



Abstract—To optimize the structures of the open source

crawlers, improve the performances of the standalone crawlers,

we design a new Multi-Computer and Multi-Thread vertical

Crawler, called MCMTCrawler. MCMTCrawler can complete

the special crawling task on a large business website within a

few hours. MCMTCrawler uses Berkeley DB to persist the

waiting Uniform Resource Locator (URL) queue and the

downloaded URL queue. MD5 algorithm is applied to map a

URL to a 32-length string. MCMTCrawler employs the

Producer-Consumer model to assign and process the URLs.

Based on the design ideas of Aspect-Oriented Programming

(AOP) and Dependency Injection (DI) of Spring, the scheduler

and the downloader of MCMTCrawler are designed separately

for speeding up the crawler. According to the experimental

results, when using three downloaded servers, the speed of

MCMTCrawler is five times as much as that of the

single-computer and single-process crawler, and three times of

the single-computer and multi-thread crawler called Crawler4j.

Furthermore, for handling the task of crawling 600,000 web

pages, MCMTCrawler takes only 6.83 hours.

Index Terms— MCMTCrawler, Multi-Computer and

Multi-Thread, Vertical Crawler, Design idea

I. INTRODUCTION

N the era of big data, it is a commonly mean to use big data

for analyzing and solving realistic problems in the business

applications [1]. To apply the technology of big data, we

must have enough data in the first. The amount of data is

greater, the probability and accuracy are higher for analyzing

and solving the problems [2]. There is a broad amount of data

on the Internet. It is obviously unrealistic to centralized store

all of the data. However, for the specific domains, we can use

the crawler to download the focused data from the related

web pages, and further to extract the value of these data.

Therefore, our team designs a crawler to download the web

pages from several large-scale commercial websites, and

Manuscript received January 21, 2018. This work was supported by the

National Key Technology Support Program of China (No.

2012BAH09B02); the Natural Science Foundation of Hunan Province (Nos.

2017JJ5064); the Social Science Foundation of Hunan Province (No.

16ZDA07).

Ziyun Deng is with the College of Economics and Trade, Changsha

Commerce & Tourism College, Changsha 410116, China (corresponding

author to provide phone: +86-138-7492-1889; e-mail:dengziyun@126.com).

Lei Chen is with School of Information and Electrical Engineering,

Hunan University of Science and Technology, Xiangtan 411201, China

(e-mail: chenlei_hnust@126.com).

Tingqin He is with National Supercomputing Center in Changsha, Hunan

University, Changsha 410082, China (e-mail: hetingqin@hnu.edu.cn).

Tao Meng is with National Supercomputing Center in Changsha, Hunan

University, Changsha 410082, China (e-mail: mengtao@hnu.edu.cn).

extract the commodity information for building the special

database. We further analyze the price trend of these goods,

thus provide the purchasing suggestions for the buyers, and

offer the price recommendations for the sellers. The research

ideas of our team and the focus of this paper are shown in

Fig.1.

Fig.1. The research focus of this paper

Generally, a large-scale commercial website has a huge

number of web pages, which can reach the level of several

hundreds of thousands [3], even the level of several millions.

To crawl on the web pages in this website, we must have a

high-speed crawler. Let us take a simple example. If a

large-scale commercial website has 500,000 web pages, and

a crawler takes one second to download one web page, then

the crawler crawls on only 86,400 web pages in 24 hours. The

speed of crawling is obviously inefficient. Therefore, the

single-process structure of the crawler is no longer satisfied

with current need, so it is very important to design a

high-speed crawler. In this paper, we don’t care about the

related analysis of the web content and the commodity price.

We only focus on the design of a Multi-Computer and

Multi-Thread crawler called MCMTCrawler.

MCMTCrawler can quickly download the web contents from

any large-scale commercial website. We hope the

MCMTCrawler can crawl hundreds of thousands of web

pages every day.

The remainder of this paper is organized as follows. We

describe the background and related work in section II. In

section III, we present our new crawler called

MCMTCrawler. We show the experimental evaluation in

section IV. Finally, we draw our conclusions in section V.

MCMTCrawler: a Multi-Computer and

Multi-Thread Vertical Crawler

Ziyun Deng, Lei Chen, Tingqin He and Tao Meng

I

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

II. BACKGROUND AND RELATED WORK

In the past several years, a lot of related research works and

achievements can be summarized into three aspects.

