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Abstract—Conventionally, the Kalman filter on the basis of
integration mechanization, such as GPS-aided inertial inte-
grated navigation system, has been commonly built up using
error states and error measurements. In order to accurately
reflect the evolution of the real state for a moving vehicle,
we adopted an unconventional KF that directly estimated
navigational parameters instead of the error states, in which
a kinematic trajectory model as the main part of KF system
model was deployed and measurement updates for all sensor
data inclusive of the ones from IMUs were directly performed.
To best describe the trajectory instead of applying the most
complex model throughout, this research proposed relevant
practical mechanisms for linear motion and circular motion
to realize smooth transitions between alternative kinematic
models. Experiments and simulations were tested to show the
practicability of the proposed practical approach.

Index Terms—smooth transitions, unconventional, multi-
sensor, integration, kinematic.

I. INTRODUCTION

AS competitive consumer markets bring a great price
reduction of mobile navigation devices, low-cost IMUs

have recently received more and more attention. But low
accuracy is one of the biggest bottlenecks in development
of low-cost IMUs. A popular approach to design sensors for
systems requiring better performance than the one with a
single low-cost IMU may offer, is to fuse the measurements
of multiple low-cost IMUs to achieve advantage complemen-
tarity. This “wisdom of the crowd” design approach also has,
in addition to the increased measurement performance, the
benefit of making it possible to detect and isolate sensor
failures, thereby increasing the reliability and integrity of the
sensor system [1].

The key of combining multiple sensors for accuracy
improvement lies in rate signal modeling and the optimal
filter design [2]. In this respect, researchers have done a
lot of work. However, in most work from the view of
algorithm design, the core error-state-based system equations
still remain the same as in the conventional strategy built
upon the inertial navigation mechanization [3], [4]. The
conventional integration strategy driven by the a priori error
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model of inertial sensor could become problematic in the
case of low-cost MEMS IMUs as their time-variant noise
model could be highly sensitive to the temperature [5] and
the dynamic excitations [6]. A significant reformation in
the integration strategy for low-cost IMU-based multi-sensor
integrated navigation systems is quite demanded considering
one may not be able to reach an innovative and cost-effective
breakthrough if one still remains in the traditional rut.

Wang et al. [2015] and Qian et al. [2016] already de-
veloped an unconventional KF that could directly estimate
navigational parameters instead of the error states, in which
a kinematic trajectory model as the main part of KF system
model was deployed and measurement updates for all sensor
data inclusive of the ones from IMUs were directly per-
formed [7], [8], [9]. This design enables the direct use of the
IMUs’ raw outputs (specific forces and angular rates) instead
of applying them to the free inertial navigation calculation
through the conventional inertial integration mechanization.
Besides, to visually provide the dynamic process of system
navigation parameters, and accurately reflect the evolution of
real state in kinematic navigation, direct Kalman filter (DKF)
deserves consideration. The reason why DKF is not widely
discussed previously is not the method itself, but most system
models are serious nonlinear so that DKF is inapplicable.
Therefore, it is a bright proposal that the three-dimensional
(3D) kinematic trajectory model is deployed as system model
in KF. However, there are certain defects existing in the 3D
kinematic trajectory model proposed before, in that the less
complex kinematic model cannot realize smooth transitions
between alternative kinematic models. A moving platform is
certain to experience different motions from time to time in
a mission. One should avoid employing the most complex
kinematic model as the core system model throughout. A
proper model will not only avoid getting over parametrization
involved and also be able to properly model the system
maneuvers.

This research applied the above mentioned novel multi-
sensor integration strategy to integrate GPS receiver and
multiple IMUs. The obvious advantage how the low-cost
IMU arrays are fused here is to enable the direct measure-
ment updates for individual IMUs and model their systematic
errors separately in KF. In view of the problem of smooth
transitions, this research developed practical mechanisms to
realize smooth transitions between different motion statuses.
This is to best describe the trajectory instead of applying
the most complex model throughout. Four basic kinematic
models (uniform linear motion, uniformly accelerated linear
motion, uniform circular motion and non-uniform circular
motion) with their associated process noise factors will be
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Fig. 1. The Coordinate Systems

considered and explicitly specified. Then, practical mecha-
nisms will be developed to realize switches between different
kinematic models by utilizing the changes of linear and cir-
cular velocities and accelerations together with the changes
of system attitudes. The main challenge is how to determine
the detection rules for significant system maneuvers under
the consideration of not only their magnitudes, but also
their accuracies or resolutions associated with specific system
dynamics.

