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Abstract—The piecewise-continuous processes of additive
forming sufficiently long in the axial direction solids of con-
ical shape under simultaneous action of end loads that are
statically equivalent to the axial tension–compression with a
time-varying force are studied. The being formed solids exhibit
properties of deformation heredity and aging. On the basis of
the approaches of mechanics of growing solids a nonclassical
boundary value problem of the linear theory of viscoelasticity
of the homogeneously aging isotropic media to describe the
modeled process with the integral satisfaction of the force
condition on the end surface of the formed solid is stated.
A lemma about the possibility to carry in terms of the work
objectives the product of the operator of differentiation with
respect to time and the integral operator of viscoelasticity with
a limit of time integration depending on solid point through
the sign of integral over an arbitrary, expanding due to the
growth, surface inside or on the boundary of the growing solid
is proved. With its help a closed analytical solution of the stated
problem of growing solids mechanics is built. This solution
allows to retrace the evolution of the stress-strain state of the
solid under consideration during and after the process of its
additive formation.

Index Terms—additive manufacturing, growing solid, longi-
tudinal force, taper, viscoelasticity.

I. INTRODUCTION

THE additive formation of solids is realized in a wide
variety of natural and technological processes. Many of

these processes should be considered as continuous growing
processes, such that during the formation of a solid an
infinitely thin layer of additional material joins to its surface
each infinitely small period of time. In the course of additive
processes different factors influence on solids being formed
and cause their deformation. The development of stress-strain
state of such solids is impossible to describe within the
framework of classical concepts of continuum mechanics in
principle. This is due to the lack of any configuration of the
continuously growing solid which could be associated with
introduction of the strain measures. An adequate description
of mechanical behavior of solids deforming in processes
of their continuous growing can be given on the basis of
approaches and methods of mechanics of growing solids
being actively developed nowadays [1]–[6]. Statements and
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solutions of various problems on growing solids deforma-
tion can be found, for example, in [7]–[20]. One can find
there specific examples of solutions of such problems and
discussing a variety of new mechanical effects discovered
thanks to the obtained solutions. Note that among a great
number of papers on additive manufacturing (AM) technolo-
gies written by technologists, chemists, and physicists (see,
e.g., [21]–[43]) a rare one is devoted to mechanical aspects
of analyses of AM fabricated parts and similar problematics.

The present work is devoted to studying additive processes
of formation of the relatively long in the axial direction
conical solids. It is assumed that in the process of formation
of the solid its end surfaces are acted with loading statically
equivalent to the axial tension–compression force which can
in general case change over time [44]. Forming the solid
under consideration is carried out by means of its thickening
in the radial direction due to the influx of additional ma-
terial to the conic side surface. This process is piecewise-
continuous, i.e. consists of arbitrary number of stages of
continuous accreating alternating with arbitrary long pauses
during which the influx of the material does not take place.

In the proposed study we consider the situation when the
solid being formed exhibits the properties of deformation
heredity (viscoelasticity) and aging (weakening the deforma-
tion properties over time regardless stresses existing in the
solid), and therefore, during pauses in the growing process
as well as after the final cessation of growth the solid
continues to change its stress-strain state. This situation is
quite difficult to simulate as rheological manifestations in the
deformation response of the material continuously interact
with mechanical reactions of the solid on the developing in
time process of adding new material elements to it [45]–[47].

The problem is solved in quasistatic statement in the
approximation of small strains. The latter let us consider the
radii of the growing solid ends expanding due to the influx
of additional material to be known functions of time, which
are prescribed by a specific simulated growing process. The
process itself is considered to be those that the additional
material influx to the surface of the formed solid does not
acquire nonzero stresses near this surface at the time moment
of the material inclusion in the composition of this solid. The
difference between the radius of one of the solid end and
the radius of the other one may change arbitrarily during the
process of the solid growing both in size and in sign.

II. CONSTITUTIVE RELATIONS FOR AGING
VISCOELASTIC ACCRETED SOLIDS

We will consider homogeneous isotropic linearly vis-
coelastic aging material described by the following equation
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of state [48], [49]:

T(r, t) = H−1
τ0(r)

[
2E(r, t) + (κ − 1)1 trE(r, t)

]
. (1)

Here τ0(r) is the time of occurrence of stresses at the point of
the solid with the radius-vector r; T and E are the stress and
small strain tensors, 1 is the unit tensor of the second rank;
κ = (1 − 2ν)−1, where ν = const is the Poisson’s ratio.
The timing t is counted from the moment of the material
nucleation. The linear operator H−1

s = G(t)
(
I + Ns

)
is

inverse to the linear integral operator Hs =
(
I −Ls

)
G(t)−1

with the real parameter s > 0, where G(t) is the elastic shear
modulus, I is the identity operator, and{

Ls
Ns

}
f(t) =

∫ t

s

f(τ)

{
K
R

}
(t, τ)dτ,

K(t, τ) = G(τ)
∂∆(t, τ)

∂τ
, ∆(t, τ) =

1

G(τ)
+ ω(t, τ).

K(t, τ) and R(t, τ) are the kernels of creep and relaxation,
∆(t, τ) and ω(t, τ) are the specific strain function and the
creep measure for pure shear (t > τ > 0). It is accepted by
definition that ω(τ, τ) ≡ 0. With this in mind we have the
identity H−1

τ ∆(t, τ) ≡ 1.
The state equation (1) is used in the present work to de-

scribe the mechanical behaviour of growing solids which are
built up additively by attaching the additional material to the
current solid surface. We suppose that the additional material
is being loaded in such accreting process simultaneously with
its attaching to the solid. In this case, the function τ0(r) in
(1) is to be determined in the following way.