A. Optimization of task queue

Based on the previous literature researches [4-7] and some

open source crawlers [8-10], a crawler should generally have

at least 4 components including downloader, waiting

Uniformed Resource Locator (URL) queue, downloaded

URL queue, and scheduler. The downloader refers to crawl

the web pages according to the waiting URL queue. The

waiting URL queue is in charge of storing the list of URLs to

crawl. The downloaded URL queue refers to store the list of

URLs that have been downloaded by the crawler. The

scheduler sets up a series of crawling rules, and drives the

crawler to work. In the traditional web crawlers [4-17], First

Input First Output (FIFO) algorithm is widely used to transfer

the URLs from the waiting URL queue to the downloaded

URL queue. However, FIFO algorithm usually causes some

web pages couldn’t be crawled after a long time. The main

cause of this phenomenon is to use the depth search algorithm

for finding the web pages [15, 18]. Based on the above

reason, some researchers apply some better search algorithms

and in-memory queues to optimize the task queue for

improving the crawler speed. The crawlers [6, 11] use the

broad search algorithm. The works [19, 20] employ the

scheduling algorithm based on the URL classification to

further improve the crawler speed. Otherwise, some crawlers

[5, 11, and 17] use the table of the database as queue structure

to store the URL list, which is very good for data persistence.

But, these crawlers usually have a low speed. For that, the

newly developed crawlers [8, 14, and 19] use the memory

queue structure or the simple Key-Value database under the

enough memory condition.

B. Optimization of persistent storage

To improve the speed, three optimized ways of persistent

storage are used for the waiting URL queue and the

downloaded URL queue. They are the shared memory queue,

filter and the memory database. In the first way, HashSet is

typical. If we use the shared memory queue, the memory will

easily overflow. Moreover, once the program is interrupted,

the data in two queues will be automatically cleared without

persistence processing. In the second way [20], BloomFilter

is typical. We need to set up three different parameters

 for getting the best result for BloomFlter. Because

these parameters are dynamical, it is very difficult to get the

ideal values for the crawlers, and it is still possible to produce

misjudgment or memory overflow. Therefore, the way using

the shared memory queue and the way using the filter are

both more efficient than the way using the memory database.

The way using the memory database, such as Berkeley DB, is

the compromise solution and more stable than other ways.

C. Optimization of structure design

To further improve the crawler speed, the structural design

of the crawler is optimized. For example, multi-threaded and

distributed technology is used in the structural design of a

web crawler. Currently, many crawlers [4-17] use the

structural design, such as Crawler4j[8], Nutch[9], Web

collector[10]. All of them support multi-threaded downloader

or distributed deployment. In theory, if the network

bandwidth is enough, then the speed of the crawl for

downloading web pages is faster through the more threads

and more computers participate in working. However, when

a multiple-threaded or distributed crawler runs, the

downloader and scheduler get the URLs at the same time

from the waiting URL queue. This leads to the problem of

reading some URLs repeatedly [21]. The waiting URL queue

hasn’t Atomicity/ Consistency/ Isolation/ Durability (ACID)

features like the database system. Furthermore, the existing

crawlers put the downloader and the scheduler working in the

same thread, the downloader takes a large amount of work

time in the thread, and the scheduler is also waiting.

To solve above three problems including, "the downloader

and scheduler isn’t separated in one thread", "reading some

URLs repeatedly in a multi-threaded crawler", and "memory

overflow", this paper designs a new crawler, called

MCMTCrawler.

III. MCMTCRAWLER

A. Berkeley DB persistent

Berkeley DB is used for persistent processing the

waiting URL queue and the downloaded URL queue, as

showed in Fig.2. In the waiting URL queue, the key records

URL. Considering the waiting URL queue only needs to

record the URLs, the value is a static byte, so that the whole

waiting URL queue only needs 1 byte to record the value. If

we simply store the URLs of the Key-Value data structure,

then it’s difficult to handle the different URL lengths, the

consumption of storage space is becoming large, and the

search speed will become slow. Therefore, MD5 [22]

calculation can be used to map a URL to a 32-length string as

the URL's unique identifier. The URLs have the same length

after the MD5 calculation is executed. The calculated MD5

result is used as the key index for searching the URL queue

with fast downloading speed. If a match item is found, then it

means the URL has been downloaded.

