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Abstract—One of the main challenges in the HPC clusters
is the I/O bottleneck between the main memory (disk storage
system) and the node memory. This bottleneck is a consequence
of the fact that the disk access speed is thousands-fold slower
than the processing speed of the parallel co-processors. We
propose a strategy to reduce the impact of this bottleneck
in a heterogeneous cluster. We use a seismic application as
case study, in this application the I/O transfer operations could
consume above 80% of the overall processing time. The strategy
puts forward a high-performance compression/decompression
algorithm in terms of both compression ratio and processing
time. The strategy is implemented in an FPGA-based cluster,
which allowed us to implement a custom architecture. This
architecture is optimized for both sequential and parallel stages
of the decompression process. The proposed strategy can speed
up the transfer operations up to 10x for a compression ratio
of 16:1 and up to 3x for a compression ratio of 7:1. Therefore,
our strategy effectively reduces the impact of the I/0 bottleneck
and can improve the cluster’s overall performance.

Index Terms—Compression strategy, FPGA, 1/0 bottleneck,
Memory Wall.

I. INTRODUCTION

T is well-known that a significant challenge for any

modern computational systems is the Input/Output bot-
tleneck [1], [2], [3]. This bottleneck arises because of the
amount of required memory in a single node.

The implementation of many applications can easily re-
quire one terabyte of space in a single node. However,
the currently available on-chip memory in one of these
nodes (e.g. FPGAs and GPUs) is counted only in tens
of Mega bytes.Consequently, when these applications are
implemented in heterogeneous clusters, it is required to
make transferring operations between the CPU main memory
and the node memory through the PCI Express bus. These
transferring operations significantly reduce the overall perfor-
mance, especially in applications that require transferring a
considerable amount of data between the CPU main memory
and the node memory.

This penalty is due to the long latencies in CPU main
memory and the low-speed in the PCle bus (bandwidth).
Thus, each time that the node requires making Input/Output
operations on the CPU main memory, it has to stay idle
waiting for data arrive. These idle waiting times generate
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a penalty on the overall performance of the computer sys-
tem [1].

A. Related works

In the context of the heterogeneous cluster, the I/O issue
has been well studied and addressed from many points
of view. Despite all research in this area, the I/O latency
continues to affect the overall performance of the modern
computational systems.

The main strategy to reduce the impact of the I/O bottle-
neck has been the use of memory hierarchies. The goal in the
designing of these memory hierarchies has been to provide
memory systems that enable a fast access to the recently used
data [4].

The reorganization of the stencil calculations to take
advantage of the memory hierarchies has been the subject
of much investigation over the years. These investigations
aim to reduce the data transfer time as much as possible, by
using the faster memories closer of the co-processor. Other
strategies include, for example, to hide memory latencies by
switching between threads (on GPUs) or cores (on FPGAs).
Thus, while a thread (or core) is making transfer operations,
some other one can be scheduled in its place [5], [6], [7].

Some research works have addressed this issue by using
a compression strategy.

Agrawi et al. [8] investigated how to reduce the limitations
of disk I/O in a GPU-based cluster by using a compression
strategy. The strategy was tested using both HDDs (Hard disk
drives) and SSDs (Solid state disks). The lossy compression
methods showed up to 6 and 3.2 faster than the traditional
I/O transfer process for HDD and SDD disks respectively. It
is important remark that decoding process showed a lower
performance on GPU than on CPU, due to its sequential
nature. For this reason, these algorithms were finally imple-
mented on CPU. On the other hand, the transform stage was
performed on GPU because of its parallel nature.

Patel et al.[9] implemented the bzip2 lossless algorithm on
GPU to compress text. They stated that one motivation for
their work it was to determine whether on-the-fly compres-
sion is suitable for optimizing data transfer between CPU
and GPU. They concluded that the implementation was not
fast enough to optimize data transfers between CPU and
GPU.

It is important remark that in these works the decoding
process was the bottleneck in the decompression process due
to its sequential nature.

B. Contributions

We present a strategy to improve the transfer operations
between the main memory (disk storage system) and the node
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memory through the PCI Express. The strategy puts forward
a high-performance compression/decompression algorithm in
terms of both compression ratio and processing time.

We use a seismic application as case study. The proposed
strategy involves to compress the seismic data on-site while
they are being acquired (off line). Then, the compressed
data are transferred to the head node (in the processing
center), where they are sent to each node memory. Once the
compressed data arrived at the node, they are decompressed
before being processed.

