
Multiple JSON Web Tokens
for Mobile Distributed Applications

Pedro Mestre, Member, IAENG, Rui Madureira,
Pedro Melo-Pinto, and Carlos Serodio, Member, IAENG

Abstract—Internet of (almost) everything brought to the spot-
light the need for efficient, and yet secure, ways to transmit data
between connected devices. In the context of securing RESTful
web services to be used in (but not limited to) agricultural-
related applications, authors have developed a system, based on
JSON Web Tokens. The objective of that work was to develop
a system able to prevent replay attacks. This objective was
achieved by using multiple tokens, i.e., a system based on one-
time tokens. The client, before using the service must request a
token to an authentication service, however the issued token
can be used only once. When the client accesses a service,
the token is checked, and if it is valid the service will return,
along with its results, a new token to replace the previous one.
Because scalability is also one of the key objectives, a distributed
token validation was implemented. Instead of generating new
tokens using a centralized service, tokens are issued and verified
by the (trusted) service providers. The system was tested in
laboratory using virtualized Linux servers and clients. Because
the objective of the authors is to use this system in the real
life, in this paper are presented new tests made to the system,
now using real and in production networks. Tests were made
using a Linux client with a benchmarking software developed
in Java and an Android client. Results show that it is feasible
to implement the system in a real life scenario, however the
trade-off is the greater complexity of the mobile application
code, if parallel communications are needed.

Index Terms—RESTful, web services, authentication, autho-
rization, token, multiple tokens, JSON Web Token.

I. INTRODUCTION

W ITH the widespread of mobile distributed applica-
tions we need lightweight, efficient and secure meth-

ods to send data from and to mobile devices. Using the
infrastructure provided by HTTP, many applications have

Manuscript received March 2, 2018; This work has been supported by
COMPETE: POCI-01-0145-FEDER-007043 and POCI-01-0145-FEDER-
006958, and FCT – Fundação para a Ciência e Tecnologia within the Project
Scope: UID/CEC/00319/2013 and UID/AGR/04033/2013, and by Integrated
Research in Environment, Agro-Chain and Technology, NORTE-01-0145-
FEDER-000017, in its line of research entitled VitalityWINE, co-financed by
the European Regional Development Fund (ERDF) through NORTE 2020
(North Regional Operational Program 2014/2020).

P. Mestre is with Centro Algoritmi, University of Minho, 4800-058
Guimarães - Portugal, and Centre for the Research and Technology of
Agro-Environmental and Biological Sciences, CITAB, University of Trás-
os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal, www.utad.pt, (phone: +351-259350363; email: pmestre@utad.pt)

R. Madureiria is with University of Trás-os-Montes and Alto Douro,
UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal, www.utad.pt, email:
rccmadureira@gmail.com)

P. Melo-Pinto is with Centre for the Research and Technology of Agro-
Environmental and Biological Sciences, CITAB, University of Trás-os-
Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal, www.utad.pt, and Algoritmi Research Centre, Guimarães, Portugal
(email: pmelo@utad.pt)

C. Serodio is with Centro Algoritmi, University of Minho, 4800-058
Guimarães - Portugal, and Centre for the Research and Technology of
Agro-Environmental and Biological Sciences, CITAB, University of Trás-
os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal, www.utad.pt, (email: cserodio@utad.pt)

been using RESTful web services, which are lightweight web
services particularly well suited for creating APIs for clients
spread out across the Internet [1]. Some examples where
such web services have been used include projects related to
agriculture and farm management [2],[3],[4].

Authors have presented, in [2], a work where RESTful
web services are used to create remote data access services
for projects also related to agriculture and wine production
systems.

Those projects use a set of distributed applications and
sensors that are used to collect georeferenced data from
vineyards, such as multispectral images of grape bunches,
photographies of vine leaves, micro-meteorological data, tex-
tual information inserted by staff (e.g. anomalies reporting),
as described in [2].

In such a system only authorized principals can have
access to the resources available on the servers. An authen-
tication and authorization system is therefore needed. One
very simple way of guarantying that only authorized clients
access services is forcing clients to authenticate themselves
using some credentials, and then use sessions to track users.
As long as HTTPS is used, the system will be secure.

However, using sessions can have a negative impact on
system scalability. Also, one of RESTful web services con-
straints is that communications between the client and the
server must be stateless [5], so, as consequence sessions
cannot be used. The solution presented in this paper is based
on multiple one-time JSON Web Tokens, to avoid replay
attacks (without the need of session tokens), and which uses
a distributed token management system.

