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Abstract—In this paper, the problem on the asymptotic syn-
chronization of complex dynamical networks on time scales is
investigated. By constructing appropriate Lyapunov-Krasovskii
functionals and using some effective mathematical techniques,
several novel synchronization criteria for the considered com-
plex networks are obtained. Finally, a numerical example is
given to illustrate the effectiveness of theoretical results.

Index Terms—synchronization, complex dynamical networks,
Lyapunov-Krasovskii functionals, time scales

I. INTRODUCTION

COmplex dynamical networks(CDNS) have recently at-
tracted increasing attention from various fields of sci-

ence and engineering[1-8]. The synchronization phenomena
are common and important in real-world networks, such as
synchronization on the Internet, synchronization transfer of
digital or analog signals in communication networks and syn-
chronization related to biological neural networks [10-32].
Therefore, the synchronization analysis of complex networks
is very important both in theory and practice. As a typical
collective behavior in complex networks, synchronization
or consensus problem has been widely studied in the past
decades[5-11].

However, the above mentioned complex dynamical net-
works are either continuous-time CDNS or discrete-time
CDNS, it is troublesome and is not necessary to study syn-
chronization in two kinds of models. In real-world systems,
the interaction among agents can happen at any time, may be
some continuous time intervals accompanying some discrete
moments. So, it is necessary and meaningful to consider both
continuous-time and discrete-time cases at the same time in
network systems. Empirical results show that the theory of
time scales is not only a pure theoretical field of mathematics
but also a useful tool to deal with many practical problems.
The field of dynamic equations on time scales contains links
and extends the classical theory of differential and difference
equations. Recently, the theory of time scale calculus has
been applied in neural networks and complex networks [38-
43]. Since it provides a powerful tool to generalize the
discussion of these systems, the theory is undergoing a
rapid development. In [38,39], the authors studied the global
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exponential synchronization of CDNS on time scales. In
[40,42], the authors discussed the global stability of complex-
valued neural networks on time scales. In fact, the problem of
asymptotic synchronization of CDNS on time scales is also
to be important and challenging. As an attempt, in this paper,
we will combine continuous-time and discrete-time cases
together and design the consensus/synchronization protocols
under a unified framework, and then some novel asymptotic
synchronization criteria for the CDNS on time scales will be
established by constructing appropriate Lyapunov-Krasovskii
functionals and using linear matrix inequality(LMI[36]) tech-
niques.

The remainder of this paper is organized as follows. In
section 2, some preliminaries and notations are given. In
section 3, several novel criteria are derived to guarantee the
complex networks to be synchronized. In section 4, some
numerical results are given to support our conclusions.

II. PRELIMINARIES AND NOTATIONS

In order to obtain the main results, some elementary nota-
tions and lemmas in the theory of time scales are presented
as follows.

In 1980s, Stefan Hilger initiated the theory of time scale
calculus. Bohner and Peterson developed and consummated
it[33-35]. This novel and fascinating type of mathematics
is more general and versatile than the traditional theories of
differential and difference equations, as it can mathematically
describe continuous and discrete hybrid processes under one
framework, hence it is the optimal way for accurate and
malleable mathematical modeling.

Throughout this paper, N and Z denote the positive integer
collection and integer collection, respectively. Rn and Rn×m
denote the n-dimensional Euclidean space and the set of all
n×m real matrices, respectively. P > 0 means that matrix
P is real, symmetric and positive definite. The superscript
T stands for a matrix transposition. For square matrices M
and N, the notation M>(≥, <,≤)N denotes M − N is a
positive-definite (positive-semi-definite, negative, negative-
semi-definite) matrix. I and o denote the identity matrix
and the zero matrix with compatible dimensions, respec-
tively, diag{. . .} stands for a block-diagonal matrix. The
Kronecker product of matrices U∈ Rn×m and R∈ Rp×q
is a matrix in Rnp×mq and denoted as U⊗R. Let ω ≥ 0 and
C([−ω, 0]T;Rn) denote the family of continuous functions
φ from [−ω, 0]T to Rn with the norm ‖ φ ‖= sup−ω≤θ≤0 ‖
φ(θ) ‖, where ‖ · ‖ is the Euclidean norm in Rn.

A time scale T is an arbitrary nonempty closed subset of
the real set R with the topology and ordering inherited from
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R. Set [a, b]T := {t ∈ T, a ≤ t ≤ b}. T+ := {t ∈ T, t ≥ 0}.
Assume that 0 ∈ T, T is unbounded above, that is, supT =
∞. The forward and backward jump operators σ, ρ : T→ T
are defined by σ(t) := inf{s > t : s ∈ T}; ρ(t) :=
sup{s < t : s ∈ T}, respectively, and the graininess µ :
T→ R+ is defined by µ(t) := σ(t)− t.

