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Abstract—This paper investigates the problem of global
stabilization of nonholonomic mobile robots with spatial con-
straint. A nonlinear mapping is first introduced to transform
the state-constrained system into a new unconstrained one.
Then, by employing the backstepping technique and switching
control strategy, a state feedback controller is successfully
constructed to guarantee that the states of closed-loop system
are asymptotically regulated to zero without violation of the
constraint. Finally, simulation results provided to illustrate the
validity of the proposed approach.

Index Terms—nonholonomic mobile robots, spatial constrain-
t, backstepping, asymptotic stabilization.

I. INTRODUCTION

THE nonholonomic systems have received considerable
attention have received considerable attention during

the last decades because their widespread applications in
modelling many practical systems, such as mobile robots,
car-like vehicle, under-actuated satellites and so on [1-4].
Nonholonomic mobile robots have good flexibility, since they
could realize autonomous movement in the case of nobody
involving. However, due to the limitations imposed by Brock-
ett’s condition[6], this class of nonlinear systems cannot be
stabilized by stationary continuous state-feedback, although
it is controllable. There are currently several effective control
methodologies that overcome the topological obstruction.
The idea of using time-varying smooth controllers was first
proposed in [6], in order to stabilize a mobile robot. For
driftless systems in chained form, several novel approaches
have been proposed for the design of periodic, smooth, or
continuous stabilizing controllers [7, 8]. Most of the time-
varying control scheme suffer from a slow convergence
rate and oscillation. However, it has been observed that a
discontinuous feedback control scheme usually results in a
fast convergence rate. An elegant approach to constructing
discontinuous feedback controller was developed in [9].
The drawback is that there is a restriction on the initial
conditions of the controlled system. This limitation has been
overcome by a switching state or output control scheme [10].
Subsequently, [11-19] further developed the discontinuous
feedback control strategy based on different control targets,
respectively. However, the effect of the constraint is not
addressed in the above-mentioned results.
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As a matter that the constraints which can represent not
only physical limitations but also performance requirements
are common in practical systems. Violation of the constraints
may cause performance degradation or system damage. In
recent years, driven by practical needs and theoretical chal-
lenges, the control design for constrained nonlinear systems
has become an important research topic [20-22]. However,
less attention has been paid to the space-constrained non-
holonomic mobile robots.

This paper addresses the asymptotic stabilization by s-
tate feedback for nonholonomic mobile robots with spatial
constraint. The contributions can be highlighted as follows.
(i) The stabilization problem of nonholonomic systems with
spatial constraint is studied for the first time. (ii) A non-
linear mapping is introduced, under which the constrained
interval is mapped to the whole real number field, and then
the conventional control technique can be directly applied
without considering the range of initial values. (iii) With the
help of switching strategy eliminating the phenomenon of
uncontrollability of u0 = 0, a systematic state feedback con-
trol design procedure by using the backstepping technique
is proposed such that the states of closed-loop system are
regulated to zero asymptotically while the state constraints
are not violated.

The rest of this paper is organized as follows. In Section
II, the problem formulation and preliminaries are given.
Section III presents the input-state-scaling transformation
the backstepping design procedure, the switching control
strategy and the main result. Section IV gives simulation
results to illustrate the theoretical finding of this paper.
Finally, concluding remarks are proposed in Section V.

II. PROBLEM FORMULATION

Fig. 1. The planar graph of a mobile robot.

Consider a tricycle-type mobile robot shown in Fig. 1. The

Engineering Letters, 26:3, EL_26_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 2. Schematic illustration of the nonlinear mapping H0.

kinematic equations of this robot are represented by

ẋc = v cos θ
ẏc = v sin θ

θ̇ = ω
(1)

where (xc, yc) denotes the position of the center of mass of
the robot, θ is the heading angle of the robot, v is the forward
velocity while ω is the angular velocity of the robot.

Introducing the following change of coordinates

x0 = xc, x1 = yc, x2 = tan θ,
u0 = v cos θ, u1 = w sec2 θ,

(2)

system (1) is transformed into the chained form as

ẋ0 = u0

ẋ1 = u0x2

ẋ2 = u1

(3)

Note that the state (x0, x1) can be see as the displacement
from the parking position. As we all know, when the robots
initial position is far away from the parking position, it
usually can move directly to the parking position. The robots
body angle can be aligned without difficulties and no more
maneuvers are needed. However, when the robot’s initial
position is close to the parking position, it might not be
feasible to get to the parking position while aligning the
robots body angle at the same time. Therefore it is very
necessary to develop finite-time control techniques for state
constrained nonholonomic systems for giving this difficulty
a straightforward solution.