II. MANAGING ACCESS TO RESOURCES WITHOUT USING
SESSIONS

Because of the scalability issues and the intrinsic propri-
eties of RESTful Web Services, session information cannot
be used. Therefore all the information that the server will
need to fulfill the client’s request must be sent by the client
itself, either in the request body, the URL query string or
using cookies. The stateless nature of RESTful web services
plays an important role in service scalability, because storing
in the server session information would imply that if multiple
servers were used, then those servers would have to share
session related information.

Obviously that if a client sends information to the server,
the server must trust that client. Otherwise how could the
server trust the information that the client is providing. This
means that the server must then be able to authenticate the
client and check its authenticity for every HTTP transaction.

Client authentication can be made by sending the client’s
authentication information in every HTTP request, using

Engineering Letters, 26:2, EL_26_2_12

(Advance online publication: 30 May 2018)

__

Basic HTTP Authentication Scheme (RFC7617 [6]), or the
HTTP Digest Access Authentication (RFC7616 [7]), for
example.

In both cases the server must have access to the user
credentials, stored for example in a relational Database (e.g.
MySQL, PostgreSQL, etc.) or using LDAP (Lightweight Di-
rectory Access Protocol) [8], just to mention two examples.

These are very straightforward methods to send client
authentication to the server, however some scalability issues
arise. A very common method used to authenticate the
client’s credentials is to store them in a database. However
the performance of such a system will depended on the
database technology and on the size of the tables [9]. If for
every transaction we will have to verify the user credentials
in a relational database, it can be easily concluded that if
the number of clients rises and consequently the number of
transactions, the service performance will sooner or later start
to decrease.

Another authentication method that can be used by ser-
vices to authenticate clients include the use of tokens:

• The client sends its credentials to an authentication
service;

• The authentication service validates the user information
and, in case of success, sends a token to the client;

• When the client accesses the service, it uses this token
to identify itself. If the token is valid, the service will
process the client request.

Such a system has the advantage that the credentials are sent
only at the beginning of the ”session” or after the token has
expired, not in every transaction. Therefore we reduce the
load on the server.

To implement an authorization system, based on tokens,
to authenticate client requests to web services we have many
alternatives, including the use of simple tokens such as JSON
Web Tokens (JWT) [10] or we can also use a more complex
infrastructure such as OAuth 2.0 Authorization Framework
[11].

The objective of this work is to develop a scalable authenti-
cation and authorization system based on tokens that allows
anytime token revocation, that complies with the stateless
constraint of RESTful web services and that prevents replay
attacks. Because of its simplicity, instead of adapting an
existing framework to the needs, authors decided to build
a custom authorization system based on JWT, which was
presented in [2].

III. ACCESS TO WEB SERVICES USING MULTIPLE JSON
WEB TOKENS

JWT, defined in RFC7519 [10], is an open standard that
provides a way of transmitting signed information, as a
JavaScript Object Notation (JSON) object, between parties
in a transaction. Some advantages of using JWT includes
the fact that it is very compact, in comparison to XML
based solutions such as SAML (Security Assertion Markup
Language) [12], and the information included in the token
can be verified and trusted because tokens can be digitally
signed by the issuer.

A. JWT Format

A JSON Web Token is made of three distinct parts:

• Header – which usually has two fields: the type of the
token (JWT) and the hashing algorithm;

• Payload – that contains the token reserved, public and
private claims.

• Signature – used to verify if the token can be trusted or
not.

A typical header for a token signed using HMAC SHA256
would be:

{
"alg": "HS256"
}

Statements about the client (claims) are sent in the pay-
load. These can be:

• Reserved, which are predefined (in [10]) recommended
claims: Expiration Time (exp), Not Before (nbf), Issued
At (iat), JWT ID (jti), Issuer (iss), Audience (aud), and
Subject (sub);

• Public claims that can be freely defined to best suit the
application needs;

• Private claims, which are not part of Reserved or Public
claims, and that a producer and consumer of a JWT may
agree to use.

An example of a Payload using some of the Reserved Claims
would be [2]:

{
"exp": 1520016178,
"user": "pmestre",
"iat": 1520016168
}

The above listing is a very simple example that uses two
reserved claims (Issued At and Expiration Time) and one
private claim (”user”). This token is valid from Friday, March
2, 2018 6:42:48 PM until Friday, March 2, 2018 6:42:58 PM.

Signature of a JWT token can be obtained either by using
HMAC algorithm (as above) or a public/private key pair
using RSA.