Figure 1 sketches a serial version of the time constrains in
the proposed strategy. Note that, the strategy requires that the
compressed data transfer time (t1) plus the decompression
time (t2) has to be less than the Traditional I/O transfer time
(tt'rad)s ie. P

tl +t2 < ttrad- (1)
< Traditional I/O transfer time
data transfor time | Decompression time
11 tz Time

ttraa

Fig. 1: Time constrains in the proposed strategy (Serial
version)

It is important to highlight that we did not take into
account the compression time because this process can be
performed on-site (off-line). This compression process can be
developed between repetitions of the seismic experiment used
by the oil companies to acquire the seismic data. In our tests,
compressing a seismic dataset lasted a few tens of seconds.
This time is assumable because it is quite small compared to
the time between repetitions of the seismic experiment [10].

Previous works have showed that the use of a GPU-based
cluster to perform the sequential stages of the decompression
process generates a bottleneck because this architecture is not
optimized for serial processes [9], [8].

We implemented the proposed strategy in an FPGA-based
cluster by using a custom architecture optimized for both
sequential and parallel stages of the decompression process.

Our results showed that the proposed strategy reduces the
impact of the I/O bottleneck in this type of cluster. The
transfer operations are speedup up to 10x for a compression
ratio of 16:1 and up to 3x for a compression ratio of 7:1.

This reduction on the I/O bottleneck between the disk and
the node memory could improve the overall performance in
the heterogeneous clusters, especially for those applications
that are limited by I/O transfer operations.

The rest of this paper is organized as follows. Sec-
tion 2 shows the selection process of the compres-
sion/decompression strategy. Section 3 proposes a compu-
tational architecture for the proposed strategy. Section 4
describes the process to implement the strategy in an FPGA-
based cluster. Sections 5 and 6 present present and discuss
the results respectively. The conclusions are drawn in Section
7.

II. SELECTING THE COMPRESSION-DECOMPRESSION
SCHEME

Our goal is to implement a compression-decompression
strategy with a high performance regarding both the compres-
sion ratio (to reduce ¢; in Equation 1) and the decompression
time (to reduce t5 in Equation 1). However, achieving
better compression ratios requires to add new stages in
the compression process or include new stages with major
computational complexity, which increasing the processing
time. Furthermore, better compression ratios are obtained
by using variable-length coding schemes, like Huffman or
Arithmetic coding. These coding schemes quickly become
the bottleneck in the decompression process, because of its
sequential nature [11], [12].

Several algorithms have been used to compress seismic
data. In general, seismic data compression algorithms have
three stages: transformation, quantization and coding. The
main objective of these algorithms has been to compress
seismic data as much as possible without time constrains.
However, we are limited by Equation 1. In this sense, an
analysis from both compression ratio and decompression
time points of view was required in order to select the stages
for the compression-decompression strategy. In our previous
works such analysis has been performed [13], [12].

For the transformation stage, the Lifting-Wavelet trans-
form was selected. The lifting scheme requires less compu-
tational and storage resources than the convolutional imple-
mentation, which reduces the processing time [14].

A uniform quantizer is generally used for seismic data
compression [13] because the larger errors in the non-
uniform quantization scheme are concentrated in larger
amplitudes, and usually, the larger amplitudes contain the
relevant geophysical information. On the other hand, the
small amplitudes data have a good chance to be noise. Addi-
tionally, the uniform quantization has a lower computational
complexity than the non-uniform one.

For the coding scheme we used the Huffman algorithm,
which is the best among the methods that use code-words of
integer length [15]. Additionally, this coding scheme has a
low computational complexity than similar coding schemes.

III. COMPUTATIONAL ARCHITECTURE FOR THE
STRATEGY

The trade-off between the compression ratio and the
processing time has not allowed the use of compression
strategies to speed up the transfer process between the main
memory and the device memory [8].

In previous works [16], [12], we describe our efforts in
optimizing the implementation of the decompression process
into the GPU architecture. The obtained throughput for the
decompression process was not enough to fulfill the time
constrains established in the proposed strategy [12].

These GPUs implementations allowed us to identify
the necessity of a custom architecture to optimize the
decompression process and its specific requirements.

The computational architecture must include:

e A custom memory system to optimize the storing of
the string of compressed data without affecting the
compression ratio.
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e A custom bank registers that provides a fast storing
of the temporal data required in the decompression
process.

o Hardwired instructions to perform the decoding process
at bit level.

o A pipeline fashion design to improve the throughput.

To implement the custom architecture, we use a Field-
Programmable Gate Array (FPGA). The FPGAs have been
effectively used in high performance computing because they
allow designers to create custom architectures, which can
achieve a better performance. An FPGA implementation can
be seen as a first version of an Application-specific Integrated
Circuit (ASIC).

