
 

 

Abstract—As an integral part of smart grids and smart cities, 

nowadays smart building is one of the most promising areas of 

research to address the challenges of global environmental and 

energy sustainability. This review article introduces and 

outlines a variety of emerging information technologies, such as 

smart occupancy detection sensors, visible light communication 

for high-throughput communication and indoor positioning, 

and machine learning algorithms for multi-modal data fusion. 

These novel technologies have significantly promoted and 

accelerated the development of energy-efficient smart buildings 

in the future. The design requirements, features, and examples 

of these three emerging information technologies are discussed 

elaborately. Then, we provide insights and suggestions on how 

to integrate them properly with smart buildings. A design 

solution is envisioned to utilize these three technologies and to 

establish a platform dedicated to accurate occupancy counting 

towards energy efficient buildings. The envisioned system is 

portable, easy to use, highly-accurate, non-intrusive, low power, 

cost-effective, and self-adaptive to diverse and uncertain 

building environments.   

 
Index Terms— smart building; occupancy detection sensor; 

visible light communication; machine learning algorithms 

 

I. INTRODUCTION 

CCORDING to the statistics of the United States Energy 

Information Administration (EIA), residential and 

commercial buildings accounted for about 40% of total U.S. 

energy consumption in 2016. Electricity, natural gas, 

regional heat and fuel oil are the primary shares of building 

energy sources. HVAC (heating, ventilation, and air 

conditioning) equipment typically accounts for 50% of 

various energy usage sources. Energy-efficient smart 

buildings are considered as a viable energy-saving approach 

in [1-4], in which parameters related to the control of 

building energy consumption have been studied. As is well 

known in the research community, many existing buildings 

are energy-inefficient because of the lack of intelligent 

HVAC operations and building controls. As a result, a lot of 

energy is wasted, especially when buildings are completely 

unoccupied, or when the supplied ventilation flow exceeds its 

demand level. It is a daunting task and a costly process to 

adding intelligent building control functions directly to 

existing buildings through conventional building renovations 
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and retrofit.  

Fortunately, with the rapid advances in cutting-edge 

information technologies, such as user-transparent miniature 

smart sensors, high-speed reliable wireless communication, 

and big data analytics algorithms, the energy efficiency of 

existing buildings has been improved and cost-effective 

information technologies have been used. In some cases, 

multiple information technologies are embedded in wireless 

sensor networks or Internet of Things (IoT) prototypes, 

which are versatile and popular platforms [5]. In general, the 

reduction of building energy consumption requires 

multi-disciplinary research.  

As depicted in Fig. 1, smart occupancy detection sensors, 

visible light communication, and machine learning 

algorithms work in conjunction with a building automation 

system (BAS) to collect real-time environmental data and 

respond to real-time events/requests. Data sensing, analysis, 

modeling, and decision-making processes are involved. 

Building automation systems are usually offered by HVAC 

equipment manufacturers, such as Johnson Controls, 

Siemens, Honeywell, and GE. By default, a BAS monitors 

and regulates the operation of HVAC equipment (such as 

heaters, coolers, fans, coils, etc.). For example, as shown in 

Fig. 1, the air temperature, pressure and flow, CO2 

concentration, and fan or damper status can be monitored in 

real-time from the user terminal of a BAS. From a sustainable 

perspective, an essential task of smart buildings is to 

maximize energy efficiency and reduce operating cost. To 

achieve this goal, the concept of demand-driven HVAC 

operation was proposed in [6-9], in which these information 

technologies collect and analyze real-time building 

environments and occupant activities with a negligible cost 

and little maintenance effort. In this way, the energy 

consumption of HVAC equipment is minimized while still 

keeping the “just-right” quality of service for building 

heating, cooling, and ventilation. In order to realize 

“just-right” assurance in the quality of building service, 

highly inter-disciplinary collective research efforts are 

needed, because it involves knowledge of electronic circuit 

theory, computer-aided design, system architecture, and 

signal processing algorithms. In order to harness the true 

benefits of these emerging technologies, it is absolutely 

necessary to deeply understand these new technologies and 

their interactions with HVAC/building operations. 

Therefore, three types of information technologies are 

selected and reviewed in this work. We envision the 

necessity and importance of designing smart buildings from a  
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Fig. 1. Information technology-driven building automation system (BAS) 

 

systematic and comprehensive design approach. The 

practical issues, challenges, and considerations are discussed 

on how to properly integrate them with energy-efficient 

smart buildings. 

II. EMERGING INFORMATION TECHNOLOGIES 

In this section, three new information technologies are 

introduced and reviewed, namely smart sensors for building 

occupancy counting, Li-Fi for high-throughput wireless 

communication and indoor positioning, and machine 

learning algorithms for multi-modal data fusion. Next, we 

will describe how these three new information technologies 

can be seamlessly integrated and collaborated with building 

automation systems. 

A. Smart Sensors for Building Occupancy Counting 

Heating, cooling, and ventilation in buildings are very 

energy intensive. Traditional HVAC systems typically 

operate on a fixed schedule (for example, ON mode from 7 

AM to 6 PM on weekdays and OFF mode on weekends), 

regardless of whether the building is vacant or occupied. It is 

predicted that if the real-time building occupancy is 

accurately perceptible in building automation systems, the 

energy consumption in HVAC operations is reduced by 30% 

[10].  