In the following, the 3D kinematic trajectory model for
a rigid body is discussed in Section II. The formulation of
the unconventional multi-sensor Kalman filter is described
in Section III. Section IV presents the practical mechanisms
(PMs) to realize smooth transitions. Section V provides
the simulation results to validate the proposed PMs for
unconventional multi-sensor integrated kinematic positioning
and navigation. Conclusions are given in Section VI.

II. THREE-DIMENSIONAL KINEMATIC TRAJECTORY
MODEL

The motion of a rigid body can be described through the
kinematics without concerning the force as the causes for
different motion types. Appropriate coordinate frames are
needed to mathematically represent the position, velocity and
acceleration of a mechanical system. Two reference frames,
which are moving to each other, are used as in Fig. 1. One
of the frames is called as space-fixed system oxyz((S), the
other one is as the moved one obxbybzb(Sb), Sb is also called
the body frame.

The position vector of a point P will be uniquely repre-
sented through a time-dependent position vector r̃ with the
help of three unit vectors i⃗, j⃗, k⃗ along three axes x, y, z in
the space-fixed frame:

r̃ = x̃i+ ỹj+ zk̃ (1)

In components, the motion of the point at a time instant t
relative to a start time t0 can be given by

x(t) = x(t0)+ẋ(t0)(t−t0)+ 1
2 ẍ(t0)(t−t0)

2
+1

6

...
x(t0)(t−t0)3+· · ·

(2)
y(t) = y(t0)+ẏ(t0)(t−t0)+ 1

2 ÿ(t0)(t−t0)
2
+1

6

...
y (t0)(t−t0)3+· · ·

(3)
z(t) = z(t0)+ż(t0)(t−t0)+ 1

2 z̈(t0)(t−t0)
2
+1

6

...
z (t0)(t−t0)3+· · ·

(4)
wherein, ẋ, ẍ,

...
x, ẏ, ÿ,

...
y , ż, z̈,

...
z , ... are the first to third

derivatives of x, y, z with respect to the time. In order to

require as less items as possible, the time interval (t − t0)
must be as short as possible. Let r̃0 be the position vector
of the origin Ob and ρ̃ and ρ̃b be the relative position vector
of point P from Ob and the same vector in Sb, then

r̃(t) = r̃0(t) + ρ̃(t) = r̃0(t) +DT (t)ρ̃b(t) (5)

wherein, D(t) is the instantaneous rotation matrix from S to
Sb. From (5), the velocity, acceleration and jerk vectors can
be derived successively. The angular motion is coupled with
D(t).

With regard to a moving rigid body, the basic trajectory
parameters of interest are the relative parameters in the
local navigation frame (Sn), such as position vector rnnb of
the IMU center, the velocity vector vn

nb, the acceleration
vector annb and even the jerk vector jnnb. In principle, vn

nb

is the derivative of rnnb, which is also transformed from its
counterpart velocity vector vb

nb in Sb. Similarly, annb and jnnb
are the derivatives of vn

nb and annb.
For practical applications, position vector r of a moving

vehicle is discussed frequently in earth-fixed coordinate
frame (Se), so position vector r in Se is calculated here.
One step location update from point A to point B within a
small enough time interval ∆t is given as an example.

Firstly, the local coordinate increment ∆rn from point A
to point B with a zero initialization in Sn is described in
(6).

