Dynamic Analysis on an Almost Periodic Predator-Prey Model with Impulses Effects

Lili Wang

Abstract—This paper is concerned with a predator-prey system with impulses on time scales. By the relations between the solutions of impulsive system and the corresponding non-impulsive system, based on the theory of calculus on time scales and the properties of almost periodic functions as well as Razumikhin type theorem, sufficient conditions which guarantee the existence of a unique uniformly asymptotic stable almost periodic solution of the system are obtained. Finally, an example together with its numerical simulations are presented to illustrate the feasibility and effectiveness of the results.

Index Terms—Permanence; Almost periodic solution; Uniformly asymptotic stable; Impulse; Time scale.

I. INTRODUCTION

In the world of nature, the biological system is often deeply disturbed by human exploring activities, for example, planting and harvesting, and so on, which tell us that it is impossible to be studied continually. In order to have a more accurate description of this system, we should consider the impulsive differential equations. Compared with the theory of differential equations without impulses, the theory of impulsive differential equations is much richer and has a wider application when analyzing many real world phenomena.

In the past few years, predator-prey systems with impulses received much attention by many schools; see, for example [1-5] and the references cited therein. However, in the natural world, there are many species whose developing processes are both continuous and discrete. Hence, using the only differential equation or difference equation can’t accurately describe the law of their developments; see, for example, [6,7]. Therefore, there is a need to establish correspondent dynamic models on new time scales.

Recently, different types of ecosystems with periodic coefficients on time scales have been studied extensively; see, for example, [8-13] and the references therein. However, upon considering long-term dynamical behaviors, the periodic parameters often turn out to experience certain perturbations, that is, parameters become periodic up to a small error, then one has to consider the ecosystems to be almost periodic since there is no a priori reason to expect the existence of periodic solutions. Therefore, if we consider the effects of the environmental factors (e.g. seasonal effects of weather, food supplies, mating habits, and harvesting), the assumption of almost periodicity is more realistic, more important and more general. To the best of the authors’ knowledge, there are few papers published on the existence of almost periodic solution of ecosystems on time scales.

Motivated by the above statements, in the present paper, we shall study an almost periodic predator-prey system with impulses on time scales as follows:

\[
\begin{align*}
\Delta u(t) &= u(t)[r(t) - a_1(t)u(t) - b_1(t)u(\sigma(t)) - c_1(t)v(t)], \\
\Delta v(t) &= -\eta(t)v(t) + g_1(t)u(t), \quad t \neq t_k, \\
\sigma(t_k^+) &= (1 + h_{1k})u(t_k), \\
v(t_k^+) &= (1 + h_{2k})v(t_k), \quad k = 1, 2, \ldots,
\end{align*}
\]

where \( t \in \mathbb{T}, \mathbb{T} \) is an almost time scale. All the coefficients \( r(t), a_1(t), b_1(t), c_1(t), \eta(t), g_1(t) \) are continuous, almost periodic functions. \( u(t_k^+), v(t_k^+) \) represent the right and left limit of \( u(t_k), v(t_k) \), \( \{t_k\} \) is a sequence of real number such that \( 0 < t_1 < t_2 < \cdots < t_k \to +\infty \) as \( k \to +\infty \).

The initial condition of system (1) in the form

\[
u(t_0) = u_0, \quad v(t_0) = v_0, \quad t_0 \in \mathbb{T}, \quad u_0 > 0, \quad v_0 > 0.
\]

For convenience, we introduce the notation

\[
f^u = \sup_{t \in \mathbb{T}} f(t), \quad f^l = \inf_{t \in \mathbb{T}} f(t),
\]

where \( f \) is a positive and bounded function. Throughout this paper, we assume that the coefficients of the almost periodic system (1) satisfy

\[
\min\{r^l, a_1^l, b_1^l, c_1^l, \eta^l, g_1^l\} > 0,
\]

\[
\max\{r^u, a_1^u, b_1^u, c_1^u, \eta^u, g_1^u\} < +\infty.
\]

and there exist positive constants \( h_1^l, h_1^u \) such that \( h_1^l \leq \Omega_{t_0 < t_k < \cdot}(1 + h_{1k}) \leq h_1^u \) with \( 1 + h_{1k} \geq 0 \), for \( t \geq t_0, i = 1, 2 \).