In fact, the presence or absence of an occupant is relatively 

easy to detect in the case of a binary output signal 

(“occupied” or “vacant”) generation. Accurate room 

occupancy counts or estimates are much more difficult than 

human presence detection. The awareness of the amount of 

occupancy quantity has led to a significant improvement in 

building energy efficiency, as the operation of HVAC 

equipment can be fine-tuned according to the exact number 

of occupants. For example, most commercial buildings today 

are equipped with variable speed fans for ventilation control. 

Depending on the number of residents in the HVAC thermal 

zone, HVAC equipment will provide residents with a 

“just-right” level of ventilation. In practice, it is difficult at 

any time to obtain the number of occupants in HVAC thermal 

zones. As a result, many buildings inevitably provide 

over-ventilation services and wastes energy. If smart 

occupancy detection sensors provide occupant quantity 

information for each HVAC zone, energy-efficient 

fine-grained HVAC service can be realized by dynamically 

and appropriately configuring the various thermostats and 

rotation speeds of fans. 

According to the report from the U.S. Department of 

Energy [10], up to date, there are no such smart occupancy 

detection sensors available in the marketplace that can meet 

all the requirements mentioned in this report. These required 

features include cost-effective, high-precision, non-intrusive, 

privacy protection, reliability, ease of use, and adaptability to 

diverse and uncertain building environments. For instance, 

the expected system cost in [10] is within $0.08 per square 

foot. Occupants counting accuracy should have 95% 

long-term confidence, while the performance of existing 

designs is far below this goal. We can see that it is a great 

challenge to systematically investigate, design and 

implement novel occupancy detection sensors to satisfy most 

or all of these above performance requirements.  

The idea of installing micro-scale environmental sensors 

in buildings is not new, and carbon dioxide sensors, motion 

detectors, and thermometers are commonly used. Fig. 2 

shows a temperature map acquired by the distributed sensors 

in an office building. Real-time temperature value of each 

HVAC thermal zone can be successfully monitored from a 

BAS terminal. Fig. 3 plots the return water temperature, 

supply water temperature, and water volume rate of the same 

office building for three consecutive days. Obviously, these 

data points vary significantly with time and depend on indoor 

activities of building residents. According to the report from 

the U.S. Department of Energy [10], the next generation of 

smart buildings is more intelligent and can accurately count 

how many people are in an HVAC thermal zone in real time. 

In order to support this attractive feature, autonomous sensor 

systems need to collect considerably rich and diverse data 

that detail what is happening in buildings. Existing sensor 

systems have limited ability to meet this need. As a result, the 

main challenge in smart sensor systems is to improve 

accuracy, functionality, reliability, and flexibility with strict 

constraints of cost and size. The cost constraint ensures their  
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Fig. 2. A temperature map collected by distributed sensors in an office building captured from a BAS of Johnson Controls 

Volume rate

Supply temperature

Return temperature

 
Fig. 3. Collected sensor data from an office building captured from a BAS of Johnson Controls 

 

scalability in various building applications, while the size 

constraint helps to achieve user-transparency and 

user-convenience.  

Many types of environmental sensors have been used to 

detect room presence status or occupancy number [11]. 

Passive infrared (PIR) motion sensors are commonly 

installed in restrooms or hallways to automatically turn 

on/off fans or ceiling lights to save energy. As the output of a 

PIR motion sensor is binary, indicating the presence or 

absence status, it is not possible to give accurate numbers of 

people [6, 12]. Later, radio-frequency identification (RFID) 

and other wearable wireless devices (e.g., Bluetooth, UWB 

receivers) have been demonstrated for coarse-grained 

occupancy detection. However, since each RFID tag or 

wearable device is associated with and carried by a particular 

person, human privacy and security concern are the primary 

problems [7, 12]. Building residents or users do not want to 

be tracked or monitored, so they are very reluctant to wear 

RFID tags or wearable devices. Speech recognition and 

acoustic processing are potential techniques for predicting 

building occupancy information [13-15]. Audio-based 

occupancy processing is not expensive, because the basic 

hardware resources needed only contain microphones and 

microcontrollers. Collected audio signals from microphones 

are processed by algorithms running in microcontrollers. Yet, 

acoustic detection is rarely adopted for stand-alone 

occupancy detection, because (a) sound waves from 

non-human sources in a building can trigger false detections, 

and (b) the detection easily fails when an HVAC zone is 

occupied and there is no sound made by persons. 

Acoustic-based occupancy detection is therefore useful in 

quiet offices than noisy places such as supermarkets, 

shopping malls, or restaurants. In addition, video or image 

cameras are presented to monitor building occupancy [9, 

16-17]. However, cameras cannot be placed in any position 

due to the limitations of the line of sight. If people move out 

of the viewing area of a camera, this method does not work at 

all. If a large number of cameras is installed in an HVAC 

thermal zone, the resultant hardware costs are very high. 