∆rn = ∆tCn
b(A)v

b
nb(A)+

∆t2

2
Cn

b(A)a
b
nb(A)+

∆t3

6
Cn

b(A)j
b
nb(A)

(6)
wherein, Cn

b is the direction cosine matrix (DCM) from Sb

to Sn. The subscript A represents time A.
Secondly, the local coordinate increment is transformed

from Sn to Se through the position cosine matrix Ce
n(A) at

point A in (7).
∆re = Ce

n(A)∆rn (7)

Finally, substituting (6) into (7), position vector r can be
listed in (8).

rBA = rA +∆re = rA +Ce
n(A)∆rn = rA +Ce

n(A)·
(∆tCn

b(A)v
b
nb(A) +

∆t2

2 Cn
b(A)a

b
nb(A) +

∆t3

6 Cn
b(A)j

b
nb(A))

(8)
By the rule of the vector dynamics, the rest of trajectory

parameters are directly given as:

ṙnnb = vn
nb = Cn

b v
b
nb (9)

v̇n
nb = annb = Cn

b [ω
b
nb×]vb

nb +Cn
b ( v̇b

nbx v̇b
nby v̇b

nbz )T

= Cn
b a

b
nb

(10)
ȧnnb = jnnb = Cn

b [ω
b
nb×]abnb +Cn

b ( ȧbnbx ȧbnby ȧbnbz )T

= Cn
b j

b
nb

(11)
wherein, rnnb,v

n
nb,a

n
nb, j

n
nb, ω

n
nb are the position, velocity,

acceleration, jerk and angular rate vectors in Sn respectively.
vb
nb,a

b
nb, j

b
nb are the velocity, acceleration and jerk vectors

in Sb. Cn
b is the DCM.

III. FORMULATION OF THE UNCONVENTIONAL KALMAN
FILTER

In this research, the KF system model consists of three
parts: 1) the 3D kinematic trajectory; 2) the attitudes; 3) the
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Fig. 2. Unconventional Integration Mechanism

angular rate. The first part is already discussed in Section II.
Please refer to [7] and [8] for the attitude model and angular
rate model.

Without loss of generality, the state vector and measure-
ment vector should be provided for the system Kalman filter.
For this research, the whole-value-state which describes the
vehicle’s kinetic characteristic is one part of the state vector.
The systematic errors of multiple IMUs are individually
modeled in the navigation Kalman filter, instead of being a
group of the commonly shared states for all of the IMUs be-
cause the assumption of the common-mode errors of different
sensors of the same design is unreasonable. Therefore, the
systematic-error of multi-IMU is the other part of the state
vector. As to the measurement vector, the measurements of
IMUs and GPS are considered, and all measurements are
the raw observables from IMUs and GPS. Fig. 2 shows the
unconventional integration mechanism. In this paper, one
GPS receiver and three low-cost IMUs are integrated as a
multi-sensor system to be processed.

A. The State Vector of Kalman Filter

The state vector of the being structured multi-sensor
integration Kalman filter in this manuscript consists of 51
components as follows

X51×1 =

[
rT , (vb

nb)
T
, (abnb)

T
, θT , (ωb

nb)
T
,bT

g1,b
T
g2,

bT
g3,b

T
a1,b

T
a2,b

T
a3, s

T
g1, s

T
g2, s

T
g3, s

T
a1, s

T
a2, s

T
a3

]T

with r = ( X Y Z )T , vb
nb = ( vbnbx vbnby vbnbz )T ,

abnb = ( abnbx abnby abnbz )T , θ = ( P γ ψ )T ,
ωb
nb = ( ωb

nbx ωb
nby ωb

nbz )T , which are the position
in earth-fixed coordinate frame (WGS84), body velocity,
body acceleration, the attitude and body angular rate
vectors. With bg1 = ( bg1x bg1y bg1z )T , bg2 =
( bg2x bg2y bg2z )T , bg3 = ( bg3x bg3y bg3z )T ,
ba1 = ( ba1x ba1y ba1z )T , ba2 =
( ba2x ba2y ba2z )T , ba3 = ( ba3x ba3y ba3z )T ,
sg1 = ( sg1x sg1y sg1z )T , sg2 =
( sg2x sg2y sg2z )T , sg3 = ( sg3x sg3y sg3z )T ,
sa1 = ( sa1x sa1y sa1z )T , sa2 =
( sa2x sa2y sa2z )T , sa3 = ( sa3x sa3y sa3z )T ,
which are gyroscope bias, accelerometer bias, gyroscope
scale factor error and accelerometer scale factor error
vectors, respectively. Moreover, subscripts 1, 2 and 3
represent serial numbers of the three IMUs.