The aim of this paper is, based on the theory of calculus on time scales and the properties of almost periodic functions as well as Razumikhin type theorem, by using the relation between the solutions of impulsive system and the corresponding non-impulsive system, to obtain sufficient conditions for the existence of a unique uniformly asymptotic stable almost periodic solution of the system (1).

The relevant definitions and the properties of almost periodic functions, see [14,15]. In this paper, for each interval \( \mathbb{T} \) of \( \mathbb{T} \), we denote by \( \mathbb{I} \cap \mathbb{T} \).

II. PRELIMINARIES

Let \( \mathbb{T} \) be a nonempty closed subset (time scale) of \( \mathbb{R} \). The forward and backward jump operators \( [\sigma, \rho]: \mathbb{T} \to \mathbb{T} \) and the graininess \( \mu: \mathbb{T} \to \mathbb{R}^+ \) are defined, respectively, by

\[
\sigma(t) = \inf\{s \in \mathbb{T}: s > t\},
\]

\[
\rho(t) = \sup\{s \in \mathbb{T}: s < t\}
\]

\[
\mu(t) = \sigma(t) - t.
\]

A point \( t \in \mathbb{T} \) is called left-dense if \( t > \inf \mathbb{T} \) and \( \rho(t) = t \), left-scattered if \( \rho(t) < t \), right-dense if \( t < \sup \mathbb{T} \) and \( \sigma(t) =

(Advance online publication: 28 August 2018)
Lemma 2. (see [17]) Assume that $\varphi, \phi \in C([t, \infty) \times \mathbb{R}^n)$, $H^* \in \mathbb{R}^+$. Denote $C_{H^*} = \{\varphi, \phi \in C([t, \infty) \times \mathbb{R}^n) \mid \|\varphi\| < H^*, \|\phi\| < H^*\}$.

Let $C = C([-\tau, 0] \cap \mathbb{Z}, H^*) \in \mathbb{R}^+$. Denote $C_{H^*} = \{\varphi, \phi \in C([t, \infty) \times \mathbb{R}^n) \mid \|\varphi\| < H^*, \|\phi\| < H^*\}$.

Consider the system

$$x^\Delta = f(t, x),$$

where $f(t, \phi)$ is continuous in $(t, \phi)$ and almost periodic in $t$ uniformly for $\phi \in C_{H^*}, \phi \subseteq C_{H^*}$. $\forall \alpha > 0, \exists L(\alpha) > 0$ such that $\|f(t, \phi)\| \leq L(\alpha)$, as $t \in T, \phi \in C_{\alpha}$.

In order to investigate the almost periodic solution of system (3), we introduce the associate product system of system (3)

$$x^\Delta = f(t, x), y^\Delta = f(t, y).$$

Lemma 6. (see [19]) Assume that there exists a Lyapunov function $V(t, x, y)$ defined on $[0, +\infty) \times S_{H^*} \times S_{H^*}$, which satisfies the following conditions:

1. $\alpha(x - y) \leq V(t, x, y) - \beta(x - y)\|$, where $\alpha(s)$ and $\beta(s)$ are continuous, increasing and positive definite;
2. $V(t, x_1, y_1) - V(t, x_2, y_2) \leq \omega(|x_1 - x_2| + |y_1 - y_2|)$,
   where $\omega > 0$ is a constant;
3. $\lambda V_0(t, x, y)$, $\lambda > 0$ is a constant.

Moreover, assumes that (3) has a solution $\xi(t)$ such that $\|\xi\| \leq H > H^*$ for $t \in [0, +\infty)$. Then system (3) has a unique almost periodic solution which is uniformly asymptotic stable.