The original part V0 of the growing solid was initially
formed stress-free and loaded then before the accreting
process start. In the original part the function τ0(r) should
be identically equal to the time moment t0 of loading of this
part. In the formed due to accreting process additional part
VA of the solid the function τ0(r) should coincide with the
distribution τ∗(r) of moments of attaching particles r of the
additional material to the solid. So,

τ0(r) =

{
t0, r ∈ V0,

τ∗(r), r ∈ VA.
(2)

If the accreting process starts at the time instant t = t1 then,
obviously, τ∗(r) > t1 > t0.

We assume that the considered process of adding the
material to the solid can be adequately modelled as a
process of piecewise continuous accretion. This means that
the process consists of N stages of continuous accretion
t ∈ [t2k−1, t2k) (k = 1, N ) during which an infinitely thin
layer of the additional material adheres to the growing solid
surface every infinitely small time period. Before the first
stage of continuous accretion when t ∈ [t0, t1), between
the stages when t ∈ [t2k, t2k+1) (k = 1, N − 1) and after
the last stage when t ∈ [t2N ,+∞), the additional material
influx is absent, the solid does not grow. The part Σ(t) of
the growing solid surface to which the additional material
continuously inflows at the current time instant t during any
stage of continuous accretion is named the (current) growth
surface. It is clear that the growth surface Σ(t) is the t-level
surface of the function τ∗(r).

We investigate mechanical problems for growing solids
in quasistatic statement and in the approximation of small

strains and displacements. The latter let us consider the time-
variable space domain V (t) = V0 ∪ V∗(t) occupied with the
whole growing solid to the current time instant t to be known
at any time instant and prescribed by the specific simulated
growing process; here the domain V∗(t) ⊆ VA is the piece of
the additional part already formed to the time instant t. So the
growth surface Σ(t) of the growing solid moves in the space
in a known manner, and its motion forms the domain VA.

We denote for the notation conciseness

g◦(r, t) = Hτ0(r) g(r, t) (3)

for arbitrary function g(r, t) of solid point r and time t, and

h◦(t) = Ht0 h(t) (4)

for arbitrary function of time h(t) which is not associated
with specific points of considered solid.

Note that similar to (1) constitutive relations are widely
used to describe the mechanical behavior of various natural
and artificial stone (in particular, concrete), polymers, soil,
ice, wood. Typical experimental curves representing the
evolution with time t of the specific longitudinal strain

ε(t, τ)

σ0
=

[Hτσ0](t)

2(1 + ν)

/
σ0 =

∆(t, τ)

2(1 + ν)

of such material at its uniaxial tension with the constant
stress σ0 applied at the time moment τ can be borrowed,
for example, from [50].

III. PROBLEM DESCRIPTION

Let there be a conical solid of rotation which length l sig-
nificantly exceeds its transverse dimensions. It is made from
isotropic homogeneous aging linearly viscoelastic material
subordinated to the constitutive equation (1).

At the moment t = t0 a load is applied to the ends of
the existing solid. We believe that at every moment of time
t > t0 it is statically equivalent to axial forces acting in the
central points of the ends and varying with time following
the law P (t). We will consider positive the magnitude of
tensile end force.

Some time after the application loading at the time t = t1
we start the process of gradual axisymmetric thickening of
the considered conical solid by adding the additional material
to its lateral initially free from stresses surface. Thickening
occurs in such a way that in each time moment the accreted
solid maintains the shape of a right circular truncated cone
of length l. This process is piecewise continuous in time, i.e.
it consists of N consecutive phases of continuous accreting
t ∈ [t2k−1, t2k) (k = 1, N ), separated by pauses of arbitrary
duration. At the stages of continuous accreting an infinitely
thin layer of material attaches to the solid each infinitely
small period of time. The added material is supposed iden-
tical to the original one. In pauses the influx of additional
material to the solid does not take place and its lateral surface
is free from stresses. In the process of piecewise continuous
accreting and after its completion time-varying central axial
forces P (t) continue to act to the end surfaces of the cone.

Let us investigate the evolution of stress-strain state of the
considered conical solid under specified conditions of load-
ing before the start, during and upon the completion of the
described process of accreting. The process of deformation
is assumed quasi-static, and strains developing — small.
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Fig. 1. A scheme of the simulated process

Changing the geometry of the considered conical solid due
to its piecewise-continuous accreting is completely defined
obviously by defining laws of increasing the radii of its ends
in time. Denote them by a(t) and b(t) for any t > t0.
These functions are continuous and non-decreasing. They are
constant outside the time spans [t2k−1, t2k).

Superpose the reference plane of a cylindrical polar co-
ordinate system with that end of the taper in question
which radius was denoted by a(t). Place the beginning of
coordinates O in the center of this end and extend coordinate
axis Oz perpendicular to it inside the cone. Denote the polar
radius and angle as ρ and ϕ. If {eρ, eϕ,k} is the normalized
local basis of the introduced cylindrical coordinate system
(ρ, ϕ, z), then the radius-vector of an arbitrary point of the
solid can be represented in the form r = eρ(ϕ)ρ+ k z.

A scheme of the simulated process with the introduced
geometrical parameters is illustrated in Fig. 1.

Let the lateral surface of the cone under consideration
moving in space due to the influx of additional material
(accreting) be described by the equation ρ = Λ(z, t), where
Λ(z, t) = a(t)·(1−z/l)+b(t)·z/l. The trace of its passing in
space forms an additional part of the considered solid. At all
time moments t ∈ [t2k−1, t2k) (k = 1, N ) the lateral surface
represents the actual growing surface of the considered
accreted conical solid, i.e. the t-level surface of the function
τ∗(r). Unit vectors of the external (directed from the axis
of the cone) normal line to this surface form a vector field
n(r) = eρ(ϕ) cosα

(
τ∗(r)

)
−ksinα

(
τ∗(r)

)
, in the additional

part of the solid, where α(t) = arctan{[b(t)−a(t)]/l} is the
current shape opening angle of the growing taper.