Moreover, since daily activities of building users/residents 

are recorded by cameras, the issue of user privacy is a big 

obstacle to its widespread deployment. Furthermore, the 

room occupancy number can be predicted based on the 
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indoor carbon dioxide level, which is linear with the number 

of inhabitants in a space [18-19]. Despite the low-cost and 

non-intrusive advantages, the level of carbon dioxide 

fluctuates with the HVAC operations, such as ventilation 

settings, door and window opening status, and placement of 

CO2 sensors, so the exact relationship between CO2 level and 

occupancy information varies case by case. Especially when 

an occupant leaves a room, the CO2 concentration starts to 

drop after a long time, which reduces the sensitivity of 

occupancy detection.  

We presented hybrid CO2 and light smart sensors in 2016, 

which improves occupancy detection accuracy while 

maintaining a small-size and low-cost solution [20]. Unlike 

video/image cameras, which capture and record clearly the 

daily behaviors of building residents, the light sensors only 

report the illuminance level of lighting situations, and hence 

privacy protection is no longer a concern. The cost of a light 

sensor is only $4, which is much cheaper than cameras. In 

[17], experimental measurements in an office building 

showed the full functionality of such hybrid CO2 and light 

smart sensors. Later, other researchers and we proposed to 

study the response of CO2 level, temperature, and humidity to 

deduct the room occupancy quantity [21-22], while light, 

CO2, temperature and humidity sensors are used in [23]. In 

June 2017, an active infrared (AIR) smart sensor was 

reported to monitor doorway traffic and calculate the room 

occupancy number in [24]. A 5-minute proof-of-concept 

video demonstration is recorded and available to watch at 

https://sites.google.com/site/chaolushomesite/. Fig. 4 depicts 

the concept of active infrared occupancy counting using 

highlighted key components. Fig. 5 shows the picture of a 

programmed Lattice iCEstick FPGA board to implement a 

proposed AIR sensor. The dimension of the FPGA board is 

only 4.6 inches by 1.5 inches, so it enables good user 

transparency. The total power consumption of this FPGA 

board is several milliamps, so a typical rechargeable battery 

(2000mAh) is capable to support several months of 

operation. An infrared receiver (i.e., RX) FPGA board and an 

infrared transmitter (i.e., TX) FPGA board are needed and 

fixed on each side of a door opening. Therefore, as shown in 

Fig. 6, two TX boards and two RX boards are respectively 

attached to the left and right sides of the door frame. Powered 

by a long-life battery, each TX board sends an infrared 

stream to its aligned RX board. In this way, two separate 

infrared streams are established in parallel. Each RX board is 

cabled to a Raspberry Pi 3 module. When an object (e.g., a 

person) walks through this door opening, infrared streams are 

blocked and interrupted by this human body. Once a signal 

blocking event is detected by an RX board, the blocking 

event and its occurrence time are notified to a Raspberry Pi 3 

module via cable connections. By comparing the occurrence 

time of events reported by two RX boards, the moving 

direction of an object can be determined. Then, the Raspberry 

Pi 3 module calculates and updates the real-time occupancy 

quantity, which is instantaneously observed by building 

automation systems or building owners/users 
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Fig. 4. The concept of active infrared occupancy counting with highlighted 

key components [24] (this figure is owned by me) 

 

 
Fig. 5. Picture of a programmed FPGA board to implement an AIR sensor 

 

Fig. 6 shows the experimental setup for testing this system 

in an office building. The proposed AIR smart sensor is 

implemented using the Lattice iCEstick evaluation kit [25]. 

The researchers conducted a four-week lab measurement and 

validated the gate monitoring module with a success rate of 

97%. The 3% failure rate is caused by the temporal noise or 

signal interference in this study. This problem can be 

mitigated by using a robust custom circuit board to improve 

system reliability and noise immunity. From an 

implementation cost perspective, the hardware price for the 

proposed design in Fig. 4 is about $300, which is equivalent 

to about $0.02 per square foot and is also 75% lower than the 

requirement by the U.S. Department of Energy [10]. Note 

that all the design codes for FPGA configuration are stored in 

a micro-SD card. Customers only need to plug this SD card 

into the SD slot of Raspberry Pi. Customers do not need the 

prerequisite knowledge for programming.    

 

 
Fig. 6. Experimental setups and testing near an office door frame 

 

In Table I, existing smart building occupancy detection 

sensors are summarized and compared in terms of the 

detection mechanism, implementation cost, detection 

accuracy, and privacy protection. In order to achieve better 

user transparency and scalability, it is attractive to reduce 

cost, system size, and power consumption of smart 

occupancy detection sensors. These sensors are typically 

powered by batteries. Ambient energy harvesting techniques 

have been presented to scavenge environmental energy and 

to extend battery life. Thus, the need for regular battery 

replacement is eliminated. Ambient thermal gradients and 

indoor lighting illuminance are commonly collected to 

sustain the operation of these sensor nodes. Prior researchers 

have validated the idea of using indoor energy harvesting to 

power wireless sensors [26-28]. Due to the ultra-low-power 
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feature of the FPGA board, the battery life is expected to 

exceed 3 years. According to the report from the U.S. 