A. A computational architecture for the decoding process

One of the main challenges in this work is the implemen-
tation of the decoding process into a parallel architecture,
because of its sequential nature.

Several parallel Huffman decoders have been developed
for applications where the dynamic range is known and
bounded, such as text, image or video applications [17], [18].
A bounded dynamic range helps to develop the computa-
tional architecture.

However, for seismic data, the dynamic range is wider and
changes from one seismic dataset to other. Furthermore, the
behavior of the code-word lengths can change significantly
from one seismic dataset to another. We aim to develop a
Huffman decoder that works for any seismic dataset, no
matter the dictionary length and the behavior of the code-
word lengths.

It was determined the necessity of a preliminary study that
allowed us to establish the behavior of the Huffman dictio-
naries generated for our seismic datasets. The study aimed
to find all parameters required to design a computational
architecture to develop a parallel decoder. In this study, we
encoded 12 seismic shot. Prior to encoding the seismic data,
a uniform quantization was applied to each dataset, which
uses a number of quantification-bits that guarantees a SNR
around 40 dB [13].

Table I shows the length of the Huffman dictionaries,
which were obtained when we encoded 12 seismic shot. Note
that how the dictionary lengths change from one seismic
dataset to another. This table also shows results regarding
compression ratio and SNR.

Table II shows the behavior of the code-words lengths and
the percentage of data that is encoded by using code-words
with lengths between 1 and 5 bits.

For example, Table II shows that for the seismic shot 1,
there are: three code-words of 3-bits, two code-words of 4-
bits and, four code-words of 5-bits. Additionally, the 58.26%
of the seismic shot 1 is encoded by code-words with these
lengths.

The preliminary study allowed us to establish that is hardly
feasible to have full parallel Huffman decoder for seismic
data, because of the amount of computational resources that
a full parallel decoder would demand.

It was established that more than 50% of the data were
encoded by using code-words with lengths between 1 and
5 bits. In some cases, up to 80% of the data is encoded by
code-words with these lengths.

TABLE I: Length of Huffman Dictionaries, CR and SNR

Quantization  Dictionary ~ Compression
Dataset Bits Length Ratio SNR
Shot 1 12 1235 5.79 43.13
Shot 2 12 1260 5.70 45.40
Shot 3 12 1406 5.21 45.09
Shot 4 12 1238 5.16 43.83
Shot 5 12 1563 6.58 45.69
Shot 6 11 1617 7.72 40.10
Shot 7 12 1622 6.16 45.85
Shot 8 11 1629 7.87 40.18
Shot 9 12 1313 8.20 44.12
Shot 10 11 1578 8.26 40.19
Shot 11 12 1438 10.02 44.87
Shot 12 12 948 8.02 44.08

Therefore, by decoding in parallel the five most frequent
symbols, it is guaranteed that, in average, 67,51% of the
decoding process will be done in a parallel fashion.

TABLE II: Code-word lengths

Seismic Representation
shot 1 bit 2bits 3 bits 4 bits 5 bits percentage
Shot 1 0 0 3 2 4 58.26%
Shot 2 0 0 2 3 6 61.48%
Shot 3 0 0 0 5 6 53.16%
Shot 4 0 0 0 5 7 51.45%
Shot 5 0 1 2 2 2 65.09%
Shot 6 0 1 2 2 3 75.72%
Shot 7 0 1 2 2 2 61.51%
Shot 8 0 1 2 2 2 75.14%
Shot 9 1 0 2 0 2 73.87%
Shot 10 1 0 2 0 2 80.65%
Shot 11 0 1 2 2 2 76.12%
Shot 12 0 2 1 2 1 77.71%

We developed a computational architecture to decode in
parallel the five most frequent symbols. This architecture is
an improved version of our previous work [11], which was
optimized to perform the decoding process at bit level.

Figure 2 compares the average number of clock cycles
between our new architecture and our previous work [11].
Note that, there is a significant improvement regarding the
average number of clock cycles.

T T T T

I Version 1[13]
70 - | EZZEA Version 2

Average Number of Clock Cycles

7
10+ %
0le77 I.W IZ I

[
Quantization bits

Fig. 2: Average number of clock cycles for the Huffman
Decoder versions
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Implementing the transformation stage

The implementation of the transformation stage was based
on our previous work [19], which a computational architec-
ture to calculate the inverse 1-D discrete wavelet transform
using a lifting-based scheme for the CDF 2.2 wavelet filter.

The reconstruction of both odd and even samples requires
one clock cycle [19]. This throughput allowed us to include
this transformation stage in a pipeline fashion, i.e. decom-
pression time is mainly governed by the decoding stage.