Fig.2. The data structures of the waiting URL queue and the downloaded

URL queue

MD5 calculation mainly consists of three steps. Firstly, the

calculation converts a URL to a 16-byte long array using

MessageDigest class of Java Development Kit (JDK). Then,

the calculation traverses the element of the byte array, and

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

gets the absolute value. For each absolute value, the

calculation parses the value into a string with 16-hexadecimal

format. If the length of the string with 16-hexadecimal format

is less than 2, then the calculation fills in zero in front of the

string. Finally, the calculation merges these strings, and gets

a 32-length string. So, in fact, the capacity of this 32-length

string is 1616 = 264 = 16EB, which is huge and enough for the

vertical crawlers. For the consumption of the storage space,

before the MD5 calculation, the length of the estimated URL

is about 120-150 strings, which are 4-5 times storage space

required than the length of the URL after the MD5

calculation. Assuming a large commercial website has more

than 5 million URLs. The required storage space for MD5

calculations is the following value,

5,000,000 32 2 320 M Byte   (1)

If we skip the MD5 calculation, then we need 1.28G ~1.6G

storage space at least. In addition, by using Berkeley DB, the

memory will never be overflowed if we ensure enough hard

drive space. Thus, because of uniform length and shorter

strings as key, the design helps to search for Berkeley DB.

B. "Producer - Consumer" model

The Producer-Consumer model usually starts a thread

specifically to accomplish the functions of "Producer".

Firstly, the thread judges whether the buffer is full. If the

buffer is not full, the thread gets the first URL from the

waiting URL queue. The thread makes accessibility test after

the thread uses comparing with the downloaded URL

queue. If the test is successful, the thread pushes into the

URL queues for the scheduling threads. So the producer

generates the URLs. When thread start, it generates static

URL queues for the scheduling threads according to the

number of dispatch threads injected by Spring at the initial

startup. Which URL queue for the scheduling thread should

be pushed into? The algorithm is showed in Table I.

Fig.3. "Producer - Consumer" model

TABLE I. ALGORITHM 1

Algorithm 1:

Function: Algorithm 1 pushes into the URL queue for the scheduling

thread.

Parameter Description: , a collection of URL queues for the

scheduling threads. , the URL to be pushed into the URL queue for the

scheduling thread.

//Find out the shortest URL queue

//Push into the shortest URL queue

In Algorithm 1, it finds out the shortest URL queue for the

scheduling thread through a loop " " function, which is

actually the first URL queue in the multiply

shortest URL queues. For example, if there are three shortest

URL queues, the lengths of these queues are all eight, and

then is the first URL queue of these queues.

After finding out , if the length of

 is less than , then the algorithm popups one

URL from the waiting URL queue to

 , and pushes into .

Fig.4. The designs of the scheduler and downloader

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

Algorithm 1 can judge the status of the URL queues. If the

URL queue is not full, then the downloaded URL queue

popups a URL into . If we set , It shows

the system has 20 scheduling threads. If we set , It

shows the maximum length of the URL queue for scheduling

thread is 10. If the length of each URL is 150 characters, then

the size of the memory occupied by the URL buffer is the

following value,

 (2)

Thus, the URL buffer only needs a little memory space,

which avoids the memory overflow. Because of the URL

buffer, it’s efficiency close to memory storage situation when

handling the URLs.

As showed in Fig.3, the "Consumer" in the

"Producer-Consumer" model consists of scheduling

threads. The scheduling threads respectively popup the

URLs from the URL queues for scheduling threads to

consume the URLs.

C. Detachment of scheduler and downloader

According to the research described, we can see that the

existing open-source software of the vertical crawler share

the scheduler and the downloader in the same process or

thread. It takes more time for downloading the web pages.

Therefore, we consider a way to separate the scheduler and

downloader. "Crawl while downloading" to "separate the

downloader and the scheduler", the design idea is showed in

Fig.4.

The "Producer" thread in the "Producer-Consumer" model

continues to generate the URLs for the URL queues for

scheduling. The URL queues for scheduling correspond to

the scheduling threads. In the scheduling thread, the first

step is the repeated-URL judgment. If is not downloaded,

then the scheduling thread calls asynchronous the Web

Service of the downloader. After calling asynchronously, the

scheduling thread pushes into the downloaded URL

queue.

Another Web Service of the scheduler is used to receive

calling by the downloader, then it parses out the URL array

and pushes the URLs in the URL array into the waiting URL

queue.