Department of Energy, the total sensor system cost in [10] is 

no more than $0.08 per square foot. Image camera and CO2 

sensors are relatively expensive. In contrast, RFID, PIR 

motion, acoustic, and active infrared sensors are more 

cost-effective. Among all the existing sensors reported, the 

active infrared sensor has a high occupancy counting 

accuracy, which is much better than its counterparts in Table 

I. Light, CO2, and active infrared sensors are ideal choices for 

personal privacy and security protection. Active infrared 

detection sensors only perceive the arrival and departure of 

the building occupants into and out of an HVAC thermal 

zone. Since the proposed active infrared sensor in [24] does 

not collect any image/RF/radar signals, it well protects the 

privacy of building occupants.  

TABLE I 

 SUMMARY AND COMPARISON OF SMART OCCUPANCY COUNTING SENSORS 

Reference 

Number 

Detection 

Mechanism 

Low 

Cost 

High 

Counting 

Accuracy 

Privacy 

Protection 

[6] Passive infrared × × × 

[7-8] RFID √ × × 

[9] Camera × × × 

[12] RFID +PIR × × × 

[13] Acoustic √ × × 

[14]  Acoustic √ × × 

[15] Acoustic √ × × 

[16] Camera × × × 

[17]  Camera × × × 

[18] CO2 level × × √ 

[19] CO2 level × × √ 

[20] CO2+light × × √ 

[21-22] 
CO2+humidity 

+temp 
× × √ 

[23] 

CO2+ 

humidity+ 

temp+light 

× × √ 

[24] Active infrared √ √ √ 

B. Visible Light Communication for High-Throughput 

Communication and Indoor Positioning 

With the increasing popularity of ultra-high-definition 

(UHD) televisions and cameras, such as 4K or 8K resolution, 

real-time high-throughput data communications are highly 

desirable in smart buildings in the future. For example, when 

broadcasting TV or movies via Netflix, it is recommended to 

use 25 Megabits per second of internet bandwidth to ensure 

good quality of services [29]. On the other hand, establishing 

the reliability of network communications is a key issue, 

because communication networks are venerable for 

malicious attacks [30]. Hence, it is a challenge to offer 

high-throughput wireless data communication at low-cost 

overhead. Visible light communication, also known as Li-Fi 

(Light Fidelity), is one of the most promising wireless 

communication technologies [31-33]. Most people are aware 

of Wi-Fi, which uses radio-frequency electromagnetic waves 

as the wireless communication medium and has a throughput 

in the range of Mbps. Due to its high throughput (e.g., Gbps), 

Li-Fi is a supplement to Wi-Fi for indoor wireless data 

communication. Li-Fi has limited coverage and cannot 

support mobility as Wi-Fi. On the contrary, Wi-Fi offers a 

wide range of coverage, enabling network connectivity with 

moderate mobility. Thus, based on the needs of customers, it 

is very useful to combine both Li-Fi and Wi-Fi technologies 

for mixed data communication or indoor localization [4, 

34-35]. 

 
Figure 7.  Li-Fi communication setups in an office building [35] (this figure 

is owned by me) 
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Figure 8.  Flowchart of Li-Fi signal processing for experiments in [35] (this 

figure is owned by me) 

Fig. 7 shows the experimental test setup for Li-Fi data 

communications in an office building. Fig. 8 illustrates a 

flowchart of Li-Fi signal processing involved in this study. 

The Li-Fi transmitter is an electronic circuit that uses 

frequency modulation to encode input data. The signal to 

control the Li-Fi bulb was measured using an oscilloscope, as 

shown in Fig. 9. Therefore, under the control of this signal, 

the Li-Fi lamp is turned on and off accordingly. Note that the 

visible light is used for dual purposes: room lighting and data 

transmission. The Li-Fi receiver includes a miniature 

photo-detector and a frequency demodulator. Based on the 
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photoelectric effect, the photo-detector converts the received 

visible light signal into an electrical signal. Then, the user can 

retrieve the received raw data after inverse frequency 

modulation. In summary, a Li-Fi reuses existing lighting 

infrastructure to provide indoor lighting and high-throughput 

data communication capabilities.  

 
Figure 9.  Measurement results of frequency modulated signals in Li-Fi 

communication 

 

Table II summarizes data communication throughputs for 

various Wi-Fi standards and Li-Fi records [36-38]. We can 

see that the throughput of Li-Fi is much higher than that of 

Wi-Fi. This feature enables ultra-high speed wireless data 

communication in future bandwidth-limited smart buildings. 

TABLE II 

 SUMMARY OF THROUGHPUT OF INDOOR COMMUNICATION METHODS 

Standard 
Maximum data 

throughput (Mbps) 

Wi-Fi 801.11b 11 

Wi-Fi 802.11a 54 

Wi-Fi 802.11g 54 

Wi-Fi 802.11n 600 

Wi-Fi 802.11ac 1,300 

Li-Fi [35] 2,000 or 4,000 

Li-Fi [36] 32,000 

Li-Fi [37] 11,900 

Visible light communication also refines the accuracy of 

indoor localization [35]. When people live in buildings, their 

trajectories reflect daily activities and personal intentions. 