Due to physical limitations, in this paper we assume that
the states x0 and x1 are constrained in the compact sets

Ωxi
= {−ki < xi < ki}, i = 0, 1 (4)

where ki’s are positive constants.
The objective of this paper is to design a state feedback

controller such that the states of closed-loop system are
globally asymptotically regulated to zero without violation
of the constraint.

III. NONLINEAR MAPPING

To prevent the states x0 and x1 from violating the con-
straints, we define a nonlinear mapping that will be used to
develop the control design and the main results.

Define a one-to-one nonlinear mapping H : (x0, x) →
(η0, η) as follows:

η0 = H0(x0) = ln
(k0 + x0

k0 − x0

)
η1 = H1(x1) = ln

(k1 + x1

k1 − x1

)
η2 = H2(x2) = x2

(5)

where H0 is shown in Fig. 2. It is clear that function H0 is
a continuous elementary function. From (5), we get

x0 = H −1
0 = k0

(
1− 2

eη0 + 1

)
(6)

then the derivative of x0 is given by

ẋ0 =
2k0e

η0

(eη0 + 1)2
η̇0 (7)

Substituting (7) into the first equation of (3), we have

η̇0 =
1

2k0
(eη0 + e−η0 + 2)u0 (8)

Similarly, we can obtain

η̇1 =
1

2k1
(eη1 + e−η1 + 2)x2 (9)

By noting that η̇2 = ẋ2, we can rewrite the system (3) as

η̇0 = d0(η0)u0

η̇1 = d1(η1)u0η2
η̇2 = u1

(10)

where
d0(η0) =

1

2k0
(eη0 + e−η0 + 2)

d1(η1) =
1

2k1
(eη1 + e−η1 + 2)

(11)

Remark 1. On the basis of the nonlinear mapping H , we
see that the state η0 (η1) is an unconstrained variable defined
in the whole real number field R. Moreover, x0 (x1) remains
the constraint interval |x0| < k0 (|x1| < k1) regardless of
the number of η0 (η1). That is, the control design for the
unconstrained transformed system (10) is equivalent to the
control design for the constrained initial system (3).

IV. ROBUST CONTROLLER DESIGN

In this section, we focus on designing robust controller for
system (10) provided that η0(t0) ̸= 0, while the case where
the initial condition η0(t0) = 0 will be treated in Section V.
The inherently triangular structure of system (10) suggests
that we should design the control inputs u0 and u1 in two
separate stages.

A. Design u0 for η0-subsystem

For η0-subsystem, we take the following control law

u0 = − 1

d0
λ0η0 (12)

where λ0 is a positive design parameter. Under the control
law (12), the following lemma can be established.

Lemma 1. For any initial t0 ≥ 0 and any initial condition
η0(t0) ∈ R/{0}, the corresponding solution η0(t) exists
and satisfies limt→∞ η0(t) = 0. Furthermore, the control u0

given by (12) also exists; does not cross zero and satisfies
limt→∞ u0(t) = 0.
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Proof. Choosing the Lyapunov function V0 = η20/2, a
simple computation gives

V̇0 ≤ −λ0η
2
0 ≤ 0 (13)

which implies

|η0(t)| ≤ |η0(t0)|e−λ0(t−t0) (14)

Consequently, η0 is globally exponentially convergent and
does not cross zero for all t ∈ (t0,∞) provided that η0(t0) ̸=
0. Furthermore, from (12), we can conclude that the u0 exists,
does not cross zero for all t ∈ (t0,∞) independent of the
η-subsystem and satisfies limt→∞ u0(t) = 0.

B. Input-state-scaling transformation

From the above analysis, we can see the η0-state in (10)
can be globally exponentially regulated to zero via u0 in (12)
as t → ∞. However, it is troublesome in controlling the η-
subsystem via the control input u1 because, in the limit (i.e.
u0 = 0), the η-subsystem is uncontrollable. To avoid the
phenomenon, the following discontinuous input-state-scaling
transformation is employed.

zi =
ηi

un−i
0

, i = 1, 2 (15)

under which, the η-subsystem is transformed into

ż1 = d̃1(η0, z1)z2 + f̃1(t, η0, z1, u0)
ż2 = u1

(16)

where

d̃1(η0, z1) = d1(η1)

f̃1(t, η0, z̄i, u0) = − (n− i)zi
u0

∂u0

∂η0
d0u0

(17)

The following lemma gives the estimation of nonlinear
function f̄i.

