
 

 

Abstract—Numerical solution of the fractional differential 

equation is almost an important topic in recent years. In this 

paper, in order to solve the numerical solution of a class of 

fractional partial differential equation of parabolic type, we 

present a collocation method of two-dimensional Chebyshev 

wavelets. Using the definition and property of Chebyshev 

wavelets, we give the definition of two-dimensional Chebyshev 

wavelets. We transform the initial problems into solving a 

system of nonlinear algebraic equations by applying the 

wavelets collocation method. Convergence analysis is 

investigated to show that the method is convergent. The 

numerical example shows the effectiveness of the approach. 

 
Index Terms—fractional derivative, fractional partial 

differential equation, Chebyshev wavelets, convergence analysis, 

numerical solution 

 

I. INTRODUCTION 

RACTIONAL differential equations are generalizations 

of differential equations that replace integral order 

derivatives by fractional order derivatives. In general, 

ordinary differential equations are applied on describing 

dynamic phenomena in various fields such as physics, 

biology and chemistry. However, for some complicated 

systems the common simple differential equations cannot 

provide agreeable results. Therefore, in order to obtain better 

models, fractional differential equations are employed 

instead of integer order ones [1-3]. On the other hand, the 

fractional differential equations are too complicated to solve 

by analytical methods and theoretical background for this 

problem is not well developed. Hence, in recent 10 years 

mathematicians have discovered new methods of numerical 

solution. There are several methods to solve fractional 

differential equations, such as variational iteration method [4, 

5], Adomain decomposition method [6], fractional 

differential transformation method [7], fractional finite 

difference method [8], and wavelets method [9, 10]. 

Orthogonal functions and polynomials have been used by 

many authors for solving various functional equations. The 

main idea of using an orthogonal basis is that the problem 

under study reduces to a system of linear or nonlinear 
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algebraic equations. This can be done by truncated series of 

orthogonal basis function for the solution of problem and 

using the operational matrices. In this paper, we introduce a 

method to approximate the solutions of fractional partial 

differential equations with given initial values. In this 

technique, the solution is approximated by Chebyshev 

wavelets vectors. The considered equations are as follows 
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fractional derivative of Caputo sense. 

II. FRACTIONAL CALCULUS 

Definition 1. The Riemann-Liouville fractional integral 

operator of order 0   of a function is defined as [11] 

1

0

1
( ) ( ) ( ) , 0

( )

x

J f x x f d    


  
             (2) 

0 ( ) ( )J f x f x                                                               (3) 

Definition 2. The fractional differential operator in Caputo 

sense is defined as 
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The Caputo fractional derivatives of order  is also given by 

( ) ( )r rD f x J D f x  , where 
rD is the usual integer 

differential operator of order r . The relation between the 

Caputo operator and Riemann-Liouville operator are given 

by: 

( ) ( )D J f x f x                                                            (5) 
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III. THE SECOND KIND CHEBYSHEV WAVELETS 

For the interval [0,1) , the second kind Chebyshev wavelets 

are defined as [12] 
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where 0,1, ,2 1kn   , 0,1, , 1m M  , ,k M are 

fixed positive integer, ( )mU t denote the shifted second kind 

Chebyshev polynomials, which are defined on the interval 

[0,1) as follows 
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The second kind Chebyshev wavelets functions are 

orthogonal with respect to the weight function ( )n t , as 

follows 
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Any function 
2( ) [0,1)u t L can be expressed by the 

second kind Chebyshev wavelets 
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n m

u t c t
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where ( ), ( )nm nmc u t t , and ,  denotes the inner 

product. 

By truncating the infinite series in Eq.(10), we can 

rewritten Eq.(10) as 
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where C and ( )t are ˆ 2km M column vectors 
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For simplicity, Eq.(11) can be also written as 
ˆ

1
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where 
i nmc c , i nm  . The index i is determined by 

the relation 1i Mn m   . Therefore, we can also write 

the vectors 

ˆ1 2[ , , , ]T
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Similarly, for the function ( , )u x t over [0,1) [0,1) can be 

expressed as follows 
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Eq.(17) can be rewritten as 
ˆ ˆ
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where [ ]ijU u and ( ), ( , ), ( )ij i ju x u x t t  are 

the second kind Chebyshev wavelets coefficients. 

IV. SOLUTION OF THE FRACTIONAL PARTIAL DIFFERENTIAL 

EQUATIONS 

In this section, the second kind Chebyshev wavelets is 

applied to solve a class of fractional partial differential 

equations Eq.(1). For solving this problem, we assume that 
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Integrating Eq.(1) by using Riemann-Liouville fractional 

integral operator, we have 
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Substituting Eq.(19) into Eq.(20), we get 
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Dispersing Eq.(21) by points 
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obtain a nonlinear algebraic equations which contains 
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equations. The equations can be 

solved easily by using Matlab. 