B. Discrete System Model

According to the differential equations in Section II, the
discrete system equations for Kalman filter can be summa-
rized after the omission of the high order terms in Taylor

series expansion. The system discrete model can be given as
follows:

rk+1 = rk +Ce
n(k)(∆tC

n
b(k)v

b
nb(k)

+∆t2

2 Cn
b(k)a

b
nb(k) +

∆t3

6 Cn
b(k)j

b
nb(k))

(12)

vb
nb(k+1) =

[
I3×3 −∆t

[
ωb
nb(k)×

]
+ ∆t2

2

[
ωb
nb(k)×

]2]
vb
nb(k)

+
[
∆tI3×3 −∆t2

[
ωb
nb(k)×

]]
abnb(k)

+∆t2

2

[
vb
nb(k)×

]
ω̇b
nb(k) +

∆t2

2 jbnb(k)
(13)

abnb(k+1) =

[
I3×3 −∆t

[
ωb
nb(k)×

]
+ ∆t2

2

[
ωb
nb(k)×

]2]
abnb(k)

+∆t2

2

[
abnb(k)×

]
ω̇b
nb(k) +∆tjbnb(k)

(14)

θ(k+1) = θ(k) +∆tC3×3ω
b
nb(k) +

∆t2

2
C3×3ω̇

b
nb (15)

ωb
nbx(k+1) = e−∆t/Txωb

nbx(k) + wωx (16)

ωb
nby(k+1) = e−∆t/Tyωb

nby(k) + wωy (17)

ωb
nbz(k+1) = e−∆t/Tzωb

nbz(k)+(1−e−∆t/Tz )ωb
nbz(k−1)+wωz

(18)
bg1(k + 1) = bg1(k) +wbg1 (19)

bg2(k + 1) = bg2(k) +wbg2 (20)

bg3(k + 1) = bg3(k) +wbg3 (21)

ba1(k + 1) = ba1(k) +wba1 (22)

ba2(k + 1) = ba2(k) +wba2 (23)

ba3(k + 1) = ba3(k) +wba3 (24)

sg1(k + 1) = sg1(k) +wsg1 (25)

sg2(k + 1) = sg2(k) +wsg2 (26)

sg3(k + 1) = sg3(k) +wsg3 (27)

sa1(k + 1) = sa1(k) +wsa1 (28)

sa2(k + 1) = sa2(k) +wsa2 (29)

sa3(k + 1) = sa3(k) +wsa3 (30)

where ∆t = tk+1 − tk is the time interval. Cn
b is the DCM.

Tx, Ty, Tz are the time correlation coefficients of the first
order Markov model. wωx, wωy, wωz are three independent
white noise components for the angular rates. wbg, wsg, wba

and wsa are the white noise vectors for the biases and
scale factor errors of gyroscopes and accelerometers, and
subscripts 1, 2 and 3 represent serial numbers of the three
IMUs. jbnb is the body jerk vector as process noise for the
position, velocity and acceleration vectors. ω̇b

nb is the deriva-
tion of angular rate vector as the process noise for velocity,
acceleration and attitude vectors. C3×3 is the coefficient
matrix as

C3×3 =

 cos γ 0 sin γ
sin γ tanP 1 − cos γ tanP
sin γ secP 0 − cos γ secP


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Ce
n is position cosine matrix as follows, so its elements can

be acquired through the position vector r in Se.

Ce
n =

 − sinλ − sinφ cosλ cosφ cosλ
cosλ − sinφ sinλ cosφ sinλ
0 cosφ sinφ


wherein, λ and φ are longitude and latitude respectively,
and calculated by coordinate components (X,Y, Z) of the
position vector r in Se.