For example, the location of a person in a shopping mall, 

hospital, or library can help building owners understand the 

behaviors of their customers and then provide location-based 

services or assistance. Based on each user’s history and 

preferences, user-oriented services, such as room lighting 

and temperature control, door or window openings, can be 

triggered automatically. In addition to improving customer 

loyalty and business sales, indoor location-based services can 

also enhance customer experience, productivity, and comfort 

[39-41]. Furthermore, taking into account of high-precision 

indoor position of occupants, a building automation system 

(BAS) is capable to offer highly-efficient heating, cooling, 

ventilation, and lighting services. For example, if an 

occupant stays in the kitchen of a residential building, the 

ventilation rate and temperature control in bedrooms may be 

somewhat relaxed. The ventilation fans or air valves in 

bedrooms can be turned down or even completely off. In this 

way, the energy consumption of the entire HVAC operation 

is significantly reduced. Due to inaccurate indoor positioning 

may have a negative impact on business performance and 

customer loyalty, many researchers are trying to minimize 

indoor positioning errors. The Wi-Fi-based indoor 

positioning technology is widely adopted. It is based on 

measuring Received Signal Strength Indication (RSSI) that 

reflects the received power level at the antenna. Ideally, the 

received power level is inversely proportional to the distance 

between the receiver and the transmitter. Yet, due to complex 

signal reflections, multipath and interference with indoor 

obstacles (e.g., walls, windows, or furniture), the received 

Wi-Fi signal strength shows a large variation [42]. Recently, 

several efforts have been made to resolve the issue of 

relatively large errors in indoor positioning [43-51]. A Li-Fi 

assisted calibration approach has been proposed to improve 

the accuracy of Wi-Fi- based indoor localization method 

[35]. It was reported that the integration of Li-Fi into Wi-Fi 

indoor positioning improves the positioning accuracy by 

80%, compared to a Wi-Fi alone method. Moreover, in order 

to solve the problem of locating overlapping areas in Li-Fi 

positioning systems, Li-Fi with a gray-coded identification 

was presented in [51].  

TABLE III 

 SUMMARY OF EXISTING INDOOR LOCALIZATION METHODS 

Reference 

Number 
Mechanism 

Low 

Cost 

High 

Positionin

g Accuracy 

[35] Wi-Fi + Li-Fi √ √ 

[43] 
Wi-Fi with multiple 

mobile terminals 
× × 

[44] 
Wi-Fi + particle 

swarm optimization 
√ × 

[45] 
Wi-Fi + cellular 

network signal 
√ × 

[46] 
Bluetooth low 

energy beacons 
√ × 

[47] Wi-Fi + Bluetooth √ × 

[48] 
Wi-Fi + neural 

network algorithm 
√ × 

[49] Camera × √ 

[50] RFID √ × 

[51] 
Li-Fi + Gray-coded 

identification 
× √ 

Table III summarizes existing indoor localization methods 

in the literature, including Wi-Fi with Li-Fi, Wi-Fi with 

multiple mobile terminals, Wi-Fi with particle swarm 

optimization (PSO), Wi-Fi with cellular network signal, 

Bluetooth low energy beacons, Wi-Fi with Bluetooth, Wi-Fi 

with neural network algorithms, camera, RFID, Li-Fi with 

Gray-coded identification. Among these methods, Wi-Fi 

with Li-Fi, camera, and Li-Fi with Gray-coded identification 

lead to high positioning accuracy. Since using cameras for 

indoor localization is expensive and unfriendly for privacy, 

Li-Fi technology is viable, high-performance, and 

cost-effective.  

C. Machine Learning Algorithms for Building Presence or 

Occupancy Estimation 

Once raw data sensing and acquisition is completed from 

building environmental sensors, the subsequent process is 

data fusion and analysis. A huge amount of diverse data, 

including temperature, carbon dioxide, humidity, sound, and 

image, needs to be handled effectively. For real-time 

decision-making applications, these large data sets require 

automatic data analysis and adaptive signal processing [2]. 

Fig. 10 shows an observational view of a computer service 

lab, where a video camera is used to monitor real-time room  
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Figure 10. An observational view of a computer service lab using a video camera to monitor real-time room occupancy information 

 

 
Figure 11. Collected 15,090 data points for CO2, humidity and temperature 

 

occupancy information. As indicated in the lower left corner, 

a 3-in-1 desktop logger is configured and placed on the desk 

to record the values of CO2 concentration, humidity, and 

temperature. Fig. 11 shows the plot of 15,090 data points for 

one day, assuming a sampling rate of every 18 seconds.   