We put inf∅ := supT and sup∅ := infT, where ∅
denotes the empty set.

A point t ∈ T, t > inf T, is said to be left-dense if ρ(t) =
t, right-dense if t < supT and σ(t) = t, left- scattered if
ρ(t) < t and right-scattered if σ(t) > t. If T has a left-
scattered maximum m, then we define Tk to be T − {m}.
Otherwise Tk = T.

A function f : T → R is called right-dense continuous
provided it is continuous at right-dense point of T and the
left side limit exists (finite) at left-dense point of T. The set
of all right-dense continuous functions on T is defined by
Crd = Crd(T) = Crd(T,R).

A point t ∈ T, t > inf T is called regressive provided
1 + µ(t)f(t) 6= 0,∀t ∈ T.

Definition 2.1. (Bohner and Peterson [33]). For a function
f : T → R, t ∈ Tk, the delta derivative of f(t), f∆(t), is
the number (if it exists) with the property that, for a given
ε > 0, there exists a neighborhood U of t such that

| [f(σ(t))− f(s)]− f∆(t)[σ(t)− s] |< ε | σ(t)− s |,

for all s ∈ U .
For all t ∈ Tk, one can get

f(σ(t)) = f(t) + µ(t)f∆(t).

If f and g are two differentiable functions, then the product
rule for the derivative of product f · g is that

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ.

Definition 2.2. A function F : T → R is called a delta-
antiderivative of f : T → R provided F∆ = f holds for all
t ∈ Tk. In this case, the integral of f is defined by∫ t

a

f(s)∆s = F (t)− F (a),

for t ∈ T. Then we have

(

∫ t

a

f(s)∆s)∆ = f(t),

for t ∈ Tk.
Let A = (aij) be an m×n-matrix-valued function on T.

We say that A is differentiable on T provided each entry of
A is differentiable on T. In this case, we put

A∆ = (a∆
ij).

Similarly, we denote that Aσ = (aσij).

Lemma 2.1. (Bohner and Peterson [33]) Suppose Φ and
Ψ are differentiable n×n-matrix-valued functions. Then
(i) (Φ + Ψ)∆ = Φ∆ + Ψ∆;
(ii) (aΦ)∆ = aΦ∆ if a is a constant;
(iii) (ΦΨ)∆ = Φ∆Ψσ + ΦΨ∆.

Lemma 2.2. ([37])For any given constant c, and any ma-
trices P,Q,R, S with appropriate dimensions, the Kronecker

product has the following properties:
(i) (cP )⊗Q = P ⊗ (cQ);
(ii) (P +Q)⊗R = P ⊗R+Q⊗R;
(iii) (P ⊗Q)(R⊗ S) = (PR)⊗ (QS);
(iv) (P ⊗Q)T = PT ⊗QT .

In this paper, the asymptotic synchronization problem is
investigated for a class of complex networks with varying
time delays which is described by the following dynamic
equation on time scale T:

x∆
i (t) = −Dxi(t) +Af(xi(t)) +Bf(xi(t− τ(t)))

+ ΣNj=1CijΓxj(t) +J(t), i = 1, 2, . . . , N, (1)

where t ∈ T, xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn
is the state vector of the ith network at time t; D de-
notes a known connection matrix; A and B denote the
connection weight matrices; Γ ∈ Rn×n is the matrix
describing the inner-coupling between the subsystems at
time t; C = (Cij)N×N is the outer-coupling configuration
matrix representing the coupling strength and the topological
structure of the complex networks. J(t) is the external
inputs. The τ(t) stands for the time delay. f(xi(t)) =
(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T is an unknown but
sector-bounded nonlinear function.

Let s(t) is a solution of an isolated node satisfying

s∆(t) = −Ds(t) +Af(s(t)) +Bf(s(t− τ(t))).

Defining the synchronization errors as ei(t) = xi(t)−s(t),
then the system (1) can be showed as:

e∆
i (t) = −Dei(t) +Af̄(ei(t)) +Bf̄(ei(t− τ(t)))

+ ΣNj=1CijΓej(t) + J(t), i = 1, 2, . . . , N, (2)

where f̄(ei(t)) = f(xi(t))− f(s(t)), i = 1, 2, . . . , N.
The initial conditions associated with system (1) are given

by

xi(s) = ϕi(s) ∈ Crd([−τ, 0]T,Rn), i = 1, 2, . . . , N,

where ϕi(s) is rd-continuous, and the corresponding state
trajectory is denoted as xi(t, ϕi).