C. IMU Measurement Model

In general, the raw outputs of an IMU consist of three
angular rates from three orthogonal gyroscopes and three
specific forces from three accelerometers. Since there are
three IMUs in this integration system, three groups of
measurement equations need to be derived. Three IMUs are
placed as shown in Fig. 3, of which Fig. 3(a) is the vehicle’s
general view and Fig. 3(b) is the partial enlarged details for
internal structure.

Meanwhile, depending on specific application, the mea-
surement equations for low-cost IMUs can be simplified [10],
[11]. Considering each IMU can not be located at the same
point on the body, the different measurements from IMUs
must be transformed to the same reference frame in order
to perform the fusion algorithm [12], [13]. Here the core
IMU is chosen as reference. Three groups of angular rate
measurement equations and three groups of specific force
measurement equations are derived according to the specific
structure as follows:

ωb
ib−imu1 = (I+ Sg1)ω

b
nb + bg1 +∆g1 (31)

ωb
ib−imu2 = (I+ Sg2)ω

b
nb + bg2 +∆g2 (32)

ωb
ib−imu3 = (I+ Sg3)ω

b
nb + bg3 +∆g3 (33)

f bib−imu1 = (I+ Sa1)(a
b
nb −Cb

ng
n) + ba1 +∆a1 (34)

f bib−imu2 = (I+Sa2)(a
b
nb−Cb

ng
n)+ωb

ib×(ωb
ib×r2)+ba2+∆a2

(35)
f bib−imu3 = (I+Sa3)(a

b
nb−Cb

ng
n)+ωb

ib×(ωb
ib×r3)+ba3+∆a3

(36)
wherein, gn is the local gravity vector in Sn. ωb

nb,a
b
nb are

the rotation rate vector and the acceleration vector of Sb with
respect to Sn. bg,ba are the same meanings as mentioned
in Subsection III-A. Sg,Sa are the 3 × 3 scale factor error
matrices for gyroscopes and accelerometers. ∆g,∆a are the

Gaussian white noise vectors for angular rate and specific
force vectors. The lever arm parameters of the other two
IMUs with respect to the core one r2 = [−0.5, 0, 0]T and
r3 = [0.5, 0, 0]T .

D. GPS Measurement Model

In this research, not only the IMUs’ raw outputs, but also
the GPS’s raw outputs are directly used during measurement
updates. As another sensor different from low-cost IMUs but
the same status in this system, GPS may offer two kinds of
raw outputs, pseudorange and carrier phase. For this specific
application, only pseudorange is utilized to complete system
navigation. The generic observation equation [14], [15] for
the pseudorange PRj

A from receiver A to satellite j is

PRj
A = ρjA+c(δtA−δtj)+djA−trop+d

j
A−ion+εPRj

A
(37)

wherein, j = 1, 2, · · · , n indicates the j − th satellite. ρjA is
the distance between receiver A and satellite j. c is the speed
of light. δtA, δtj are the receiver clock error and satellite
clock error. djA−trop, d

j
A−ion are the tropospheric delay and

ionospheric delay. εPRj
A

is the random noise.

E. Kalman Filter Under the Unconventional Integration S-
trategy

Straightforward, the extended Kalman filter (EKF) is
further constructed based on the system model proposed
above. The state equations (12) - (30) and measurement
equations (31) - (37) are respectively generalized by the
discrete nonlinear system model as follows

Xk+1 = f(Xk) + Γkwk (38)

Zk = h(Xk) + vk (39)

wherein, Xk is the state vector as defined in Subsection III-A.

wk =

 (jbnb)
T
, (ω̇b

nb)
T
, wx, wy, wz, (wbg1)

T
, (wbg2)

T
,

(wbg3)
T
, (wba1)

T
, (wba2)

T
, (wba3)

T
, (wsg1)

T
,

(wsg2)
T
, (wsg3)

T
, (wsa1)

T
, (wsa2)

T
, (wsa3)

T


T

is the process noise vector. Γk is the coefficient matrix of
process noise vector. Zk is the measurement vector as intro-
duced in Subsection III-C and III-D. vk is the measurement
noise vector. f() and h() are nonlinear functions.