The resulting token is the concatenation of the above three
parts (Header, Payload and Signature), encoded in base64
and separated by dots. As an example the above presented
example token, signed using a shared key ”Portugal” would
look like the example below:

eyJhbGciOiJIUzI1NiJ9.eyJleHAiOjE1MjAwMTYx
NzgsInVzZXIiOiJwbWVzdHJlIiwiaWF0IjoxNTIwM
DE2MTY4fQ.mlbgDBTzw-nmHa_-lkSWpvbDURezDRy
oqKa0AUn75mg

Please notice that line breaks were added for better visu-
alization.

B. Multiple JWT Tokens

Once a token is issued we can use it until it expires. This
means that if it has not expired (and not revoked) it can be
used by the client to access services. As discussed in [2],
if the token is compromised, we can have a security issue.
Therefore authors presented a solution based on multiple
one-time JSON Web Tokens.

So instead of using an architecture like that presented in
Fig. 1, where the client first sends its credentials to the server

Engineering Letters, 26:2, EL_26_2_12

(Advance online publication: 30 May 2018)

__

Fig. 1. Authentication and Service Access using Tokens [2].

(1), receives the token from the server (2) and then requests
services (3,5) using that token, a different approach was used.

As shown in Fig. 2, in the proposed approach the client
still has to send its credentials to an authentication server,
which will issue a token to the client. However this token
is valid only for a single transactions. After being used, the
token is revoked and cannot be used in any other transaction.

Using a single server architecture this would be very easy
to implement. If we have only one server then that server will
know if a token, that it has previously issued, has already
been used or not, and remove a token from its valid tokens
list whenever a token is used.

Because the system architecture must be easily scalable,
therefore a multi-server approach was be used. As depicted
in Fig. 2 it works as described in [2]:

• (1) – The client sends its credentials to the Authentica-
tion service, requesting a new token to be issued;

• (2) – Credentials sent by the client are verified (e.g.
using a Database) and if the principal is positively
authenticated then a new token is issued. This token
is stored locally in a token cache for later validation;

• (3) – The token is sent to the client;
• (4) – When the client makes a request to a server (in this

example Server B) it has to send the previously received
token. If the server can verify the token signature and it
has not expired already it will then check which trusted
server has issued the token (in this example it was
Server A).

• (5) – Server B will contact the token issuer (Server A)
requesting the token validation;

• (6) – If server A finds the token in its token cache
(the token is valid) then the token is deleted to prevent
further attempts from clients to use the same token;

Fig. 2. Authentication and Service Access using Multiple Tokens [2].

• (7) – Server B is informed if the token was found in
the tokens cache, i.e., if the token is still valid;

• (8) – The server will issue a new token and adds it to
its token cache (for future validation);

• (9) – Service requested by the client is executed and
when the server sends the response to the client it also
sends the new token that the client must use in its next
service request.

Whenever a client tries to access a server without a token,
an expired token or an already revoked token, the server will
respond with the corresponding HTTP code.

The above presented distributed token validation system
is an alternative to the use of a central token management
service, that would be a single point of failure in the
system. Obviously that we could use a cluster of token
management systems, but then we will have to deal with
their synchronization. The proposed system has the service
and the token management embedded in every server that
makes part of the architecture.

For this token revocation procedure to work, servers must
contact each other to validate tokens that they did not issued.
As presented in [2], if a single server is contacted by the
client, the performance loss is very low, in comparison to
that of using a single token valid for all transactions. In
the worst case scenario, all tokens are issued by another
server, therefore all tokens must be validated by a remote
server. In this case, there is a big performance loss, in
comparison to the use of a single token, because the time
per transaction doubles. However, has stated in [2] it is a
more secure approach, that best suits the objective of the
authors work, and, if we compare it to the use of Basic HTTP
Authentication Scheme using a Database to authenticate
every transaction, the performance is better(approximately
three times faster).

Engineering Letters, 26:2, EL_26_2_12

(Advance online publication: 30 May 2018)

__

Fig. 3. Testing Scenarion.

IV. TESTING SCENARIO

For tests it was used exactly the same servers and services
that were used in [2]. However the previous tests where
made in laboratory, in an controlled environment, and all
clients and servers were virtual machines running in the same
hardware. The main difference to the current scenario is that
now services are accessed remotely, and not from a client
in the same hypervisor, not even in the same Local Area
Network (LAN).