Let

e(t) = [eT1 (t), eT2 (t), . . . , eTN (t)]T ,

 = [JT (t), JT (t), . . . , JT (t)]T ,

F (e(t)) = [f̄T (e1)(t), f̄T (e2)(t), . . . , f̄T (eN )(t)]T ,

together with the Kronecker product for matrices, system (2)
can be recast into

e∆(t) = −(IN ⊗D)e(t) + (IN ⊗A)F (e(t))

+ (IN ⊗B)F (e(t− τ(t))) + (C ⊗Γ)e(t) + . (3)

Throughout this paper, the following assumptions are needed.

Assumption 2.1. There exist a constant k > 0 and a semi-
positive define matrix Γ, such that

FT (e(t))F (e(t)) ≤ keT (t)Ξe(t).

Assumption 2.2. The outer-coupling configuration matrix
of the complex networks (1) satisfies

Cij = Cji ≥ 0(i 6= j), Cii = −ΣNj=1,j 6=iCij (i, j = 1, 2, . . . , N).
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Assumption 2.3. The time-varying delay is a delta deffer-
entiable function with τ∆(t) ≤ 1.

Remark 2.1. System (1) is a general model of a class
of complex networks. Its one special case with continuous
time system is the following:

dxi(t)

dt
= −Dxi(t) +Af(xi(t)) +Bf(xi(t− τ(t)))

+ ΣNj=1CijΓxj(t) +J(t), i = 1, 2, . . . , N, (4)

for t ∈ [t0,+∞). If T = Z, then its another special case
with discrete time system is the following:

∆xi(k) = −Dxi(k) +Af(xi(k)) +Bf(xi(k − τ(k)))

+ΣNj=1CijΓxj(k)+J(k), i = 1, 2, . . . , N, (5)

for t = k ∈ Z, where τ(k) ∈ N,∆xi(k) = xi(k+1)−xi(k)
is the forward difference operator.

III. MAIN RESULTS

The continuous-time system(4) and the discrete-time sys-
tem(5) are unified to the system(1). The main objective
of this paper is to study the synchronization problem of
system(1) under the same framework.

Theorem 3.1. Suppose that the assumptions holds, there
exist n × n positive-define matrices R,Φ,Ψ, such that the
following LMI is satisfied:

θ =


θ11 0 θ13 θ14

~ θ22 0 0
~ 0 θ33 θ34

~ 0 θ43 θ44

 < 0,

where

θ11 = 2(U ⊗R)Λ + uΛT (U ⊗R)Λ + U ⊗ Φ + kΞ,

θ13 = (U ⊗R)(IN ⊗A) +
1

2
u[ΛT (U ⊗R)(IN ⊗A)

+ (IN ⊗A)T (U ⊗R)Λ],

θ14 = (U ⊗R)(IN ⊗B) +
1

2
u[ΛT (U ⊗R)(IN ⊗B)

+ (IN ⊗B)T (U ⊗R)Λ],

θ22 = −U ⊗ Φ(1− τm),

θ33 = u(IN ⊗A)T (U ⊗R)(IN ⊗A) + U ⊗Ψ− I,

θ34 =
1

2
u(IN ⊗A)T (U ⊗R)(IN ⊗B)

+
1

2
u(IN ⊗B)T (U ⊗R)(IN ⊗A),

θ44 = u(IN ⊗B)T (U ⊗R)(IN ⊗B)− (U ⊗Ψ)(1− τm),

where
Λ = C ⊗ Γ− IN ⊗D,

U =

N − 1 −1 · · · −1
−1 N − 1 · · · −1
. . . · · · · · · · · ·
−1 −1 · · · N − 1

 ,
then system(1) can reach asymptotic synchronization.

Proof. Construct the following Lyapunov-Krasovskii func-
tional:

V (t) = V1 + V2 + V3,

where

V1 = eT (t)(U ⊗R)e(t),

V2 =

∫ t

t−τ(t)

eT (s)(U ⊗ Φ)e(s)∆s,

V3 =

∫ t

t−τ(t)

FT (e(s))(U ⊗Ψ)F (e(s))∆s.