Lemma 2. There exist nonnegative smooth functions φ̃i

such that

|f̃1(t, η0, z̄i, u0)| ≤ φ̃1(η0, z̄i)|z1| (18)

Proof. The estimation can be easily obtained from, (12),
(17) and the transformation (15). The detailed proof is
omitted here.

C. Backstepping Design for u1

In this subsection, we shall construct a state feedback
controller u1 by backstepping technique.

Step 1. We first consider the z1-subsystem of (16) and take
z2 as the control input. Construct the first Lyapunov function
candidate V1 = z21/2 whose time derivative satisfies

V̇1 = d̃1z1z2 + z1f̃1 ≤ d̃1z1z2 + z2φ̃1 (19)

By choosing the first virtual controller z∗2 for z2 as

z∗2 = − 1

d̃1
(2 + φ̄1)z1 := −α1(η0, z1)z1 (20)

where α1 > 0 is a smooth function, we have

V̇1 ≤ −2z21 + d̃1z1(z2 − z∗2) (21)

Step 2. Let ξ2 = z2 − z∗2 and consider the Lyapunov
function candidate

V2 = V1 +
1

2
ξ22 (22)

Clearly

V̇2 ≤ −2z21 + d̃1z1(z2 − z∗2) + ξ2u1

−ξ2
∂z∗2
∂z1

(d̃1z2 + f̃2)− ξ2
∂z∗2
∂η0

d0u0
(23)

Now we estimate each term on the right-hand side of (23).
To begin with, we have

d̃1z1(z2 − z∗2) ≤
1

3
z21 + l21ξ

2
2 (24)

where l21 > 0 is a constant.
Then, according to (18), it follows that

−ξ2
∂z∗2
∂z1

(d̃1z2 + f̃1) ≤
1

3
z21 + l22ξ

2
2 (25)

for a smooth function l22 ≥ 0.
Since z∗k is a smooth function and satisfies

z∗2(η0, 0) = 0,
∂z∗2
∂η0

(η0, 0) = 0 (26)

Based on the completion of squares, it is deduced that there
is a smooth function l23 ≥ 0 such that

−ξ2
∂z∗2
∂η0

d0 ≤ 1

3
z21 + l23ξ

2
2 (27)

Substituting (24)–(25) and (27) into (23) yields

V̇2 ≤ −z21 + ξ2u1 + ξ2(l21 + l22 + l23) (28)

Now, it easy to see that the smooth actual controller

u1 = −(1 + l21 + l22 + l23)ξ2
:= −α2(η0, z1, ξ2)ξ2

(29)

renders
V̇2 ≤ −(z21 + ξ22) (30)

We have thus far completed the controller design pro-
cedure for η0(t0) ̸= 0. Without loss of generality, we can
assume that t0 = 0.

V. SWITCHING CONTROL DESIGN AND MAIN RESULTS

In the preceding section, we have given controller design
for η0(0) ̸= 0. Now, we discuss how to select the control laws
u0 and u1 when η0(0) = 0. In the absence of disturbances,
the most commonly used control strategy is using constant
control u0 = u∗

0 ̸= 0 in time interval [0, ts). However, for
system (10), the choice of constant feedbacks may lead to
the solution of the η0-subsystem blow up before the given
switching time ts. In order to prevent this finite escape
phenomenon from happening, we give the switching control
strategy for control input u0 by the use of state measurement
of the η0-subsystem in (10) instead of frequently-used time
measurement.

When η0(0) = 0, we choose u0 as follow:

u0 = u∗
0, u∗

0 > 0

At η0(0) = 0, we know that η̇0(0) = d0(0)u0(0) =
d0(0)u

∗
0 > 0. Thus for a small positive constant δ, there

exists a small neighborhood Ω of η0(0) = 0 such that
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|d0η0| ≤ δ. Suppose that η∗0 satisfies |η∗0 | = δ. In Ω, η0
is increasing until |η0| > δ.

Now, we define the switching control law u0 as

u0 = u∗
0, u∗

0 > 0, |η0| ≤ |η∗0 | < δ (31)

During the time period satisfying |η0| ≤ |η∗0 |, using u0

defined in (31) and new u1 = u∗
1(η0, z) obtained by the

similar control design method as (29), it is concluded that
the η-state of (10) cannot blow up for |η0| ≤ |η∗0 |. At this
time, η0(ts) is not zero (|η0(ts)| > |η∗0 |), then, we switch to
the control inputs u0 and u1 into (12) and (29), respectively.
Thus, the following results are obtained.

Lemma 3. If the proposed control design procedure to-
gether with the above switching control strategy is applied
to system (10), then, for any initial conditions in the state
space (η0, η)

T ∈ R3 , system (10) is globally asymptotic-
regulated at origin.