The design of the downloader is shown in Fig.5. The

download threads of the downloader are distributed in

multiple computers. When receive the request to download

the URL, the downloader pushes the URL into the shortest

URL queue for downloading. The download tasks will be

dispatched to download threads on computers.

Before the download thread finishes, the download thread

tries to parse out the URL array by Jsoup, and returns the

URL array to the scheduler by calling back the Web Service

in the scheduler.

Fig.5. The architecture design of the downloader

Assuming that the average number of the characters in a

URL string is , and each queue stores URLs, then the size

of the download buffer may be considered as
 . If 10 computers download the web pages, each

computer runs 20 download threads, a URL has 150

characters in average, and each queue stores 10 URLs, then,

2 150 10 20 2 10 600 K Bytel m n a          (3)

Only 600 K byte space is needed for the URL buffer for the

download tasks. If the capacity hard of the disk is sufficient,

and then Berkeley DB can store the URLs with enough space

with no worry about the problem of the memory overflow.

The efficiency almost closes to directly use memory.

In the design of the downloader, there are two key

problems. One is how to dispatch the URLs to the download

thread. The algorithm is showed in Table II. The other is how

to dispatch the download tasks. The algorithm is showed in

Table III.

TABLE II. ALGORITHM 2

Algorithm 2：

Function: Algorithm 2 pushes into the URL queue for downloading

Parameter Description: , the URL buffer for download tasks, a

set of queue; , a URL to download

//Find out the shortest URL queue

//Push into the shortest URL queue

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

TABLE III. ALGORITHM 3

Algorithm 3：

Function: Algorithm 3 popups a URL from the URL buffer for the

download tasks, and dispatches the URL to the download thread.

Parameter Description: , the URL buffer for download tasks, a

set of queue.

//Find out the longest queue

//dispatch a URL from the longest URL queue to the download thread

Algorithm 2 finds out the shortest URL queue

 for download task through a loop " "

function. If the length of is less than , then

the algorithm popups a URL from the queue

 in Berkeley DB to , and pushes
into .

Algorithm 3 finds out the longest URL queue

 for download task through a loop “For”

function. Next, the algorithm popups a URL from

 to . is used to calculate the

number of the computers , and is used to

calculate the thread number in the computer

 participating in the download tasks. Finally

 method calls the Web Service on

computer to execute the thread and

download the content of .

D. Implementation of scheduler and downloader

The design ideas of the scheduler and the downloader are

inspired by Aspect-Oriented Programming (AOP) and

Dependency Injection (DI) of Spring [23, 24]. The design of

the scheduler is shown in Fig.6, and the downloader is

designed in the similarly way.

Fig.6. The architecture of the scheduler

Through using the DI features of Spring, we could apply

the context configuration file of Spring, and inject the

configuration parameters and the dependencies of the Bean

into the container of Spring. The Bean of the main program of

the multi-thread scheduler is injected the first URL

" " to download and the number " " of the thread.

The Bean of the database queue operations is injected the

parameters of the database connection including the storage

address of the data file, the buffer size, the flag of transaction,

etc.

The Bean type of the database queue operations is

singleton. It shows the container of Spring only maintains

one Bean of the database queue operations. The database

connection can be established in the Bean initialization, need

not to be opened and closed every time. The same Bean of the

database queue operations is depended on multiple Beans

[24].

Considering the program code of each scheduling thread is

same, the Bean type of the scheduling thread is set as

prototype. After the main program of the multi-thread

scheduler starts, it will generate one by one the Beans of the

scheduling threads. The life cycles of these Beans are

managed by the container of Spring. All of the scheduling

threads share the Bean of the scheduling queue operations

and the Bean of the database queue operations.

Through using the AOP features of Spring, along with the

methods of the Beans, we can inject pre-Advice and

post-Advice for logging, parameter verification, etc. Though

recording the logs, we know the store the time consumption

and operation event, compare the performance with other

crawls, monitor and improve the performance of

MCMTCrawler.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of

our MCMTCrawler. To examine the performance of

MCMTCrawler, we compare it with three representative

crawlers, as listed in Table IV. The first crawler is a

single-computer and single-process crawler. The second

crawler is a single-computer and multi-thread crawler. The

third crawler is also an open source multi-thread crawler

called Crawler4j.