IV. BOUNDARY VALUE PROBLEM ON THE STAGE
BEFORE THE START OF ACCRETION

Before the start of accretion the stress-strain state of the
considered conical solid can be determined on the basis
of the theory of viscoelasticity of homogeneously aging
isotropic solids [49] and the Saint-Venant principle — from
the solution of the following classical mechanical boundary
value problem with integral force condition on the cone end
surface, for t0 6 t 6 t1:

∇ · T = 0, 0 6 ρ < Λ(z, t0), 0 6 ϕ < 2π;

Ht0T = 2E + (κ − 1)1 trE, E = (∇uT +∇u)/2;

n · T = 0, ρ = Λ(z, t0);∫
{z=l}

∥∥∥∥ k · T
eρ ρ× (k · T)

∥∥∥∥dS =

∥∥∥∥kP (t)
0

∥∥∥∥ ;

u = 0, ∇× u = 0, ρ = 0, z = 0.

(5)

Here u(r, t) is the vector field of displacements. To exclude
displacement components not causing deformation of the
solid we imposed conditions of fixing the neighborhood of
the center point of one of its end surfaces. We require these
conditions to be satisfied after the start of the process of the
considered solid accretion as well.

Using the notation (3) the boundary value problem (5) can
be reformulated for values u, E, T◦:

∇ · T◦ = 0, 0 6 ρ < Λ(z, t0), 0 6 ϕ < 2π;

T◦ = 2E + (κ − 1)1 trE, E = (∇uT +∇u)/2;

n · T◦ = 0, ρ = Λ(z, t0);∫
{z=l}

∥∥∥∥ k · T◦
eρ ρ× (k · T◦)

∥∥∥∥dS =

∥∥∥∥kP (t)
0

∥∥∥∥ ;

u = 0, ∇× u = 0, ρ = 0, z = 0;

(6)

for t0 6 t 6 t1. In the boundary value problem (6) time t is
not a significant variable but acts only as a parameter.

We will call the tensor T◦ the operator stress tensor.

V. BOUNDARY VALUE PROBLEM ON THE STAGE OF
PIECEWISE-CONTINUOUS ACCRETION

A. Transition to the Rate-Characteristics of the Deformation
Process for the Accreted Solid

Due to the objective lack of natural (unstressed) con-
figuration in the growing solid the kinematic description
of the process of its deformation that is traditional in the
mechanics of deformable solids is not suitable for this solid.
However, it is clear that the particles of the new material
after the attaching to the surface of growth continue to move
as a part of continuous, even though growing, solid. This
means that in the region of space occupied by the whole
growing solid at this time, the enough smooth velocity field
v(r, t) of the motion of its particles is uniquely determined.
Therefore, the problem of such a solid deformation can be
put in terms of velocity. In this case the strain velocity tensor
D(r, t) = (∇vT +∇v)/2 may play a part of the deforming
process characteristic in the formulation of the defining
relations of the material. The adopted equation of state (1)
can be rewritten by using this tensor in the form [45]:

S = 2D + (κ − 1)1 trD, (7)

where we have introduced the so-called operator stress
velocity tensor S(r, t) = ∂T◦/∂t.

The approach requires knowing the whole story of chang-
ing the state of additional material elements up to their
inclusion in the composition of the solid considered. In
the studied in the present work process of accreting the
additional material is supposed to be initially free of stresses
(see Section III). In other words, we believe that the addi-
tional material begins to deform directly in the time of its
attaching to the formed solid, and the attaching layers of
additional material to the surface of the solid does not cause
the appearance nonzero stresses in the formed solid near the
surface of its growth:

T = 0, ρ = Λ(z, t), t ∈ [t2k−1, t2k) (k = 1, N). (8)

Note that condition (8) provides the equality to zero of the
stress vector n ·T at the current growth surface, i.e. absence
of any loading onto this surface.
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The condition of instantaneous local equilibrium in the
growing solid has obviously the same form as in the classical
solid of permanent composition. In the considered case
of mass forces absence this condition is expressed by the
standard equation

∇ · T = 0. (9)

It is possible to show [45] that for the simulated growth
process (in the absence of load on the future and the actual
growth surface of the solid during the whole process of
its deformation) this equation generates similar differential
equations for the tensors T◦ and S:

∇ · T◦ = 0, ∇ · S = 0. (10)

Equations (10) are fair at every moment of time t > t1 in the
region of space occupied by the whole growing solid at this
moment. It should be emphasized that these equations are
not a trivial consequence of the equilibrium equation (9), as
in the case of accreting the solid the integral operator Hτ0(r)

and the operator of divergence (∇ · ) do not commute in
general because of the principal dependence of time τ0 of
the occurrence of stresses in the growing solid on the point
of this solid r.

One can also show, following [45], that the specific bound-
ary condition (8) on the moving growth surface ρ = Λ(z, t)
implies the condition on the components of the tensor S, for
every k-th step of continuous accreting, which is similar in
its appearance to the standard in solid mechanics boundary
condition for the stresses:

n · S = 0, ρ = Λ(z, t), t ∈ [t2k−1, t2k). (11)

Indeed, the set of conditions (8) given for all moments t in
the time span [t2k−1, t2k) can be written in the form of the
peculiar initial condition in that part of the solid, which is
formed on the k-th stage of its continuous growth:

T(r, t) = 0, t = τ∗(r),

Λ(z, t2k−1) 6 ρ < Λ(z, t2k).
(12)

According to the definition of the operator Hτ0(r) the con-
dition (12) is equivalent to identity

T◦
(
r, τ∗(r)

)
≡ 0 (13)

in the specified part of the solid. Acting on the identity (13)
with the operator of divergence we get

0 ≡
[
∇ · T◦(r, t)

]∣∣
t=τ∗(r)

+∇τ∗(r) · S
(
r, τ∗(r)

)
.