IV. IMPLEMENTING THE STRATEGY

The platform used to test our strategy consists of a CPU
and the LXT ML507 Development Board, which includes a
Virtex 5 XC5VFX70T FPGA. The communication between
CPU and FPGA was accomplished through PCle bus.

Figure 3 shows the parallel architecture implemented,
which has N decompression cores working in parallel.

This architecture has an optimized memory system con-
sisting of three memory banks. The first bank is used to store
the Huffman dictionary (MEMORY BANK 0). The second
one is used to store the compressed data (MEMORY BANK
1), and the third bank is used to store the results of the
decompression process (MEMORY BANK 2). Each bank has
N dual port memories with 4096 memory positions each.

The ports of the memories are multiplexed and controlled
by an access logic, which is responsible for controlling read
and write operations over the memories.

Figure 4 shows the time schedule carried out to test the
strategy. First, the Huffman dictionary is sent and stored in all
N the memories of MEMORY BANK 0. Then, each section
of the compressed data is sent sequentially to each memory
of MEMORY BANK 1. Note that once a data section has been
sent, the corresponding decompression core starts to operate.

V. RESULTS

Figure 5 shows the speedup in the transfer process by the
proposed strategy. We compared between two different im-
plementations. The first one is a compression-decompression
algorithm without transformation stage (i.e. quantization and
coding stages), which aims to reduce the decompression
time by removing the transformation stage. The second one
is a transform-based algorithm, which aim to improve the
compression ratio by using the transformation stage.

The results are presented for different values of compres-
sion ratio and for different number of computational cores.
The speedup was calculated as follows:

tirad 7 (2)
i1+t

where t..q is the traditional transfer time, t, is the com-
pressed data transfer time and, t5 is the decompression time
(Figure 1)

Figure 5a shows the speedup results for 12 bits of quan-
tification. In this case a compression ratio of 7.51 is achieved
for the transformation-based implementation, while a com-
pression ratio of 5.79 is achieved for the non-transformation
implementation. For the transformation-based implementa-
tion, a speedup of 2.82x is achieved by 11 cores working in
parallel, which gives a percentage increase of 51.3% when
compared with non-transformation implementation.

speed_up =

Note that the speedup improves as the compression radio
increases (Figures 5b,5¢ and, 5d), because the Huffman
decoder performance depends on the compression ratio.
For example, Figure 5d shows that the speedup for the
transformation-based implementation is 10.33x for a com-
pression ratio of 16.32.

VI. DISCUSSION

Previous works have failed to speed up the transfer process
by using compression strategies because of the trade-off
between compression ratio and decompression time [20],
[9].We have implemented a optimized parallel architecture
to face this trade-off.

The decompression process was implemented in a pipeline
fashion, allowing the inclusion of the transformation stage
without increasing the decompression time, i.e. decompres-
sion time is governed by the stage that takes more clock cy-
cles. In this case, the decompression time is mainly governed
by the decoding process. Therefore, the strategy depends on
the compression ratio. As the compression ratio increases,
the achieved speedup also increases.

Our results shows that the proposed strategy achieves
a poor performance for a number of quantification bits
above 11. There are two principal reasons for this poor
performance.

At this level of compression ratio, the percentage of code-
words that can be decoded in parallel is reduced. In this
case, the performance can be improved by extending the
computational architecture to decode more code-words in
parallel.

A second reason is due to the proposed strategy is depen-
dent on the amount data that are transferred (Equation 2).
As the amount of the decompressed data increases the
performance is improved because %4, in Equation 2, is
proportional to the amount of data. Our results were obtained
by storing the compressed data at the maximum FPGA
memory capacity (Figure 5).

Figure 6 estimates, by a spline interpolation, the speed up
for a larger FPGA. Note that with 24 decompression cores,
it will be achieved a speed up of 4x.

On the other hand, the proposed strategy is limited by
the I/0 bottleneck itself, which means that the number of
the decompression cores working concurrently is limited
by the amount of seismic data that can be sent to the
FPGA. Our results are inconclusive regarding the maximum
number of cores that can operating currently into the parallel
implementation.

VII. CONCLUSIONS

We propose a strategy based on an optimized compres-
sion/decompression process to reduce the impact of the I/O
bottleneck in a heterogeneous cluster. The strategy involves
to compress the seismic data on-site while they are being
acquired. The transfer operations from disk to node memory
are done by using the compressed data to reduce both
the load time from the disk and the transfer time through
the PCle bus. Our results show that the proposed strategy
effectively reduces the impact of the I/O bottleneck and can
improve the cluster’s overall performance.
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