Fig.7 shows the comparison of crawling speed of four

different crawlers. The basic idea is to observe the average

execution time of downloading 100 URLs under different

crawling tasks, the number of web pages in different crawling

tasks increases from 10,000 to 600,000. From the figure, it is

very easy to find that our MCMTCrawler has the best speed

than other three crawlers. More especially, we can get the

following remarks from Fig.7.

(1), the performances of four crawlers are relatively stable

in different downloading tasks. As the number of

downloading web pages increases, the average execution

time required is slightly increased.

(2), the speed of normal single-computer and multi-thread

crawler is very close to that of Crawler4j, thus they have

almost equal efficiency.

(3), as showed in Fig.7, the speed of single-computer and

multi-thread crawler (Crawler4j) is 2 times as the

single-computer and single-process crawler, while the speed

of our MCMTCrawler is 5 times as the single-computer and

single-process crawler. Furthermore, in the crawling task of

600,000 web pages, the single-computer and single-process

crawler takes about 1.43 days, the normal single-computer

and multi-thread crawler takes 0.82 days, Crawler4j needs

0.83 days, and our MCMTCrawler only takes 0.28

days(about 6.83 hours), as shown in Fig.8.

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

http://www.baidu.com/link?url=0Sbj505xGAQdDj_s8NC9gp0WYhZ2Qp7tysqdMrf45LVMOOTi_-DvOUUvTsUv_Lxy2_9j-d-ISZYSlFp4IvtTlLI1X7IxPAJ8Kl6Qynj-RoxslPuOnF9caLxUOPcUy6Jq

TABLE IV. THE DESCRIPTION OF FOUR DIFFERENT CRAWLERS

Fig.7. The comparison of crawling speed

Fig.8. The comparison of execution time for different downloading tasks

After experimentation, we also find out that if the number of

the threads for accessing to Berkeley DB is too much, then

Berkeley DB will generate some write-locks. It may cause

the system to be unable to work. Berkeley DB is a relatively

simple Key-Value database, has limited capacity for

concurrent access. After our testing, the number of the

threads for accessing to Berkeley DB can be set to a value

less than or equal 30.

According to the extensive experimental results, we find

that it helps little improving the speed of a crawler by

increasing the thread number in a single computer. The main

reason is that the network bandwidth of a single computer is

limited. Therefore, it is a valid method to significantly

improve the crawler speed by using multiple computers to

execute the crawling tasks at the same time. However, due to

the limitation of Internet bandwidth, there is a bottleneck in

the speed of the crawler. Otherwise, due to the limitation of

the experimental environment and software program

development, we don’t use the distributed development in

this paper. To further enhance the speed of our

MCMTCrawler, we can take the following ways.

(1), the first way is to increase the number of computers to

download the web pages, thus increasing the concurrency

degree.

(2), the second way is to use the ideas of distributed design

for mapping different downloading tasks into different

Internet environment.

V. CONCLUSIONS

To quickly crawl the web pages of a special large

commercial website, a new crawler is designed, called

MCMTCrawler. MCMTCrawler uses Berkeley DB and

simple Key-Value structure for persistent storage. The MD5

algorithm is employed to map a URL to a 32-length string for

improving the speed of reading-writing and avoiding the

problem of memory overflow. MCMTCrawler takes

advantage of the "Producer-Consumer" model to speed up the

distribution and processing of URLs. With the help of

Spring-based AOP and DI ideas, MCMTCrawler designs the

scheduler and the downloader separately. Three algorithms

are developed, which implement the functions including

"how to put a URL into the waiting URL queue of scheduler",

"how to put a URL into the waiting URL queue of

downloader", and "how to start a download task from the

waiting URL queue". The experimental results show that,

under the three computers for downloading, the speed of

MCMTCrawler is 5 times than the single-computer and

single-process crawler, and is 3 times compare to the

single-computer and multi-thread crawler Crawler4j.

Moreover, MCMTCrawler only takes 0.28 day to download

600,000 web pages.

In the subsequent work, we will further improve the

crawling speed of MCMTCrawler from the distributed

architecture. At the same time, we also will carry out the

research of the semantic analysis of large-scale commercial

website, including the design of semantics Web Ontology

Language (OWL), the special analysis and inference

software, the comparison and analysis of the commodity and

price, the content and data analysis of web pages, etc.