Attracting the first equation (10) and the geometric identity
n = ∇τ∗/|∇τ∗| (see Sections II, III) we get from the latter
relation the condition (11).

In the pauses between stages of continuous growth and
after the completion of growing the non-traditional condition
(8) on the lateral surface of the considered taper should be
replaced by the classical condition of equality to zero of
the stress vector on this surface: n · T = 0. Acting on this
condition with the operator Hτ0(r) and differentiating the
result by time t, we see that the boundary condition (11)
saves force even out of the time spans [t2k−1, t2k). However,
it has a completely different mechanical nature in this case.

B. Transformation of the Integral Force Conditions at the
Taper End Surface

On the end surface of the cone under consideration after
the start of its piecewise continuous accreting it is necessary
to use the same integral force conditions as in the boundary
value problem (5) stated before the accretion. However, after
the accretion process starts the region of integration {z = l}
begins to depend on time t, and we are to solve an especial
mathematical problem to perform the needed transition from
the original integral conditions for the components of the
tensor T to the integral conditions for the components of the
tensor S using in the corresponding problem statement (see
Subsection V-A). The solution of this mathematical problem
we obtain on the basis of the following supporting statement
which has, as one can see, a general nature.

Lemma. Let Ω0 and ΩA be two arbitrary surfaces sit-
uated inside or on the boundary of an aging viscoelastic
solid subordinated to the state equation (1) and formed in
a process of piecewise continuous accretion in N stages
of continuous growth t ∈ [t2k−1, t2k) (k = 1, N ) with
arbitrary long pauses t2k+1 − t2k (k = 1, N − 1) between
the stages. The surface Ω0 lies entirely within the original
(existing before accreting) part V0 of the solid considered.
The surface ΩA lies entirely in the additional (formed in the
accreting process) part VA of the solid and is obtained by
motion in space of an arbitrary curve Γ(t), t ∈ [t1,+∞),
which belongs to the current growth surface Σ(t) of the
solid at every moment t of its continuous accreting and
is fixed in the pauses between the stages of continuous
accretion and after the accreting process end, i.e. in the time
periods t ∈ [t2k, t2k+1) (k = 1, N ) where t2N+1 = +∞:
ΩA =

{
Γ(t) ⊂ Σ(t)

∣∣ t1 6 t < +∞
}

. Let g(r, t) be an
arbitrary function defined at the points r of the both surfaces
Ω0 and ΩA for any t > τ0(r). Assume that

g
(
r, τ∗(r)

)
≡ 0, r ∈ ΩA. (14)

Then it will be fair the formula

d

dt

[∫
Ω(t)

g(r, t)dS

]◦
=

∫
Ω(t)

∂g◦(r, t)

∂t
dS (15)

for t > t1. Here the surface Ω(t), expanding in time and
being disconnected in general, consists from the surface Ω0

and that part of the surface ΩA which has already been
formed by the time t > t0:

Ω(t) =

{
Ω0, t ∈ [t0, t1],

Ω0 ∪ Ω∗(t), t ∈ (t1,+∞),

Ω∗(t) =
{

Γ(τ)
∣∣ t1 6 τ 6 t

}
⊆ ΩA.

(16)

The proof of Lemma we give in the next Subsection. We
are to emphasize that the surfaces Ω0 and ΩA considered
in the Lemma may have arbitrary curvatures. Meanwhile the
boundaries of these surfaces may not have common points.
It is also possible that Ω0 = ∅. Forming a surface ΩA curves
Γ(t) can be unclosed or closed. In the latter case the surface
ΩA may “circle” the original part of the solid or form a
“tube” enveloping only the material of the additional part of
the having been finally formed solid.

As a surface Ω(t) from the above formulated Lemma in
the being stated in the current Section problem on accreting
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a conical solid it is necessary to consider the flat surface
constituting one end side of the growing cone z = l on every
t > t0. In this case, the surface Ω0 is the circle 0 6 ρ 6 b0.
The surface ΩA is annular, and its forming curves Γ(t) are
the concentric circumference ρ = b(t).

Then by the Lemma because of the condition (12) we have

∂

∂t

[∫
{z=l}

∥∥∥∥ k · T
eρ ρ× (k · T)

∥∥∥∥dS
]◦

=

=

∫
{z=l}

∥∥∥∥ k · S
eρ ρ× (k · S)

∥∥∥∥dS, t > t1.

C. Proof of the Lemma

Let us introduce on the surface ΩA the parameterization
r = r(ξ, η) induced by the ongoing growth program, in the
following way. Let us select a certain general parameter η ∈
[A,B], where A and B are some constants, for all the curves
Γ(t), t > t1, the surface ΩA is composed from. This means
that curves Γ(t) form a family of η-lines on the surface ΩA.
The choice of the parameter η for all the curves Γ(t) is to
ensure that through each point of the surface ΩA it goes one
and only one line from the second family — the family of
lines consisting of all those points on different curves Γ(t),
which correspond to the same value η.