As presented in Fig. 3 three servers were used in the
testing scenario, one of them with a database authentication
service and a test service. The other two servers only have
a testing service. These testing services issue a new token
if and only if they can validate the token sent by the client.
The first token held by the client must be issued by Server
1 (authentication service).

These servers do not have public IP addresses, therefore
are not directly connected to the the Campus network.
Connecting those servers to the Campus network there is
a firewall with NAT (Network Address Translation), that
forwards the requests to the servers and their responses to
the clients.

Clients will access the services either from the Campus
network, using WiFi, and from a remote site, using an
Internet Service Provider (ISP). There will not be any kind
of control over the delay and available bandwidth between
the clients and the servers.

Because the main objective of the software developed, in
[2], to do the benchmarks is to send the most number of
messages as possible per time unit, it was not developed

to keep system responsiveness. This means that it cannot be
used, as it is, in a real mobile application. Therefore for tests
using a smart phone, it was used a new Android application
that uses the Volley library [13]. Volley will be used to
send requests to the servers. Notice that the objective of this
paper is not to benchmark and/or analyse the performance of
Volley, and should not be seen as such. Volley is used only
as a tool, from the many options that could have been used
to implement the testing software. Also it was used a simple
(default) setup of Volley. Discussing details about how to
best tune Volley for our system is out of scope of this paper.

Volley allows us to implement the application logic with-
out having to concern about how to deal with multiple
connections, queue and dequeue requests, etc. However,
if we have a single token, i.e., the client made a single
authentication (which seems the most logical action), we
cannot have multiple parallel connections, this is the trade-
off of using one-time tokens. If we had, for example, two
parallel requests using the same token, the second request
reaching the server would fail, because the token had already
been used.

A solution is to have the client requesting multiple tokens,
i.e., making multiple authentications, one per parallel con-
nection that the application needs. These tokens can be stored
in a FIFO (First In First Out) like structure, and whenever
a new request is made, the oldest token is removed from
the FIFO. When the response arrives to the client, the new
token (that came with the response) is inserted in the FIFO.
Because the number of requests in transit is limited to the
number of tokens, it must also exist a queue to store requests
waiting for a token to be available.

V. TESTS AND NUMERICAL RESULTS

In this section will be presented the results obtained in
the tests made using the above presented testing scenario.
For comparison purposes, in Table I, are presented some
results previously obtained and published in [2]. As above
mentioned, these results were obtained in laboratory.

In Table I, Table II, and Table III, the results are shown
for 10, 20, 30, 40 and 50 (simulated) simultaneous clients,
using:

• Database Authentication for every request (DB-A);
• A single Token and the service provided by a single

server (ST-SS);
• Multiple Tokens and the service provided by a single

server (MT-SS);
• Multiple Tokens and the service provided by two servers

(MT-MS).
Times presented in all tables of this section are in ms.

TABLE I
REFERENCE VALUES FROM [2].

Clients 10 20 30 40 50

DB-A 1409 1,406 1,394 1,395 1,384

ST-SS 0,446 0,442 0,446 0,443 0,448

MT-SS 0,476 0,470 0,462 0,466 0,464

MT-MS 0,563 0,589 0,585 0,585 0,590

Engineering Letters, 26:2, EL_26_2_12

(Advance online publication: 30 May 2018)

__

Because the objective of the present paper is to verify if
the same implementation is feasible in the ”real life”, Table II
and Table III present results obtained using clients connected
to the WiFi network of the University of Trás-os-Montes
and Alto Douro (UTAD), and remotely connected using an
Internet Service Provider (ISP), respectively. In the first test
each client made 150 requests to the server and in the latter
each client made 100 requests.

Notice that for these tests it was used the same software
that was developed to collect data shown in Table I. which
was developed in Java, and that creates a new thread for each
client that is simulates.

In the first case the real, in production, WiFi network of
UTAD Campus was used. Data in the table was obtained in a
regular working day with other users also using the wireless
network in their activities.

Analysing the results we can see that we have a similar
behaviour in laboratory and using the WiFi Network, i.e.,
using tokens (as expected) we have better performance than
using the database authentication, and when we use multiple
tokens the performance is worse than using a single token.
Also, when using multiple server, i.e. the token must be
validated in a remote server, the performance is worse.

However the relative performance loss is not stable in all
data, because it was collected in real network with other
clients using it. If we look for example (in Table II) for the
case of 20 clients, the performance for a single server and two
servers is very similar, however for 50 clients, using multiple
servers will take the double of the time per transaction than
a single server. Nevertheless, considering the performance
increase, in comparison to the database authentication option
and considering the security increase, for the objectives of
our work the use of multiple tokens is feasible.