Name
Description of

Crawler

Environment of

Hardware

Environm

ent of

Network

Single-com

puter and

single-pro_

cess

crawler

Scheduler and

downloader in a

same process

ThinkPad T460s，
Intel(R) Core(TM)

i5-6200U CPU @

2.30GHZ，8G RAM，

512G SSD，Windows

10

The speed

of LAN is

1000

Mbps, the

speed of

WAN is

200 Mbps

Single-com

puter and

multi-threa

d crawler

Scheduler and

downloader in a

same process, one

process contains

20 threads

ThinkPad T460s，
Intel(R) Core(TM)

i5-6200U CPU @

2.30GHZ，8G RAM，

512G SSD，Windows

10

The speed

of LAN is

1000

Mbps, the

speed of

WAN is

200 Mbps

Crawler4j

Scheduler and

downloader in a

same process, one

process contains

20 threads

ThinkPad T460s，
Intel(R) Core(TM)

i5-6200U CPU @

2.30GHZ，8G RAM，

512G SSD，Windows

10

The speed

of LAN is

1000

Mbps, the

speed of

WAN is

200 Mbps

MCMTCr_

awler

Scheduler and

downloader are

separated, the

number of the

computer

participating in the

download tasks is

3, the number of

the thread of each

computer

participating in the

download tasks is

20

Scheduler：ThinkPad

T460s，Intel(R)

Core(TM) i5-6200U

CPU @ 2.30GHZ，8G

RAM，512G SSD，
Windows 10

Downloader：Dell

R730 E5-2603V4，64G

（16G*4）RAM，
256G*2 SSD+4T 3.5

SAS 7.2K*3，RAID5，
Windows 10

The speed

of LAN is

1000

Mbps, the

speed of

WAN is

200 Mbps

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

REFERENCES

[1] R.Chandy, M.Hassan, and P.Mukherji, Big Data for Good: Insights

from Emerging Markets. Journal of Product Innovation Management,

vol.34, no.5, 2017, pp.703-718.

[2] Pan.W, Yang.Q, Aggarwal.C, and Koch.C, Big Data. IEEE Intelligent

Systems, vol.32, no.2, 2017, pp.7-8.

[3] Kimura. F, Urae. H, Tezuka. T, Maeda. A, Multilingual Translation

Support for Web Pages Using Structural and Semantic Analysis,

IAENG International Journal of Computer Science, vol.39, no.2, 2017,

pp.276-285.

[4] Agre.G.H and Mahajan.N.V, Keyword focused web crawler, In

Proceedings of the 2nd International Conference on Electronics and

Communication Systems (ICECS), Coimbatore, India, Feb 26-27,

2015, pp. 1089-1092.

[5] Samita.B, Sharaf.H and Khoja.S, A Framework for Focused Linked

Data Crawler using Context Graphs, In Proceedings of the 2015

International Conference on Information & Communication

Technologies, Karachi, Pakistan, Dec 12-13, 2015, pp.1-6.

[6] Anish.G and Priya.A, Focused Web Crawlers and Its Approaches, In

Proceedings of the 1st International Conference on Futuristic trend in

Computational Analysis and Knowledge Management, Noida, India,

Feb 25-27, 2015, pp.619-622.

[7] Nisha.P, Rajeswari.K, Joshi.A, Implementation of an Efficient Web

Crawler to Search Medicinal Plants and Relevant Diseases, In

Proceedings of the 2016 International Conference on Computing

Communication Control and automation, Pune, India, Aug 12-13,

2016, pp.1-4.

[8] Siddesh.G.M, Suresh.K, Madhuri.K.Y, Nijagal.M, Rakshitha.B.R and

Srinivasa.K.G, Optimizing Crawler4j using MapReduce Programming

Model, Journal of The Institution of Engineers, vol.98, no.3, 2016,

pp.329-336.

[9] Muqrishi.A.A, Sayed.A, and Mohammed.K, Caseng: Arabic semantic

search engine, Revista Chilena De Historia Natural, vol.73, no.2,

2015, pp.643-651.

[10] Xia.J, Wan.W, Liu.R , Chen.G, and Feng.Q, Distributed web crawling:

A framework for crawling of micro-blog data, In Proceedings of the

2015 International Conference on Smart and Sustainable City and Big

Data (ICSSC), Shanghai, China, July 26-27, 2015, pp.62-68.

[11] Gao.Q, Xiao.B, Lin.Z, Chen.X.Y, and Zhou.B, A high-Precision

Forum Crawler based on Vertical Crawling, In Proceedings of the 2009

International Conference on Network Infrastructure and Digital

Content, Beijing, China, Nov 6-8, 2009, pp.362-367.