Let the geometric position of the curve Γ(t) on the
surface ΩA at a particular value of time t be in one-to-
one correspondance to a particular value of some quantity
ξ, namely the value ξ = Ξ(t): if at different t′ and t′′

the curves Γ(t′) and Γ(t′′) geometrically coincide, then
Ξ(t′) = Ξ(t′′); and vice versa, if at different t′ and t′′ the
curves Γ(t′) and Γ(t′′) do not geometrically coincide, then
Ξ(t′) 6= Ξ(t′′). The function Ξ(t) we consider continuous
for all t > t1 and monotonically non-decreasing on the time
intervals t ∈ [t2k−1, t2k) (k = 1, N ) corresponding to the
stages of the continuous growth of the solid. Beyond these
intervals, that is, when t ∈ [t2k, t2k+1), where t2N+1 = +∞,
when the influx of additional material to the solid is absent
and therefore the movement of the curve Γ(t) over the
surface ΩA is temporarily (when k = 1, N − 1) or ultimately
(when k = N ) completed the function Ξ(t) takes obviously
constant values:

Ξ(t) ≡ ξk, t ∈ [t2k, t2k+1),

where ξk = Ξ(t2k). Due to continuity of the function Ξ(t)
the value ξk is the value of the parameter ξ corresponding
to the position of the curve Γ(t) at the end of the k-th stage
of continuous growth.

If the value ξ0 = Ξ(t1) corresponds to the position of
the curve Γ(t) at the initial time instant of the process of
growing the solid, then due to monotonicity of the function
Ξ(t) we will have

ξ0 6 ξ1 6 . . . 6 ξN−1 6 ξN , (17)

and the parameter ξ over the surface ΩA will vary on the
interval ξ ∈ [ξ0, ξN ].

Note that a possible non-strict monotonicity (non-
decreasing) of the function Ξ(t) in the spans of continuous
growth t ∈ [t2k−1, t2k) and, consequently, possible non-strict
signs in chain (17), arise from the possibility of pursuing
such a variant of accreting the solid when a region of

space that it occupies at the stage of continuous growth is
constantly expanding due to the influx of additional material
to the part Σ(t) of boundary surface of the growing solid —
the current surface of growth, — but herewith the trace Γ(t)
of the moving in space growth surface Σ(t) on the surface
ΩA selected by us inside or on the boundary of the growing
solid remains for some time stationary.

The family of lines consisting of points corresponding to
the same value of the parameter η on different curves Γ(t)
which was discussed above is obviously the family of ξ-lines
on the surface ΩA.

The couple of parameters (ξ, η) will be considered as
curvilinear coordinates on the surface ΩA. The convenience
of introducing such coordinates is explained for us by the
following key fact. Since at each value t the curve Γ(t)
lies entirely on the current growth surface Σ(t), then at the
coordinates (ξ, η) the time instant τ0(r) of occurrence of
stresses at the points r of the surface ΩA that coincides with
time instant τ∗(r) of the inclusion of these points in the
composition of the growing solid (see (2)) depends only on
the coordinate ξ:

τ0(r) ≡ τ0(ξ), (18)

moreover, in accordance with the definition of the function
Ξ(t) it is true for all ξ ∈ [ξ0, ξN ] the identity

Ξ
(
τ0(ξ)

)
≡ ξ. (19)

By using the curvilinear coordinates (ξ, η) the integral over
the surface Ω∗(t) ⊆ ΩA of the arbitrary function f(r, t) of
the point and time is written as follows:∫

Ω∗(t)

f(r, t)dS =

=

∫ B

A

dη

∫ Ξ(t)

ξ0

f(ξ, η, t) J(ξ, η)dξ. (20)

Here the value J(ξ, η) defines an element of the area of the
surface ΩA in the curvilinear coordinates (ξ, η) and equals to

J(ξ, η) =

∣∣∣∣∂r∂ξ × ∂r

∂η

∣∣∣∣.
By choosing f(r, t) = ∂g◦(r, t)/∂t and using the rule of

differentiation of the integral by parameter, we can transform
the inner integral in (20):∫ Ξ(t)

ξ0

∂g◦(ξ, η, t)

∂t
J(ξ, η)dξ =

=
∂

∂t

∫ Ξ(t)

ξ0

g◦(ξ, η, t)J(ξ, η)dξ −

− g◦
(
Ξ(t), η, t

)
J
(
Ξ(t), η

)
Ξ′(t). (21)

Let us reveal the symbolic notation ( )
◦ in the integral

standing on the right in (21) (see definition (3) and for-
mula (18)):∫ Ξ(t)

ξ0

g◦(ξ, η, t)J(ξ, η)dξ =

=

∫ Ξ(t)

ξ0

g(ξ, η, t)

G(t)
J(ξ, η)dξ −

−
∫ Ξ(t)

ξ0

J(ξ, η)dξ

∫ t

τ0(ξ)

g(ξ, η, τ)

G(τ)
K(t, τ)dτ. (22)
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Let us change in (22) the order of integration in the repeated
integral (see identity (19)):∫ Ξ(t)

ξ0

J(ξ, η)dξ

∫ t

τ0(ξ)

g(ξ, η, τ)

G(τ)
K(t, τ)dτ =

=

∫ t

t1

K(t, τ)dτ

∫ Ξ(τ)

ξ0

g(ξ, η, τ)

G(τ)
J(ξ, η)dξ. (23)

We consider now the term beyond the integrals in (21).
We have (see definition (3) and formula (18))

g◦
(
Ξ(t), η, t

)
=
g
(
Ξ(t), η, t

)
G(t)

−

−
∫ t

τ0(Ξ(t))

g
(
Ξ(t), η, τ

)
G(τ)

K(t, τ)dτ.