 The true room occupancy count can be observed from 

watching video recording files. Recognizing and retrieving 

complex patterns hidden behind these data sets by machine 

learning algorithms is demanded. Data fusion solutions for 

various sensors are growing. In complex buildings of varying 

types, structures, or geometries, the data collected from 

environmental sensors are not always reliable due to 

temporary noise or signal interference. In addition, raw 

sensor data often exhibit substantial uncertainty in patterns, 

since the activities and behaviors of building occupants are 

usually unpredictable. Therefore, raw sensor data need to be 

Engineering Letters, 26:3, EL_26_3_05

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



 

analyzed by signal processing algorithms that correlate the 

measured sensor data with building occupancy numbers. Due 

to the large data volume, it is extremely difficult to extract the 

essential patterns of occupancy from raw sensor data. A lot of 

useful information is hidden, so it is hard to discover and 

determine the occupancy characteristics. Hence, the research 

challenge is how to efficiently analyze and utilize these 

massive data points to make correct decisions and actions, 

such as adjusting HVAC configuration profiles and 

set-points. Recently, machine learning algorithms have been 

proposed to analyze environmental sensor data to monitor 

room occupancy. Machine learning is a set of technologies 

that automate big data processing by developing a set of 

rules. However, these conventional machine learning 

methods have limitations in non-stationary environments, 

and suffer from relatively large errors in the time domain.  
Deep machine learning (e.g., deep neural network) rapidly 

becomes a powerful tool for high-dimensional data analysis 

and automatic feature/pattern extraction. As shown in Fig. 

12, a set of criteria rules needs to be manually extracted by 

designers in machine learning, while deep machine learning 

automatically grasps the relevant features to solve problems. 

Therefore, the deep learning algorithms support self-learning 

and calibration without manual intervention. Compared with 

traditional machine learning, deep machine learning is more 

advanced for complex problems. Deep machine learning has 

been widely used in various applications, such as imaging 

recognition, energy market price forecasting, speech and 

language translation, and self-driving cars [52-53]. 

 

Feature 

Extraction 

by Human
Classification 

Computation

The Number 

of Occupants

Feature Extraction + 

Classification Computation

Hybrid 

Sensors

Hybrid 

Sensors

The Number 

of Occupants

Machine Learning

Deep Machine Learning

 
 
Figure 12.  Concepts of applying Machine learning and deep machine 

learning algorithms for building occupancy counting 

 

Unlike traditional general-purpose processors (i.e., CPUs 

or GPUs) whose computation is based on instruction flow 

and data stream, deep neural networks (DNNs) are composed 

of a large number of neurons as basic computing units, and 

computations are realized through interconnected neuron 

networks with a certain topology. A deep neural network has 

weak instruction streams, and its performance is dominated 

by the number of neurons and the network topology. This 

large-scale on-chip interconnection structure poses a great 

challenge to the design of embedded neural network chips. 

Fig. 13 illustrates these typical neural network topologies. 

Modern deep learning neural networks are mainly based on 

these basic topologies or their mixture. Deep learning 

algorithms are computation-intensive and memory-intensive, 

so they require a large number of computational units and 

memory cells. Rapid reading and writing a large amounts of 

weighted data is expected in these deep convolutional neural 

networks, such as LeNet-5 [54], AlexNet [55], VGG [56], 

GoogLeNet [57], and ResNet [58]. Therefore, it is difficult to 

program deep neural networks on resource-limited embedded 

systems. At present, deep learning neural networks strongly 

rely on cloud computing. However, even though rapid 

advances in high-resolution video compression [59-61], this 

remote learning and processing of neural networks limit them 

in many scenarios, especially for real-time applications. 

Deep Neural 

Networks

Feed-forward 

Networks

Recurrent/

feedback 

Networks

Single-layer Perception

Multi-layer Perception

Radial Basis Function 

Networks
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Figure 13. Existing basic neural network topologies. 

 

In order to realize and enhance the data processing 

capability of DNNs on embedded platforms or mobile 

terminals, people have started to optimize and compress deep 

learning neural network models. For example, the 

researchers in [62] have reduced AlexNet by 35 times from 

240MB to 6.9MB, and squeezed the VGG-16 by 49 times 

from 552MB to 11.3MB. Due to these optimizations, the 

computational speed of DNNs has been increased by 3-4 

times in [63]. Later, the researchers in [64] proposed a 

light-weight CNN model by resizing convolutional 

dimensions and reducing pooling functions. Compared to 

AlexNet, the required size of model parameters are reduced 

by 50 times from 240MB to 4MB. In [65], if the data width is 

reduced from 32 bits to 8 bits, the model size can be further 

compressed to only 0.92Mb, equivalent to 258 times 

comparing to the original model size. Besides, its top-5 

accuracy on ImageNet is not reduced at all. 

These studies provide useful references for us to implement 

real-time embedded DNN processing technology. In [66-69], 

another concept of stochastic computing was introduced to 

largely reduce the hardware complexity of various deep 

neural networks. In order to meet real-time processing and 

low power consumption, the computational complexity of 

deep neural networks needs to be reduced without sacrificing 

recognition or classification performance. So far, several 

methods have been developed and reported in the literature, 

including reduction of the number of nodes in neural network 

layers, sparse matrix coding, replacement of large 

convolution kernels by multiple small convolution kernels, 

and the storage and sharing of weight parameters.  