Taking the derivative of Vi(t)(i = 1, 2, 3) along the trajecto-
ries of (2), we have

V ∆
1 (t) = eT (t)(U ⊗R)e∆(t) + (e∆)T (t)(U ⊗R)eσ(t)

= eT (t)(U ⊗R)e∆(t) + (e∆)T (t)(U ⊗R)[e(t) + e∆(t)u]

= 2eT (t)(U ⊗R)[Λe(t) + (IN ⊗A)F (e(t)) + IN ⊗B
· F (e(t− τ(t))) + J ] + u[Λe(t) + (IN ⊗A)F (e(t))

+ IN ⊗BF (e(t− τ(t))) + J ]T · U ⊗R[Λe(t)

+ (IN ⊗A)F (e(t)) + IN ⊗BF (e(t− τ(t))) + J ]

= 2eT (t)(U ⊗R)Λe(t) + 2eT (t)(U ⊗R)(IN ⊗A)F (e(t))

+ 2eT (t)(U ⊗R)(IN ⊗B)F (e(t− τ(t)))

+ 2eT (t)(U ⊗R)J + u[eT (t)ΛT + FT (e(t))(IN ⊗A)T

+ FT (e(t− τ(t)))(IN ⊗B)T + JT ]U ⊗R[Λe(t)

+ (IN ⊗A)F (e(t)) + IN ⊗BF (e(t− τ(t))) + J ]

= 2eT (t)(U ⊗R)Λe(t) + 2eT (t)(U ⊗R)(IN ⊗A)F (e(t))

+ 2eT (t)(U ⊗R)(IN ⊗B)F (e(t− τ(t)))

+ 2eT (t)(U ⊗R)J + ueT (t)ΛT (U ⊗R)Λe(t)

+ ueT (t)ΛT (U ⊗R)(IN ⊗A)F (e(t))

+ ueT (t)ΛT (U ⊗R)(IN ⊗B)F (e(t− τ(t)))

+ uFT (e(t))(IN ⊗A)T (U ⊗R)Λe(t)

+ uFT (e(t))(IN ⊗A)T (U ⊗R)(IN ⊗A)F (e(t))

+ uFT (e(t))(IN ⊗A)T (U ⊗R)(IN ⊗B)F (e(t− τ(t)))

+ uFT (e(t− τ(t)))(IN ⊗B)T (U ⊗R)Λe(t)

+ uFT (e(t− τ(t)))(IN ⊗B)T (U ⊗R)(IN ⊗A)

F (e(t)) + uFT (e(t− τ(t)))(IN ⊗B)T (U ⊗R)

· (IN ⊗B)F (e(t− τ(t))). (6)

V ∆
2 (t) = eT (t)(U ⊗ Φ)e(t)

− eT (t− τ(t))(U ⊗ Φ)e(t− τ(t))(1− τ∆(t). (7)

V ∆
3 (t) = FT (e(t))(U ⊗Ψ)F (e(t))− FT (e(t− τ(t)))

(U ⊗Ψ)F (e(t− τ(t)))(1− τ∆(t)). (8)

Considering assumption 1, we can deduce

V ∆
3 (t) ≤ FT (e(t))(U ⊗Ψ− I)F (e(t)) + keT (t)Ξe(t)

− (1− τm)FT (e(t− τ(t)))(U ⊗Ψ)F (e(t− τ(t))). (9)

Then combing with the terms in (6)− (9), we can get

V ∆(t) < ξT (t)θξ(t) < 0,

where

ξT (t) = [eT (t), eT (t− τ(t)), FT (e(t)), FT (e(t− τ(t)))].

Based on the theorem of Lyapunov-Krasovskii stability
theorem, the system (1) can achieve the desired synchro-
nization and the proof is completed.

Remark 3.1. If T = R, then u(t) = 0, the system (1) can
be rewritten as the continuous system (4). From Theorem
3.1, we can immediately derive the following result.
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Theorem 3.2. Suppose that the assumptions hold,there
exist n × n positive-define matrices R,Φ,Ψ, such that the
following LMI is satisfied:

θ =

θ11 0 θ13 θ14

~ θ22 0 0
~ 0 θ33 θ34

~ 0 θ43 θ44

 < 0,

where

θ11 = 2(U ⊗R)Λ + U ⊗ Φ + kΞ,

θ13 = (U ⊗R)(IN ⊗A) + (IN ⊗A)T (U ⊗R)Λ],

θ14 = (U ⊗R)(IN ⊗B) + (IN ⊗B)T (U ⊗R)Λ],

θ22 = −(U ⊗ Φ)(1− τm),

θ33 = U ⊗Ψ− I,
θ34 = 0,

θ44 = −(U ⊗Ψ)(1− τm).