On all pieces of the strict monotonicity of the function Ξ(t)
this function has a reverse one, which is the function τ0(ξ)
in accordance with identity (19). Therefore at the lower limit
in the last integral it will be τ0

(
Ξ(t)

)
≡ t and this integral

will be identically equal to zero. Herewith we also have

g
(
Ξ(t), η, t

)
= g(ξ, η, t)

∣∣
ξ=Ξ(t)

=

= g(ξ, η, t)
∣∣
t=τ0(ξ)

= g(r, t)
∣∣
t=τ0(r)

≡ 0

in accordance with condition (14) and representation (2).
Thus, on pieces of the strict monotonicity of the function

Ξ(t) the term beyond the integrals in (21) becomes zero.
On pieces of the function Ξ(t) constancy (in particular, in
the pauses between the stages of continuous accretion of the
solid and after its ultimate growth completing) it will be
Ξ′(t) ≡ 0, therefore this term vanishes as well.

So, from (21)–(23) we get∫ Ξ(t)

ξ0

∂g◦(ξ, η, t)

∂t
J(ξ, η)dξ =

=
∂

∂t

[∫ Ξ(t)

ξ0

g(ξ, η, t)

G(t)
J(ξ, η)dξ −

−
∫ t

t1

K(t, τ)dτ

∫ Ξ(τ)

ξ0

g(ξ, η, τ)

G(τ)
J(ξ, η)dξ

]
.

Hence, due to representation (20) we have∫
Ω∗(t)

∂g◦(r, t)

∂t
dS =

d

dt

[ ∫
Ω∗(t)

g(r, t)

G(t)
dS −

−
∫ t

t1

K(t, τ)dτ

∫
Ω∗(τ)

g(r, τ)

G(τ)
dS

]
. (24)

To complete the proof of formula (15) it remains to present
the integral of the function f(r, t) = ∂g◦(r, t)/∂t over the
surface Ω0 supplementing the surface Ω∗(t) up to Ω(t) in
a form similar to (24). As the surface Ω0 is unchanged in
time, then the time derivative can be taken outside the sign
of the integral over this surface:∫

Ω0

∂g◦(r, t)

∂t
dS =

d

dt

∫
Ω0

g◦(r, t)dS. (25)

We then reveal the symbolic notation ( )
◦ in the integral

on the right (see definition (3)) by changing the order of

integration over time and over the surface Ω0 that does not
dependent on time:∫

Ω0

g◦(r, t)dS =

∫
Ω0

g(r, t)

G(t)
dS −

−
∫

Ω0

dS

∫ t

t0

g(r, τ)

G(τ)
K(t, τ)dτ =

=

∫
Ω0

g(r, t)

G(t)
dS −

∫ t

t0

K(t, τ)dτ

∫
Ω0

g(r, τ)

G(τ)
dS. (26)

It is taken here into account that τ0(r) ≡ t0 for r ∈ Ω0 as
the surface Ω0 lies entirely in the originally existing part of
the solid, stresses at all points of which arose at the same
moment of time t = t0 (see (2)).

When t > t1 we can split the time integral in (26) into
two integrals — from t0 to t1 and from t1 to t, — taking
into account that Ω(t) ≡ Ω0 for t ∈ [t0, t1] (see (16)):∫

Ω0

g◦(r, t)dS =

∫
Ω0

g(r, t)

G(t)
dS −

−
∫ t1

t0

K(t, τ)dτ

∫
Ω(τ)

g(r, τ)

G(τ)
dS −

−
∫ t

t1

K(t, τ)dτ

∫
Ω0

g(r, τ)

G(τ)
dS. (27)

As a result, due to (25) we will have

∫
Ω0

∂g◦(r, t)

∂t
dS =

d

dt

[∫
Ω0

g(r, t)

G(t)
dS −

−
∫ t

t1

K(t, τ)dτ

∫
Ω0

g(r, τ)

G(τ)
dS −

−
∫ t1

t0

K(t, τ)dτ

∫
Ω(τ)

g(r, τ)

G(τ)
dS

]

that together with (24) with regard to (16) and (4) gives the
formula (15) being proved.

D. Summarized Formulation of the Boundary Value Problem

Thus, collecting together all the above-formulated relations
for the quantities v, D, S we can supply the following
boundary value problem describing the process of deforming
the considered conical solid on all the temporary beam after
the beginning of its accreting, for t > t1:

∇ · S = 0, 0 6 ρ < Λ(z, t), 0 6 ϕ < 2π;

S = 2D + (κ − 1)1 trD, D = (∇vT +∇v)/2;

n · S = 0, ρ = Λ(z, t);∫
{z=l}

∥∥∥∥ k · S
eρ ρ× (k · S)

∥∥∥∥dS =

∥∥∥∥k ∂P ◦(t)/∂t0

∥∥∥∥ ;

v = 0, ∇× v = 0, ρ = 0, z = 0.

(28)

Given in (28) conditions for the vector field of velocities
v(r, t) in the neibourhood of the coordinates origin O
provide a rigid fixing this neighbourhood throughout the
whole process of deformation of considered growing solid.
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VI. SOLUTION OF THE AUXILIARY PROBLEM ON THE
TENSION–COMPRESSION OF A TRUNCATED CONE

As we can see, the problem (6) and the problem (28)
turned out to be mathematically equivalent to the same
classical mechanical problem of the equilibrium of a linearly
elastic truncated circular cone of permanent composition
with free lateral surface ρ = Λ(z, t), z ∈ [0, l], rigidly
fixed in the coordinates origin and being under the action
of axial forces centrally applied to its ends. The radii of the
ends of the cone and the value of forces acting on it depend
on a real parameter t. This formal coincidence is gained by
substituting in the problems (6) and (28) the values P ◦ and
∂P ◦/∂t to the value of tensile force related to the shear
modulus, the tensors T◦ and S to the stress tensor related
to the shear modulus, and in the problem (28) — also the
tensor D to the small strain tensor and the vector v to the
displacement vector as well. Let us construct the analytical
solution of the described classical problem of the theory of
elasticity.

