999.98 3000.24 0.10

10% noise APSO-I[14] 30.35 213.95 8.89 99.46 112.26 1992.73 2547.04 23.49
IDE-I 30.24 210.28 8.92 99.67 109.83 1994.63 2667.13 19.07

20% noise APSO-I[14] 31.87 216.53 11.64 96.80 103.92 1902.67 3393.70 24.45
IDE-I 30.30 212.41 11.44 97.92 102.40 1930.17 3347.25 20.08

TABLE X: Comparison of inversion results by IDE-I and other algorithms (noise free) on the five-layer model

ρ1(Ωm) ρ2(Ωm) ρ3(Ωm) ρ4(Ωm) ρ5(Ωm) h1(m) h2(m) h3(m) h4(m) NRE (%)
Real model 50 3 50 3 50 2000 1000 4000 2000 –
Generalized inversion[14] 50.0 3.0 56.1 3.2 50.1 2000 1000 3900 2150 15.99
Bostick inversion[14] 52.0 7.0 10.0 9.0 59.0 1900 770 2830 6400 338.12
HGA[14] 50.00 2.99 47.80 2.94 49.99 2000.30 994.27 4033.04 1955.76 5.42
APSO-I[14] 50.00 3.00 49.77 2.98 49.99 2000.01 999.60 4006.40 1987.56 1.03
IDE-I 50.00 3.00 49.95 2.98 49.99 2000.00 999.98 4003.37 1992.61 0.77

TABLE XI: Comparison the anti-noise performance between APSO-I and IDE-I on the five-layer model

ρ1(Ωm) ρ2(Ωm) ρ3(Ωm) ρ4(Ωm) ρ5(Ωm) h1(m) h2(m) h3(m) h4(m) NRE (%)
Real model 50 3 50 3 50 2000 1000 4000 2000 –

0% noise APSO-I 50.00 3.00 49.77 2.98 49.99 2000.01 999.60 4006.40 1987.56 1.03
IDE-I 50.00 3.00 49.95 2.98 49.99 2000.00 999.98 4003.37 1992.61 0.77

10% noise APSO-I 45.82 2.66 44.28 2.44 45.13 1839.71 976.29 4489.4 1727.56 34.32
IDE-I 47.18 2.74 47.33 2.68 45.62 1950.12 987.45 4242.79 1946.71 19.43

20% noise APSO-I 43.39 2.51 42.99 2.38 44.77 1728.32 926.48 4845.32 1628.59 46.95
IDE-I 46.48 2.69 46.77 2.64 46.92 1953.47 982.46 4248.58 1940.05 20.88
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Fig. 8: Five-layer-model synthetic observation data with 20%
Gause noise (blue) and its inversion result (red) using IDE-I.

are listed in Table XI.
The Table XI indicates that in the case of noise-free, IDE-I

is superior to APSO-I slightly. However, after 10% and 20%
Gauss random noised is added, the NREs of IDE-I is much
better than those of APSO-I, which indicate that IDE-I has
a better anti-noise ability than APSO-I.

Fig.8 shows apparent resistivity and phase curves from
IDE-I inversion on five-layer-model after adding 20% Gauss
noise, which demonstrates good fitting between inverted and
synthetic observed data.

VI. CONCLUSIONS

We have described the reason that the previous differential
evolution (DE) algorithm is prone to falling into local opti-
mum. After introduce improvement strategy to improve the
classical DE, we presented an improved differential evolution
inversion (IDE-I) algorithm for MT data. We evaluate the
performance of IDE, and apply IDE-I algorithm to MT data
inversion on 1D layered models, and analyze its inversion
accuracy and anti-noise capability.

Numerical experiments show that the IDE algorithm is bet-
ter than classic DE (DE/rand/i, and DE/test/1) and state-of-art
variant DEs. The IDE-I algorithm does not rely on any initial
models, can reach global optimum very well, costs short
time for computation, and can resist noise effectively. The
comparison results demonstrate that it is superior to other
algorithms in inversion accuracy and anti-noise capability.

In this work, numerical experiments are conducted only
on 1D layered models with 2 ∼ 5 layers to inverse 3 ∼
9 model parameters. When this algorithm is applied to MT
data inversion on models of 2D or 3D, some problems will
be encountered, such as large computation time, much more
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difficult to find a global optimum and so on. Further studies
will focus on how to solve these issues.
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