As widely known, EKF performs the estimate of the state
vector through time update and measurement update. No
further details about EKF will be provided here due to space
limitations.

IV. PRACTICAL MECHANISMS TO REALIZE SMOOTH
TRANSITIONS

This research deployed kinematic trajectory model as the
core of DKF system model. As can be seen from the
discrete system model in Subsection III-B, the jerk vector in
acceleration model describes transitions between alternative
kinematic processes. In order to avoid large calculation, the
jerk vector is disposed as process noise in Subsection III-E,
so that the less complex kinematic model cannot realize
smooth transitions between alternative kinematic models.
On the premise of few additional calculations, practical
detection rules will be developed to realize switches between
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different kinematic models instead of establishing a complex
kinematic model. The proposed practical mechanism utilizes
the changes of linear and circular velocities and accelerations
together with the changes of system attitudes.

This paper proposed the detection rules for significant
system maneuvers by utilizing the raw outputs of center
IMU, i.e. specific forces from accelerometers. Specifically,
the specific force difference between this moment and the
last is used to determine whether a switch occurs.

f bibx−imu1(k)− f bibx−imu1(k − 1) < σ1 (40)

f biby−imu1(k)− f biby−imu1(k − 1) < σ2 (41)

wherein, f bibx−imu1, f biby−imu1 are the specific forces of
center IMU on the x axis and y axis respectively. σ1, σ2
could be set according to practical needs.

Only when accurate accelerations are obtained can rela-
tively accurate velocities and positions be calculated. Ad-
ditionally, the acceleration can be divided into tangential
acceleration and normal acceleration by dynamics, which
would simplify the analysis process sharply. As for linear
and circular motion, different solutions are given as follows.

A. Mechanism to Realize Smooth Transitions for Linear
Motion

For linear motion, the changes of tangential acceleration
abnby can not be reflected from the attitudes of vehicle with
subtle variances. Considering the systematic errors of these
multiple IMUs, e.g. the biases and scale factor errors of
gyroscopes and accelerometers, were individually modeled
in Kalman filter, so that they could be updated with fil-
tering updates. Moreover, this research utilized all of the
measurements, inclusive of the ones from IMUs. The specific
force on the travel axis (y axis) of center IMU indicates
acceleration in the direction of travel. Therefore, the specific
force on the travel axis with correction could be considered
as an alternative of tangential acceleration. The tangential
acceleration abnby can be updated as follows

abnby(k+1) =
fb
iby−imu1(k)−ba1y(k)

1+sa1y(k)
− sin(P (k)) · g0·

(1 + 0.0052884 · sin2(φ(k))−0.0000059 · sin2(2φ(k)))
(42)

wherein, f biby−imu1 is the specific force output of center IMU
on the y axis. g0 is the gravitational acceleration on the
equatorial sea level. Other parameters have been introduced
before.

Obviously, the estimation accuracy for accelerometer bias-
es and scale factors influences the effectiveness of the solu-
tion. The simulation results show that accelerometer biases
and scale factors estimation accuracy obviously decreases
during circular motion, which leads to another solution to be
needed for this process.

B. Mechanism to Realize Smooth Transitions for Circular
Motion

For circular motion, normal acceleration abnbx is the main
target to be discussed. According to system dynamics and
kinematics, the attitudes will change with the changes of
linear and circular velocities and accelerations. Actually, to

TABLE I
THE TRANSITIONS DURING ONE-MINUTE TRACK

Time Interval Acceleration Travel Distance

0-10s an = 0, at = 2m/s2 S=100m

10-50s an = 0, at = 0 S=800m

50-55s an = 0, at = −3m/s2 S=62.5m

55-57s an = −5π/4m/s2, at = 0 S=10m

57-60s an = 0, at = 0 S=15m

ground based vehicle, only the change of direction angle is
the most obvious, as follows

ψ(k+1) = ψ(k)+
abnbx(k)

vbnby(k)
·∆t (43)

wherein, ψ is the direction angle. ∆t = tk+1 − tk is
the time interval. vbnby is the linear velocity. In discrete
system model, attitude model is independent of acceleration.
Beyond that, the linear speed is constant in uniform circular
motion. Therefore, normal acceleration abnbx can be updated
depending on the direction angle, as follows

abnbx(k) =
ψ(k+1)− ψ(k)

∆t
· vbnby(k) (44)

As can be seen from (44), this model will be more accurate
for circular motion with a constant magnitude of vbnby , such
as uniform circular motion.