[12] Zhou.B, Xiao.B, Lin.Z, and Zhang.C, A Distributed Vertical Crawler

Using Crawling-Period Based Strategy, In Proceedings of the 2010

International Conference on Future Computer & Communication,

Wuha, China, May 21-24, 2010, pp.306-311.

[13] Dajie.G and Zhijun.D, A Task Scheduling Strategy based on Weighted

Round-Robin for Distributed Crawler, In Proceedings of the 2014

IEEE/ACM 7th International Conference on Utility and Cloud

Computing, London, UK, Dec 8-11, 2014, pp.848-852.

[14] Yogesh.S.K and Nagesh.D.K, An Efficient Deep Web Harvesting

Based on Two Stage Crawler, International Journal of Engineering

Science and Computing, vol.6, 2016, pp.2473-2476.

[15] Feng.Z, Jingyu.Z, Chang.N, Heqing.H, and Hai.J, SmartCrawler: A

Two-Stage Crawler for Efficiently Harvesting Deep-Web Interfaces,

IEEE Transcations on Services Computing, vol.9, no.4, 2016,

pp.608-620.

[16] Hatzi.V, Cambazoglu.B.B, and Koutsopoulos.I, Optimal Web Page

Download Scheduling Policies for Green Web Crawling, IEEE Journal

on Selected Areas in Communications, vol.34, no.5, 2016,

pp.1378-1388.

[17] Seyed.M.M, Gregor.V.B, Guy-Vincent.B, and Iosif.V.O. GDist-RIA

Crawler: A Greedy Distributed Crawler for Rich Internet Applications,

Lecture Notes in Computer Science book series, vol.8593, 2014,

pp.200-214.

[18] Ayar.Pr and Sandip.C, Efficient Focused Web Crawling Approach for

Search Engine, International Journal of Computer Science and Mobile

Computing, vol.4, no.5, 2015, pp.545-551.

[19] Alqaraleh.S, Ramadan.O, and Muhammed.S. Efficient watcher based

web crawler design, Aslib Journal of Information Management, vol.67,

no.6, 2015, pp.663-686.

[20] m n.I.T and ed rhan.U, WIVET-Benchmarking Coverage Qualities

of Web Crawlers, Computer Journal, vol.60, no.4, 2017, pp.1-21.

[21] Seyfi.A, Patel.A and Joaquim.J.C, Empirical evaluation of the link and

content-based focused Treasure-Crawler, Computer Standards &

Interfaces, vol.44, 2016, pp.54–62.

[22] Boonkrong. Sirapat, Somboonpattanakit. Chaowalit, Dynamic salt

generation and placement for secure password storing,

IAENG International Journal of Computer Science, vol.43,

no.1,2016, pp.27-36

[23] Ziyun.D, Jing.Z, and Tingqin.H. Automatic Combination Technology

of Fuzzy CPN for OWL-S Web Services in Supercomputing Cloud

Platform. International Journal of Pattern Recognition and Artificial

Intelligence, vol.31, no.07, 2017, pp.1-27.

[24] Iuliana.C, Rob.H, Chris.S, and Clarence.H, Introducing Spring AOP,

Pro Spring 5, Apress, Berkeley, CA, 2017.

Engineering Letters, 26:3, EL_26_3_04

(Advance online publication: 28 August 2018)

__

http://libdb.csu.edu.cn/rwt/EI/https/P75YPLUFN3UXT5UFMW3GT5UHP3VXZ5DBM7TT6Z5QNF/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bKimura%2C+F.%7d§ion1=AU&database=2&yearselect=yearrange&sort=yr
http://libdb.csu.edu.cn/rwt/EI/https/P75YPLUFN3UXT5UFMW3GT5UHP3VXZ5DBM7TT6Z5QNF/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bMaeda%2C+A.%7d§ion1=AU&database=2&yearselect=yearrange&sort=yr
http://libdb.csu.edu.cn/rwt/EI/https/P75YPLUFN3UXT5UFMW3GT5UHP3VXZ5DBM7TT6Z5QNF/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bBoonkrong%2C+Sirapat%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://libdb.csu.edu.cn/rwt/EI/https/P75YPLUFN3UXT5UFMW3GT5UHP3VXZ5DBM7TT6Z5QNF/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bSomboonpattanakit%2C+Chaowalit%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