Machine learning or deep machine learning algorithms 

have been applied to predict occupancy presence/quantity 

and show promising results. In [70], Support Vector Machine 
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(SVM) was used to analyze the occupancy features and 

activity patterns in buildings. In [71], using a Radial Basis 

Function (RBF) neural network, the cross-estimation tests 

produce an occupancy prediction accuracy of 66%. In 

another study [72], a random neural network model was 

developed to understand the relationship between occupancy 

rate and CO2 concentration, indoor temperature, and room 

humidity. The accuracy for occupancy presence detection 

was reported as 87.4%. In [73], a low-cost and non-intrusive 

sensor network was deployed in an office. The selected 

multi-sensory features were determined using an artificial 

neural network (ANN) with an estimation accuracy of 

84.6%. In [74], based on multiple types of sensor data, the 

researchers studied three statistical classification models 

(hidden Markov chains) for occupancy detection. Instead of 

investigating the number of occupants, the researchers 

discovered a high degree of accuracy to examine whether an 

office is occupied or not. In [75], PIR sensors were combined 

with machine learning algorithms to estimate the room 

occupancy. Based on PIR sensors and microprocessors, 

machine learning models were presented to estimate the 

presence of occupants. This work validated the feasibility of 

running machine learning algorithms on these Internet of 

Things (IoT) platforms. Later, clustering and regression 

models were developed in [76] to predict occupancy 

estimates. In [77], Extreme Learning Machine (ELM) was 

presented and modified for building occupancy quantity 

estimation. Machine learning or deep machine learning has 

its own drawbacks. For example, as described in [70], 

machine learning algorithms tend to produce noisy and 

unstable results over time. This is because machine learning 

models treat training data as independent, thus ignoring the 

cross-correlation of multi-sensor data. 

TABLE IV 

 SUMMARY OF MACHINE LEARNING ALGORITHMS FOR BUILDING 

OCCUPANCY PRESENCE/NUMBER ESTIMATION 

 

Reference 

Number 

Machine 

Learning 

Approach 

Occupancy 

Presence 

Detection 

Occupancy 

Number 

Counting 

High 

Accuracy 

[70] SVM × √ × 

[71] 
RBF neural 

network 
× √ × 

[72] 

Random 

neural 

network 

√ √ × 

[73]  

Artificial 

neural 

network 

× √ × 

[74] 

Hidden 

Markov 

model 

× √ × 

[75] 

Hidden 

Markov 

model 

√ × × 

[76] 

Clustering 

+ 

Regression 

× √ × 

[77] 

Extreme 

learning 

machine 

× √ × 

 

Table IV lists existing machine learning and deep machine 

learning approaches for building occupancy 

presence/number estimation. It is observed that even though 

several machine learning algorithms support occupancy 

counts, their accuracy is not very high (usually less than 

90%). Consequently, in order to overcome this challenge and 

obtain high-precision occupancy estimates, we envision to 

develop big-data-driven deep neural network (DNN) 

algorithms. Using these DNN algorithms does not require the 

creation of explicit and comprehensive feature models for 

occupancy counts. We also envision exploring cost-effective 

and energy-efficient DNN algorithms and hardware 

implementations for end-to-end computing – from raw 

sensor data all the way to the final output of occupancy 

counts. Therefore, these DNN algorithms may operate in 

collaboration with future smart occupancy detection sensors 

together to achieve low complexity, low power consumption, 

high precision, and self-adaptive to diverse and uncertain 

building environments. We believe all the involved processes 

for data acquisition, communication, and computation should 

be performed within smart buildings, so there is no need for 

cloud or server computing.  

Collect raw sensor data

Training 

process 

complete?

Finalize the architecture 

and parameters of deep 

learning neural network

No

Input new raw sensor data 

into the deep learning 

neural network

Output occupancy counting 

results (i.e., number and 

locations in an HVAC zone)

Yes

Train deep learning neural 

network starting from 

ground up or preloaded 

guess parameters

 
Figure 14.  The proposed flowchart of using a DNN to perform end-to-end 

computation for building occupancy counting 

As shown in Fig. 14, there are two stages for DNN 

end-to-end computation: a training phase and a computation 

phase. The motivation for training is to determine the 

parameters for a DNN. After completing the training phase, a 

DNN acts as an end-to-end computing engine. A DNN needs 

to be large enough to have a capacity to tune-up to a useful 

computation, but it is simple enough that its computation 

time does not exceed the assigned time limit. As a result, a 

DNN architecture needs to be simplified to reduce 

computational complexity. After defining a DNN 

architecture, its parameters are tuned by the multi-sensor 

data. The inherent limitations of DNN algorithm are long 

training time and a large amount of training data. Based on 

the amount of training data points, parameter optimization 

may take several days or even weeks, but the computation 

itself (from the raw inputs to the output) takes a fraction of a 

second. If parameter training starts from scratch, a large 

number of training samples are required, hence a long 

training time often limits its practical deployment. To address 

this challenge and enhance system flexibility, two parameter 

optimization methods (i.e., starting from scratch or 

preloading of guessing parameters) are supported in this 

project. If customers have enough time to optimize the DNN 

parameters, the original sensor data collected on-site will be 
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stored and used for training. Or, if customers want a shorter 

training time, they can inform the system designers of some 

building knowledge (such as building type, location, and 

application) in advance. Then, before sending to the 

customers, a set of guessing parameters matching with the 

building to be deployed is preloaded as existing DNN 

parameters. This set of guessing parameters is derived from 

many buildings with similar type, architecture, and size. 