V. SIMULATIONS AND RESULTS

The unconventional integrated navigation strategy will
be applied to process the navigation information collected
by GPS and multiple low-cost IMUs integrated navigation
system on a ground based vehicle. In this paper, all tests
are under full physical simulation. The trajectory simulation
of the vehicle was designed in this research as a temporary
replacement of real body. Besides, the real-time raw outputs
of three IMUs and GPS were simulated on practical basis. In
order to imitate the output from real sensor, several groups
of random numbers were generated through a series of
procedures, not generated by utilizing functional instructions
that come with Matlab. Here no more details about this part
will be introduced due to the space limit. The IMU data were
collected at 100Hz (angular rate: bias stability ≈ 10.0◦/h,
angle random walk ≈ 4.5◦/

√
hr; specific force: bias stability

≈ 0.1mg, velocity random walk ≈ 1.0m/s/
√
hr) and the

GPS data were acquired at 1Hz. The GPS simulation was
based on a navigation message file. One-minute track with
a plurality of transitions was selected to demonstrate the
practicability of the proposed method, see Table I for details.

Fig. 4 - Fig. 7 show the solution accuracies for kine-
matic trajectory parameters and attitude under the practical
mechanisms (PMs). The accuracy of 3D position solution is
under 20m. The overall accuracies for velocity state vector
in east, north and up directions are approximately ±0.5m/s,
0 ∼ 0.4m/s and ±0.5m/s, respectively. The accuracy for
acceleration state vector in up direction is always within
0.05m/s2. The accuracies for acceleration state vector in east
and north directions are also relatively high, especially for
linear motion. The errors of acceleration in three directions
are slightly larger during the turn (55-57s) due to attitude
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accuracy, though the overall accuracy for acceleration is
acceptable. The estimation errors of attitude (roll, pitch and
heading) are around ±0.5◦, ±0.5◦ and ±1◦, correspondingly.

Fig. 8 - Fig. 10 show the solution accuracies for kinematic
trajectory parameters with and without the PMs. It can be
seen clearly that the divergent growth of position and velocity
errors could be well suppressed using the practical mecha-
nisms. For acceleration error, the accumulated acceleration
error caused by switches between different kinematic models
could be effectively avoided by the practical mechanisms.

Furthermore, the estimates for three IMUs systematic
errors, i.e. three-axis biases and scale factor errors of gy-
roscopes and accelerometers, are illustrated in Fig. 11 - Fig.
14. Remarkably, almost all the estimations of system errors
deviate from the relative steady values after 55s. That is why
different solutions are selected for the linear and circular
motion.

Generally, the navigation parameters during accelerated,
uniform and circular processes could be estimated within
acceptable ranges using the unconventional multi-sensor in-
tegration strategy with the proposed PMs. Moreover, all the
error curves show the gradual upward trend, which is due
to the simplification of system model, but has no significant
effect on navigation accuracy in a short period.
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VI. CONCLUSION

This research applied the novel multi-sensor integration
strategy based on kinematic trajectory model to integrate
GPS receiver and three low-cost IMUs. The improved and
enhanced part is the proposed practical mechanisms to realize
smooth transitions between different motion statuses so that
this integration strategy would be widely applied to con-
tinuous dynamic switching processes. The test results from
the simulation of a ground based vehicle have demonstrated
the practicability of the proposed practical mechanisms. The
next task would be developing an algorithm of variance
component estimation, so that the variances for process and
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measurement noises could be updated in Kalman filter to
produce reliable result and restrain divergence.
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