Then system (4) can reach asymptotic synchronization.

Remark 3.2. If T = N, then u(t) = 1, the system (1) can
be rewritten as the discrete system (5), from Theorem 3.1,
we can immediately derive the following result.

Theorem 3.3. Suppose that the assumptions holds, there
exist n × n positive-define matrices R,Φ,Ψ, such that the
following LMI is satisfied:

θ =

θ11 0 θ13 θ14

~ θ22 0 0
~ 0 θ33 θ34

~ 0 θ43 θ44

 < 0,

where

θ11 = 2(U ⊗R)Λ + ΛT (U ⊗R)Λ + U ⊗ Φ + kΞ,

θ13 = (U ⊗R)(IN ⊗A) +
1

2
[ΛT (U ⊗R)(IN ⊗A)

+ (IN ⊗A)T (U ⊗R)Λ],

θ14 = (U ⊗R)(IN ⊗B) +
1

2
[ΛT (U ⊗R)(IN ⊗B)

+ (IN ⊗B)T (U ⊗R)Λ],

θ22 = −U ⊗ Φ(1− τm),

θ33 = (IN ⊗A)T (U ⊗R)(IN ⊗A) + U ⊗Ψ− I,

θ34 =
1

2
(IN ⊗A)T (U ⊗R)(IN ⊗B)

+
1

2
(IN ⊗B)T (U ⊗R)(IN ⊗A),

θ44 = (IN ⊗B)T (U ⊗R)(IN ⊗B)− (U ⊗Ψ)(1− τm).

Then system (5) can reach asymptotic synchronization .

Remark 3.3. If τ(t) = 0, that is equivalent to B = 0 in
the system(1), then we have :

Corollary 3.1. Suppose that the assumptions hold, there
exist n × n positive-define matrices R,Φ,Ψ, such that the
following LMI is satisfied:

θ =

θ11 0 θ13

~ θ22 0
~ 0 θ33

 < 0,

Fig. 1. synchronization error ei1(t) of the system (10).

where

θ11 = 2(U ⊗R)Λ + uΛT (U ⊗R)Λ + U ⊗ Φ + kΞ,

θ13 = (U ⊗R)(IN ⊗A) +
1

2
u[ΛT (U ⊗R)(IN ⊗A)

+ (IN ⊗A)T (U ⊗R)Λ],

θ22 = −U ⊗ Φ(1− τm),

θ33 = u(IN ⊗A)T (U ⊗R)(IN ⊗A) + U ⊗Ψ− I.

Then system (1) can reach asymptotic synchronization.

IV. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is given to verify the
theoretical result.

Example. Consider the two-dimensional delayed dynam-
ical network

x∆
i (t) = −Dxi(t) +Af(xi(t)) +Bf(xi(t− τ(t)))

+Σ10
j=1CijΓxj(t) + J(t), (10)

where xi(t) = (xi1(t), xi2(t))T , (i = 1, 2, . . . , 10) is the
state vector of the ith subsystem, the activation function
is f(xi(t)) = (f1(xi1(t), f2(xi2(t)))T with fj(xij(t)) =
tanh(xij(t)), (j = 1, 2). The time scale is chosen as T =
∪∞i=0[ti, ti + 0.1], t0 = 0, ti+1 = ti + 0.1, τ(t) = 1 + |sint|.
and the parameters:

D =

[
1 0
0 1

]
, A =

[
1.5 −0.15
5.15 2.5

]
, B =

[
1 −0.5
−2.5 1.5

]
,

Γ =

[
0.3 0
0 0.3

]
, J(t) =

[
0
0

]
, U =


−9
2

1
2
· · · 1

2
1
2

−9
2
· · · 1

2
. . . · · · · · · · · ·
1
2

1
2
· · · −9

2


It is easy to verify that the system (10) can achieve

synchronization. Fig.1 and Fig.2 show the simulation results
of synchronization of system (10), where ei1(t) and ei2(t)
are the synchronization errors.

V. CONCLUSION

In this paper, both continuous-time and discrete-time syn-
chronization have been discussed under a unified framework,
some new synchronization conditions have been proposed.
Compared with the existing results, the computational com-
plexity and control cost are reduced greatly. However, the
paper only considers the systems converge asymptotically to
the equilibrium as the time goes to infinity. Therefore, how
to design a finite time-controller for the systems is naturally
regarded as another interesting research topic.
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Fig. 2. synchronization error ei2(t) of the system (10).
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