V. CONVERGENCE ANALYSIS 

Theorem 1 The Chebyshev wavelets numerical solutions 
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This completes the proof. 

VI. NUMERICAL EXAMPLES 

Applying the wavelets collocation method, for convenience,  

take 1 2k k k  and 1 2M M M  , we can acquire the 

numerical solutions of Eq.(1). Fig. 1-4 show the numerical 

solutions for different k , 2M  and 1  . 
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Fig.1 Numerical solution for 4k  . 
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Fig.2 Numerical solution for 5k  . 
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Fig.3 Numerical solution for 6k  . 
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Fig.4 Numerical solution for 7k  . 
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TABLE I 

THE ABSOLUTE ERRORS OF NUMERICAL SOLUTIONS AND EXACT SOLUTIONS 

FOR 0.5  . 

x  0.2t   0.4t   0.6t   0.8t   

0 0 0 0 0 

0.1 4.4561e-005 3.5633e-005 5.5387e-005 6.1754e-005 

0.2 1.7411e-004 1.4214e-004 4.4171e-004 6.7617e-004 

0.3 4.1487e-004 3.0017e-004 4.8102e-004 7.4154e-004 

0.4 6.8432e-004 5.7657e-004 5.7341e-004 8.1123e-004 

0.5 7.4154e-004 6.1761e-004 6.2118e-004 1.0245e-003 

0.6 1.5114e-003 1.6379e-003 1.8841e-003 1.9478e-003 

0.7 1.8013e-003 1.9341e-003 2.0148e-003 2.3884e-003 

0.8 2.2857e-003 2.5322e-003 2.6347e-003 3.7147e-003 

0.9 2.5388e-003 2.9847e-003 3.1012e-003 5.3576e-003 

1 3.0141e-003 3.5411e-003 4.1557e-003 6.7430e-003 

TABLE II 

THE ABSOLUTE ERRORS OF NUMERICAL SOLUTIONS AND EXACT SOLUTIONS 

FOR 1  . 

x  0.2t   0.4t   0.6t   0.8t   

0 0 0 0 0 

0.1 3.9244e-008 1.0931e-007 1.3362e-007 1.2711e-007 

0.2 1.3771e-007 4.3717e-007 5.2583e-007 5.1368e-007 

0.3 3.2441e-007 9.0129e-007 1.2368e-006 1.1457e-006 

0.4 6.7271e-007 1.7678e-006 2.3684e-006 2.3645e-006 

0.5 9.1172e-007 2.8633e-006 3.3546e-006 3.1889e-006 

0.6 1.2781e-006 4.0416e-006 4.6571e-006 4.3686e-006 

0.7 1.9375e-006 5.1121e-006 6.3102e-006 6.6223e-006 

0.8 2.5378e-006 7.5406e-006 8.3554e-006 9.4663e-006 

0.9 3.1102e-006 8.8841e-006 1.0024e-005 1.0785e-005 

1 5.6981e-006 2.4790e-005 4.3243e-005 8.8989e-005 

TABLE III 

THE COMPARISONS FOR DIFFERENT METHOD 1   

x  
0.2t   0.4t   

Chebyshevu  
HPMu  Chebyshevu  

HPMu  

0 0 0 0 0 

0.1 0.01802 0.01799 0.02438 0.02430 

0.2 0.07211 0.07196 0.09738 0.09720 

0.3 0.16235 0.16191 0.21907 0.21870 

0.4 0.28857 0.28784 0.38939 0.38881 

0.5 0.45087 0.44975 0.60844 0.60751 

0.6 0.64951 0.64765 0.87609 0.87482 

0.7 0.88342 0.88152 1.19248 1.19072 

0.8 1.15441 1.15137 1.55752 1.55523 

0.9 1.46088 1.45720 1.97126 1.96833 

1 1.80359 1.79902 2.43008 2.43004 

 

The absolute errors for different x , t and  are 

established in Table I and II. The comparisons between the 

homotopy perturbation method (HPM) [13] and our results 

are given in Table III. 

Through Table I~III, we can also see that the absolute 

errors are vary small, and the errors based on our method are 

less than the errors obtained by HPM. 

VII. CONCLUSION 

The objective of this paper is to demonstrate numerical 

solutions of fractional partial differential equations. The 

technique employs Chebyshev wavelets series approxima- 

tions. Moreover, a convergence analysis is also proved. 

Furthermore, this method converts initial value problems into 

nonlinear systems of algebraic equations. The method is 

computationally very easy and provides a structured 

approach to numerical approximate solutions.  
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