Thus, this set of guessing parameters is very likely to 

maintain the general characteristics of the building, and can 

be used as a semi-trained value. When such a DNN starts 

field operation, all parameters will be updated over time. This 

training method significantly improves the learning speed, 

quality, and versatility of the resulting solution. 
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Figure 15.  The proposed overall diagram of signal processing using DNN 

Fig. 15 illustrates the overall diagram of proposed signal 

processing algorithm for building occupancy counting. The 

raw sensor data of door entry/exit, carbon dioxide, humidity, 

temperature, and acoustic are digitalized and preprocessed. 

Data preprocessing includes timestamp synchronization, 

deletion of outliers, and handling missing values. Next, the 

information of preprocessed multi-sensor data is fed to a deep 

neural network (DNN), which outputs the accurate number of 

occupancy. After the start of this design, the task of 

collecting sensor data is immediately carried out. Indoor 

environmental information is collected by individual sensors. 

Meanwhile, room occupancy information will be extracted 

manually or from surveillance cameras installed in these 

buildings. All these data samples will be fed into a deep 

neural network algorithm to train the relevant parameters. 

Upon completion of the training phase, on-site experiments 

are carried out in these buildings to test the accuracy of 

occupancy count. 

D. Overview of Smart Building Collaborated with Selected 

Information Technologies 

The combination of three information technologies leads 

to a hybrid smart sensor platform with deep machine learning 

algorithms for accurate occupancy counting towards 

energy-efficient buildings. The proposed platform consists of 

multiple types of inexpensive heterogeneous sensors that 

collect a wealth of environmental data points. As shown in 

Fig. 16, active infrared, temperature, acoustic, and CO2 

sensors are distributed and work collaboratively in each 

HVAC thermal zone. Specifically, personnel entry and exit to 

an HVAC zone are detected and monitored by active infrared 

sensors, which have been developed and tested in the 

preliminary experimental study in [24] and show great 

potential for accurate observation of door traffic in real time. 

In the preliminary study, it was found that deploying the 

proposed active infrared sensors in office buildings resulted 

in a low probability of false count due to temporary noise or 

signal interference. Therefore, in order to further improve the 

precision of occupancy detection, we envision to fuse and 

analyze these heterogeneous sensor data to correct this minor 

false counts obtained by active infrared sensors. 
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Figure 16.  Overview of the proposed smart building collaborated with three 

information technologies 

Due to its superior performance in multimodal data 

processing, deep neural network (DNN) algorithms are 

supposed to extract the cross-correlation patterns hidden 

behind multi-sensor data. The traditional DNN algorithms 

are very complex and power consuming, so it is not feasible 

to run traditional DNNs on cost-effective hardware, which 

consists of only a quad-core microprocessor and limited 

memory size. Here, we envision to investigate 

low-complexity, energy-efficient DNN implementation in 

the Raspberry Pi module to achieve fast end-to-end 

computation of building occupancy information. The future 

research efforts should be paid to simplify the traditional 

DNN algorithms and their corresponding software 

implementation. This DNN-based smart sensor platform 

supports automatic learning and calibration without human 

intervention. The built-in Wi-Fi server in a Raspberry Pi 

module provides Wi-Fi service for these heterogeneous 

sensors and the building automation system. In addition, 

building users can access the built-in Wi-Fi server to view 

real-time building occupancy quantity. Through Wi-Fi 

service, real-time building occupancy information is obtained 

and guides the BAS to dynamically control operation of 

HVAC equipment. 
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In this proposed design (Fig. 16), since all the processes of 

sensor data acquisition, communication, and computation are 

performed locally, this smart sensor system is self-contained. 

Being the most computationally intensive part, deep machine 

learning algorithms are run in Raspberry Pi modules to find 

data cross-correlation and improve the occupancy counting. 

No cloud or server computation is involved. Furthermore, 

based on the Li-Fi assisted indoor positioning technique [35], 

this design also provides a spatial distribution of occupants 

across an HVAC zone. This unique feature allows the 

building automation system to adjust the ventilation rate of 

each air diffuser. As a result, the HVAC system can be more 

energy efficient. 

III. CONCLUSION 

Energy-efficient smart building is a key contributor to 

low-carbon, sustainable society. In this work, we envision 

that three emerging information technologies will provide 

creative solutions to promote the development of smart 

buildings, which require demand-driven energy-efficient 

operation of HVAC equipment. Specifically, smart 

occupancy detection sensors, visible light communication for 

high-throughput communication and indoor positioning, and 

machine learning algorithms for multi-modal data fusion are 

reviewed and discussed. Through comparison with 

traditional technologies, advantages and drawback of these 

emerging technologies are highlighted. Finally, a design 

solution is proposed to utilize these three technologies and 

build a platform dedicated to accurate occupancy counting 

towards energy-efficient buildings. Such an integrated design 

solution is expected to enable end-to-end computation with 

favorable features of user transparency, low cost, good 

privacy, and high precision of occupancy count.  
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