TABLE II
REMOTE CLIENT CONNECTED TO THE CAMPUS NETWORK.

Clients 1 2 3 4 5 10 20 30 40 50

DB-A. 15,81 9,66 8,28 6,07 6,15 5,88 5,74 5,75 5,74 5,70

ST-SS 8,02 3,97 3,69 2,08 1,71 0,95 0,67 0,73 0,63 0,55

MT-SS 8,97 4,20 2,76 2,04 1,91 0,93 0,81 0,77 0,63 0,62

MT-MS 11,45 5,11 3,57 3,01 2,28 1,20 0,93 1,22 1,05 1,11

The same conclusions can be drawn form data in Table III.
In this case data is more stable, only because of the access
method to the network. In this case a very low number of
clients were sharing the same WiFi network, although, the
connection to the UTAD Campus network is made using a
remote ISP. Also, there are 12 hops between the client and
the servers.

It is noticeable the increase of the time per transaction,
when the client is not connected to the Campus Network.
These are more realistic data, considering that our end
application is for clients that are outside our Campus.

In Table IV are presented the results using an Android
Smartphone, connected to a remote ISP. Notice that unlike
the previous tests, these results were obtained using a single
client that made several requests (1, 2, 3, 4, 5, 10, 20, 30,
40 and 50). As above explained, the maximum number of

TABLE III
REMOTE CLIENT USING AN ISP.

Clients 1 2 3 4 5 10 20 30 40 50

DB-A 51,92 30,00 21,92 19,21 13,98 7,06 5,91 7,10 5,90 5,85

ST-SS 43,15 20,91 14,36 10,77 8,65 4,24 2,24 2,81 2,36 1,75

MT-SS 44,10 21,87 14,64 11,10 8,87 4,33 2,25 2,91 2,19 1,83

MT-MS 43,78 22,78 15,29 11,44 8,89 4,76 2,76 3,34 2,66 2,39

parallel requests, using tokens, will depend on the number
of tokens requested to the authentication server. Results pre-
sented in the table were obtained when the client requested
1, 2, 3, 4, 5 and 10 tokens. It is also presented data obtained
using Database authentication (DB-Auth).

For DB-Authentication, the application simply sent to the
message queue all the requests at once, without concerning
about how many messages could be in fact sent in parallel.
Those concerns where left for the Volley library, which was
used with its defaults parameters, without any tuning or any
custom queue system (as above stated this is out of scope
of this paper). Results for DB-Auth are very similar to those
obtained when only a token is in use, i.e., a new request is
sent to the server only when the response from the last one
arrives. Therefore we can only compare those two results,
and as it can be seen, using tokens the performance is slightly
better.

Relatively to the other results, because the maximum
number of messages in parallel is limited by the number of
tokens, a request scheduler had to be developed. Therefore
we had a scheduling policy overlapping the default queue
policy of Volley. Notice that the objective of the scheduler
was to send all the test request as fast as possible.

TABLE IV
MOBILE PHONE, SINGLE SERVER.

Requests 10 20 30 40 50 100

DB-Auth 49,82 51,68 52,63 53,47 50,60 50,14

1 Token 46,36 45,75 45,81 45,48 48,47 49,20

2 Tokens 28,46 24,91 24,91 24,59 23,93 23,83

3 Tokens 17,70 16,45 15,68 16,40 15,53 16,16

4 Tokens 17,60 12,64 12,81 11,98 11,99 11,92

5 Tokens 16,31 11,42 11,35 11,72 11,92 11,80

10 Tokens 18,59 11,79 11,54 11,98 12,21 11,58

Table V presents the results obtained with the smart phone
when two servers are used. Consistently with the previously
obtained results, the performance was slightly worse, but
the difference is very small. The network delay and the
processing overhead masks the performance difference.

VI. CONCLUSION

As the main conclusion authors point out that it is feasible
to implement the proposed system, using mobile devices. As
a proof of concept platform Android was used. That said,

Engineering Letters, 26:2, EL_26_2_12

(Advance online publication: 30 May 2018)

__

TABLE V
MOBILE PHONE, TWO SERVERS.