Proof. According to the above analysis, it suffices to prove
the statement in the case where η0(0) ̸= 0.

Since we have already proven that limt→∞ η0(t) = 0 in
Lemma 1, we just need to show that limt→∞ η(t) = 0. In this
case, noting that Vn is positive definite and radially unbound-
ed, by (22) and (30), we get limt→∞ z(t) = 0. Furthermore,
from the input-state-scaling transformation (15), we conclude
that limt→∞ η(t) = 0. Thereby, the proof of Lemma 3 is
completed.

With the help of Lemma 3, we are ready to state the main
results of this paper.

Theorem 1. If the proposed control design procedure
together with the above switching control strategy is applied
to system (3), then, for any initial conditions (x0(0), x(0)) ∈
Θ = {(x0, x)

T ∈ R3| − ki < xi < ki, i = 0, 1}, the
following properties hold.

(i) The states x0 and x1 stay in the compact sets Ωxi =
{−ki < xi < ki}, i = 0, 1, that is, the state constraints are
not violated.

(ii) All the states of closed-loop system are asymptotically
regulated to zero.

Proof. From Lemma 3, we can easily see that the states
ηi(t), i = 0, 1, 2 are bounded, and limt→∞ ηi(t) = 0. The
bounded states ηi(t), i = 0, 1 together with the nonlinear
mapping (5) lead to

|x0(t)| = k0

∣∣∣1− 2

eη0(t) + 1

∣∣∣ < k0 (32)

and
|x1(t)| = k1

∣∣∣1− 2

eη1(t) + 1

∣∣∣ < k1 (33)

that is, the states xi will remain in the sets Ωxi
, i = 0, 1 and

never violate the constraints. Furthermore, limt→∞ ηi(t) =
0, i = 0, 1, · · · , n and (5) imply that limt→∞ x2(t) = 0 and

lim
t→∞

x0 = lim
t→∞

k0

(
1− 2

eη0(t) + 1

)
= k0

(
1− 2

elimt→∞ η0(t)+1

)
= 0

(34)

lim
t→∞

x1 = lim
t→∞

k1

(
1− 2

eη1(t) + 1

)
= k1

(
1− 2

elimt→∞ η1(t)+1

)
= 0

(35)

Thus, the proof is completed.

0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

 

 
x

0

x
1

Fig. 3. The state trajectories of the robot.

VI. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the
proposed approach with the boundedness of ki = 1, i.e.,
|x0| < 1 and |x1| < 1.

If η0(0) = 0, controls u0 and u1 are set as in Section 4 in
interval [0, ts), such that η0(ts) ̸= 0, then we can adopt the
controls developed below. Therefore, without loss of gener-
ality, we assume that η0(0) ̸= 0. For the η0-subsystem, we
can choose the control law u0 = −2λ0η0/(e

η0 + e−η0 + 2).
By introducing the input-state-scaling transformation z1 =
η1/u

2
0, z2 = η2/u0, z3 = x3, the η-subsystem of (??) is

transformed into

ż1 =
1

2
(ez1u0 + e−z1u0 + 2)z2 −

u̇0

u0
z1

ż2 = u1

(36)

According to the design procedure shown in Section 3, we
can explicitly construct a state feedback controller

u1 = −b2(z2 + b1z1) (37)

with appropriate nonnegative smooth functions b1 and b2,
to globally asymptotically stabilize z-subsystem (36). In the
simulation, by choosing initial value (x0(0), x1(0), x2(0)) =
(0.8,−0.98,−2) and the gains for the control laws as k0 = 3,
λ0 = 0.3, b1 = 4/(ez1 + e−z1 + 2) and b2 = 1.5, Fig. 3 is
obtained to exhibit the responses of the closed-loop system.
From the figure, it can be seen that all the closed-loop system
states are asymptotically regulated to zero and the output
constraint is never violated, which accords with the main
results established in Theorem 1 and also demonstrates the
effectiveness of the control method proposed in this paper.

VII. CONCLUSION

This paper has studied the problem of asymptotic stabi-
lization by state feedback for nonholonomic mobile robots
with spatial constraint. Based on the nonlinear mapping,
and by using backstepping technique, a constructive design
procedure for state feedback control is given. Together with a
novel switching control strategy, the designed controller can
guarantee that the closed-loop system states are asymptoti-
cally regulated to zero while the constraint is not violated.
In this direction, there are still remaining problems to be
investigated. For example, an interesting research problem is
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how to design an output feedback stabilizing controller for
the constrained nonholonomic mobile robots studied in the
paper.
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