Consider a non-growing elastic truncated cone of length
l, to that ends of radii a and b the central tensile axial
forces of magnitude P are applied. We introduce the polar
cylindrical coordinate system (ρ, ϕ, z) in the region busy by
the cone in the way we did it in Section III for accreted
conical solid. A cone is considered sufficiently long in the
axial direction compared with its transverse dimensions. In
this case, the specific distribution of acting on the ends forces
does not influence the stress-strain state of the greater part
of the cone, and this condition can be determined on the
basis of the Saint-Venant principle. To do it we can use the
known solution of the problem of tensioning an infinitely
long pointed cone with an axial force P applied to its vertex
[51]. Let us introduce an additional spherical coordinate
system (R,Θ,Φ) with the center at the cone vertex, where
R is the length of radius-vector, Φ is the longitudinal angle
counted around the axis of symmetry of the cone, Θ is the
pole angle counted from the axis of symmetry inside the
solid. In this coordinate system the mentioned solution has
the form:

u = eRuR + eΘuΘ,∥∥∥∥uRuΘ

∥∥∥∥ =
P

4πGR Q(cos Θ0)
×

×

∥∥∥∥∥ 2(κ + 1) cos Θ− (1 + cos Θ0)[
(1 + cos Θ0)/(1 + cos Θ)− (κ + 2)

]
sin Θ

∥∥∥∥∥ ;

T = eR eRσR + eΘ eΘσΘ + eΦ eΦσΦ +

(eR eΘ + eΘ eR)τRΘ,∥∥∥∥∥∥∥∥
σR
σΘ

σΦ

τRΘ

∥∥∥∥∥∥∥∥ =
P

2πR2Q(cos Θ0)
×

×

∥∥∥∥∥∥∥∥∥
1 + cos Θ0 − (3κ + 1) cos Θ[

1− (1 + cos Θ0)/(1 + cos Θ)
]

cos Θ

cos Θ− (1 + cos Θ0)/(1 + cos Θ)[
1− (1 + cos Θ0)/(1 + cos Θ)

]
sin Θ

∥∥∥∥∥∥∥∥∥ .
Here {eR, eΘ, eΦ} is the normalized local basis of the
spherical coordinate system, Θ0 is the angle of the cone
opening, and Q(ξ) = κ ξ3 − ξ2 + ξ − κ.

To apply the written solutions to the considered in this
section classical problem of theory of elasticity it is necessary
to extend the lateral surface of the considered truncated cone
of length l in both sides in the axial direction so as to obtain
infinitely long cone with a vertex. Denote this vertex as O′.
After this it is necessary to analyze separately the cases a < b
and a > b.

In the case a < b (or a > b) the reference end z = 0 of
the truncated cone lies closer among its two ends to (or lies
further from) the vertex O′ of a pointed cone. Therefore, the
introduced in Section III vector k is codirected (or oppositely
directed) to the vector defining the direction Θ = 0, and the
vector eϕ is codirected (or oppositely directed) to the vector
eΦ. Thus, the transition from the additionally introduced
spherical coordinate system to the original cylindrical one
is maintained by means of the following transformation of
the local bases:

∥∥eR eΘ eΦ

∥∥ =
∥∥eρ eϕ k

∥∥·
∥∥∥∥∥∥

sin Θ cos Θ 0
0 0 ±1

± cos Θ ∓ sin Θ 0

∥∥∥∥∥∥ .
The upper signs correspond to the case a < b, the lower
ones — to the case a > b. Meanwhile, we also need to put
cos Θ = ±(z + d)/R, sin Θ = ρ/R, R =

√
ρ2 + (z + d)2,

d = la/(b − a), Θ0 = ±α, α = arctan{(b − a)/l} =
arctan{a/d}. The value of d is, accurate to sign, the distance
from the reference end z = 0 of the truncated cone to the
vertex O′ of a pointed cone. The value of α is, accurate to
sign, the cone opening angle.

Perform the specified transformations, ensuring rigid fix-
ing of a neighborhood of the coordinates origin O by adding
a proper constant to the axial displacement. We find:

u = eρuρ + kuz,∥∥∥∥ uρ
uz + c

∥∥∥∥ =
P

4πGR(ρ, z)Q(cosα)
×

×

∥∥∥∥∥∥∥∥
[
±κ (z + d)

R(ρ, z)
− 1 + cosα

1± (z + d)/R(ρ, z)

]
ρ

R(ρ, z)

±
[
κ (z + d)2/R2(ρ, z) + κ + 1− cosα

]
∥∥∥∥∥∥∥∥ ,

T = eρ eρσρ + eϕ eϕσϕ + kkσz + (eρk + keρ)τρz,∥∥∥∥∥∥∥∥
σρ
σϕ
σz
τρz

∥∥∥∥∥∥∥∥ =
P

2πR2(ρ, z)Q(cosα)
×

×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 + cosα

1± (z + d)/R(ρ, z)
∓
[
cosα+

3κρ2

R2(ρ, z)

]
z + d

R(ρ, z)

± z + d

R(ρ, z)
− 1 + cosα

1± (z + d)/R(ρ, z)

±
[
cosα− 3κ (z + d)2/R2(ρ, z)

]
(z + d)/R(ρ, z)

±
[
cosα− 3κ (z + d)2/R2(ρ, z)

]
ρ/R(ρ, z)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Above, the following constant is used:

c =
(2κ + 1− cosα)P tanα

4πGa Q(cosα)
.