Requests 10 20 30 40 50 100

DB-Auth 49,82 51,68 52,63 53,47 50,60 50,14

1 Token 43,08 47,45 47,36 48,93 49,51 49,39

2 Tokens 24,07 23,85 25,14 24,86 26,06 25,58

3 Tokens 17,56 16,98 17,36 18,92 16,06 17,01

4 Tokens 15,22 13,80 13,99 14,50 13,23 13,16

5 Tokens 15,72 14,04 13,94 12,95 12,36 12,26

10 Tokens 13,66 13,36 12,97 12,97 12,40 12,24

the increase of security for web services, by using one-time
tokens, without losing much overall performance comes with
the trade-off of increasing the complexity of the developed
applications.

In scenarios where a single stream of data is needed,
and when it is acceptable that the next request is sent only
when the response of the previous one has arrived, the
implementation if very straightforward. And probably any
out of the shelf solution to send data can be used (Volley
was used in this work).

However if more that one parallel request must be made,
to increase the system performance, the software developer
will have to implement a queuing system that takes into
consideration the specificities of the token validation and
revocation system. Besides the queuing system it is also
needed a token revalidation thread that revalidates tokens that
are bout to expire. Because Volley supports external queues,
this is a good topic for future work.

REFERENCES

[1] E. Jendrock, R. Cervera-Navarro, I. Evans, K. Haase, and W. Markito.
The Java EE 7 Tutorial: Volume 2. Oracle. [Online]. Available:
https://docs.oracle.com/javaee/7/tutorial/

[2] P. Mestre, R. Madureira, P. Melo-Pinto, and C. Serodio, “Securing
RESTful Web Services using Multiple JSON Web Tokens,” in Lecture
Notes in Engineering and Computer Science: Proceedings of The
World Congress on Engineering 2017, 5-7 July, 2017, London, U.K.,
2017, pp. 418–423.

[3] M. Arroqui, C. Mateos, C. Machado, and A. Zunino, “RESTful Web
Services improve the efficiency of data transfer of a whole-farm
simulator accessed by Android smartphones,” Computers and Elec-
tronics in Agriculture, vol. 87, pp. 14 – 18, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169912001305

[4] A. Kaloxylos, A. Groumas, V. Sarris, L. Katsikas, P. Magdalinos,
E. Antoniou, Z. Politopoulou, S. Wolfert, C. Brewster, R. Eigenmann,
and C. M. Terol, “A cloud-based farm management system:
Architecture and implementation,” Computers and Electronics in
Agriculture, vol. 100, pp. 168 – 179, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168169913002846

[5] I. Porres and I. Rauf, “Modeling Behavioral RESTful Web
Service Interfaces in UML,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, ser. SAC ’11. New York,
NY, USA: ACM, 2011, pp. 1598–1605. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982521

[6] J. Reschke, “The ’Basic’ HTTP Authentication Scheme,” Internet
Requests for Comments, Internet Engineering Task Force (IETF), RFC
7617, September 2015.

[7] R. Shekh-Yusef, D. Ahrens, and S. Bremer, “HTTP Digest Access
Authentication,” Internet Requests for Comments, Internet Engineering
Task Force (IETF), RFC 7616, September 2015.

[8] J. Sermersheim, “Lightweight Directory Access Protocol
(LDAP): The Protocol,” Internet Requests for Comments,
Internet Engineering Task Force (IETF), RFC 4511, June
2006, http://www.ietf.org/rfc/rfc4511.txt. [Online]. Available:
http://www.ietf.org/rfc/rfc4511.txt

[9] A. Saikia, S. Joy, D. Dolma, and R. Mary, “Comparative Performance
Analysis of MySQL and SQL Server Relational Database Management
Systems in Windows Environment,” International Journal of Advanced
Research in Computer and Communication Engineering, vol. 4, no. 3,
2015.

[10] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
Internet Requests for Comments, Internet Engineering Task Force
(IETF), RFC 7519, May 2015, http://www.ietf.org/rfc/rfc7519.txt.
[Online]. Available: http://www.ietf.org/rfc/rfc7519.txt

[11] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet
Requests for Comments, Internet Engineering Task Force (IETF),
RFC 6749, October 2012, http://www.ietf.org/rfc/rfc6749.txt. [Online].
Available: http://www.ietf.org/rfc/rfc6749.txt

[12] B. Campbell, C. Mortimore, and M. Jones, “Security Assertion Markup
Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants,” Internet Requests for Comments, Internet
Engineering Task Force (IETF), RFC 7522, May 2015.

[13] Transmitting Network Data Using Volley. [Online]. Available:
https://developer.android.com/training/volley/index.html

Engineering Letters, 26:2, EL_26_2_12

(Advance online publication: 30 May 2018)

__