The expressions received for the displacements and
stresses can be written simplier with the function ζ(ρ, z) =
±(z+d)/R(ρ, z) = cos Θ, if we also enter the function of the
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shape of the cone lateral surface Λ(z) = a ·(1−z/l)+b ·z/l
and note that z + d = Λ(z)/ tanα. Indeed, then we have
±R(ρ, z) = (z + d)/ cos Θ = Λ(z)/[ζ(ρ, z) tanα], more-
over, the function ζ(ρ, z) can be calculated by the formula

ζ(ρ, z) =
[
ρ2 tan2α/Λ2(z) + 1

]−1/2
, (29)

as ζ = (tan2 Θ + 1)−1/2 and tan Θ = sin Θ/ cos Θ =
±ρ/(z + d) = ±ρ tanα/Λ(z).

In result∥∥∥∥ uρ
uz + c

∥∥∥∥ =
P ζ(ρ, z) tanα

4πGΛ(z)Q(cosα)
×

×

∥∥∥∥∥∥∥
[
κ ζ(ρ, z)− 1 + cosα

1 + ζ(ρ, z)

]
ζ(ρ, z) ρ tanα

Λ(z)

κ ζ2(ρ, z) + κ + 1− cosα

∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥∥
σρ
σϕ
σz
τρz

∥∥∥∥∥∥∥∥ =
P ζ2(ρ, z) tan2α

2πΛ2(z)Q(cosα)
×

×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 + cosα

1 + ζ(ρ, z)
−
[
cosα− 3κ ζ2(ρ, z) +

+ 3κ
]
ζ(ρ, z)

ζ(ρ, z)−
[
1 + cosα

]/[
1 + ζ(ρ, z)

][
cosα− 3κ ζ2(ρ, z)

]
ζ(ρ, z)[

cosα− 3κ ζ2(ρ, z)
]
ζ(ρ, z) ρ tanα/Λ(z)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

(30)

Note that all stresses are proportional to the value of
P/
[
πΛ2(z)

]
, which is, obviously, the average normal stress

acting at any cross-section z = const of the cone.
It is easy to make sure that the expression (30) remain

in force even in the special case of cylindrical solid, which
was so far excluded from our consideration. Indeed, if the
parameter α tends to zero at fixed values of other geometric
parameters a and l of the taper and at arbitrary fixed values
of the variables ρ ∈ [0, a) and z ∈ (0, l), then given the
representation Λ(z) = a+ z tanα we have

uρ → −
P

πa2
· (κ − 1)ρ

2(3κ − 1)G
, uz →

P

πa2
· κ z

(3κ − 1)G
,

σz →
P

πa2
, σρ,ϕ , τρz → 0.

Obtained form (30) with α→ 0 the limit values of displace-
ments and stresses correspond, obviously, to the solution of
the Saint-Venant problem on the uniaxial tension with a force
P of a circular cylinder with the fixed end z = 0.

VII. THE CONSTRUCTION OF THE SOLUTION OF THE
ACCRETING PROBLEM

In Section VI the solution of the classical problem on
tension–compression of a non-growing elastic conical solid
with an arbitrary correlation of radii of its fixed and loaded
end surfaces is constructed. As indicated in Section VI, after
a suitable replacement of variables contained in the solution it
is possible to obtain the solutions of boundary value problems
(6) and (28). These solutions will contain the introduced in
Section III functions α(t) and Λ(z, t) as well as the function

ζ(ρ, z, t) =
[
ρ2 tan2α(t)/Λ2(z, t) + 1

]−1/2

introduced by analogy with (29).

As a result, in each point r of the considered piecewise
continuously accreted aging viscoelastic conical solid we will
know the evolution of the velocity vector v and the operator
stress velocity tensor S on the time beam

t > τ1(r) =

{
t1, 0 6 ρ < Λ(z, t0),

τ∗(r), Λ(z, t0) 6 ρ < Λ(z, t2N ),

which covers the entire deformation history of the neighbor-
hood of a given point r in the composition of the formed
solid from the beginning of the process of its accretion. And
at the points of the original part of this solid we will also
know the evolution of the displacement vector u and the
operator stress tensor T◦ on the time segment t ∈ [t0, t1]
before the beginning of the accretion process. After that, the
evolution of the operator stress tensor T◦ at any point r of
the solid for all t > τ1(r) can be reconstructed by using the
integration procedure:

T◦(r, t) = T◦
(
r, τ1(r)

)
+

∫ t

τ1(r)

S(r, τ)dτ.

Here we have T◦
(
r, τ1(r)

)
= 0 in the additional part of the

solid according to the initial condition (13).
When in a point r of the considered additionally formed

solid we have found out the complete evolution of the tensor
T◦, i.e., the values of this tensor since the moment t = τ0(r)
of the stress occurrence in a given point, so we can find the
complete evolution of the stresses tensor T in this point by
using the inverse to Hτ0(r) integral transformation H−1

τ0(r):

T(r, t)

G(t)
= T◦(r, t) +

∫ t

τ0(r)

T◦(r, τ)R(t, τ)dτ. (31)

When we use a particular approximation for the creep ker-
nel K(t, τ) then the expression for the respective relaxation
kernel R(t, τ) may not be known in the closed form or be
too bulky. In such situation the procedure of reconstructing
the evolution of the tensor T by numerical treatment of the
Volterra integral equation of the 2nd kind

T(r, t)

G(t)
−
∫ t

τ0(r)

T(r, τ)

G(τ)
K(t, τ)dτ = T◦(r, t),

for example, by the method of quadratures [52], will be less
expensive from a computational point of view and may be
even more precise than use of analytic formula (31).
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