Let $\mathbb{D} = \{t_k \in T : t_k < t_{k+1}, k \in \mathbb{Z}, \lim_{k \to +\infty} t_k = \pm \infty\}$, we denote the set of all sequences that are unbounded and strictly increasing.

Definition 1. [20] The set of sequences $\{t_k\}, t_k = t_{k+j} - t_k, k, j \in \mathbb{Z}, \{t_k\} \in \mathbb{D}$ is said to be uniformly almost periodic if for arbitrary $\varepsilon > 0$ there exists a relatively dense set of $\varepsilon$-almost periodic intervals common for any sequences.

Definition 2. [20] The piecewise continuous function $\varphi : T \to \mathbb{R}$ with discontinuity of first kind at the point $t_k$ is said to be almost periodic, if the following hold:

(i) The set of sequences $\{t_k\}, t_k = t_{k+j} - t_k, k, j \in \mathbb{Z}, \{t_k\} \in \mathbb{D}$ is uniformly almost periodic.

(ii) For any $\varepsilon > 0$ there exists a real number $\delta > 0$ such that if the points $t - \varepsilon$ and $t + \varepsilon$ belong to one and the same interval of continuity of $\varphi(t)$ and satisfy the inequality $|t - t'| < \delta$, then $|\varphi(t') - \varphi(t)| < \varepsilon$.

(iii) For any $\varepsilon > 0$ there exists a relatively dense set $T$ such that if $t \in T$, then $|\varphi(t + \varepsilon) - \varphi(t)| < \varepsilon$ for all $t \in T$ satisfying the condition $|t - t_k| > \varepsilon, k \in \mathbb{Z}$.

Consider the following system

$$\begin{align*}
x^\Delta(t) &= x(t)[r(t) - a(t)x(t)] - b(t)[x(t) - c(t)y(t)], \\
y^\Delta(t) &= -\eta(t)y(t) + g(t)x(t),
\end{align*}$$

(Advance online publication: 28 August 2018)
where \( a(t) = a_1(t)\Pi_{\theta < t_c < t}(1 + h_{1k}), \ b(t) = b_1(t)\Pi_{\theta < t_c < t}(1 + h_{1k}), \ c(t) = c_1(t)\Pi_{\theta < t_c < t}(1 + h_{2k}), \) and \( g(t) = g_1(t)\Pi_{\theta < t_c < t}(1 + h_{1k})(1 + h_{2k})^{-1}. \)

The initial condition of system (5) is in the form
\[
x(t_0) = x_0, \ y(t_0) = y_0, \ t_0 \in \mathbb{T}, x_0, y_0 > 0.
\]

(6)

**Lemma 7.** From systems (1) and (5), we have

(i) if \((x(t), y(t))\) is a solution of system (5) the
\[
(u(t), v(t)) = \begin{pmatrix}
\Pi_{\theta < t_c < t}(1 + h_{1k})x(t), \\
\Pi_{\theta < t_c < t}(1 + h_{2k})y(t)
\end{pmatrix}
\]
is a solution of system (1);

(ii) if \((u(t), v(t))\) is a solution of system (1) the
\[
(x(t), y(t)) = \begin{pmatrix}
\Pi_{\theta < t_c < t}(1 + h_{1k})^{-1}u(t), \\
\Pi_{\theta < t_c < t}(1 + h_{2k})^{-1}v(t)
\end{pmatrix}
\]
is a solution of system (5).

**Proof:** (i) Suppose that \((x(t), y(t))\) is a solution of (5), then for any \( t \neq t_k, k = 1, 2, \cdots \), by substituting
\[
(x(t), y(t)) = \begin{pmatrix}
\Pi_{\theta < t_c < t}(1 + h_{1k})^{-1}u(t), \\
\Pi_{\theta < t_c < t}(1 + h_{2k})^{-1}v(t)
\end{pmatrix}
\]
to system (5), one can see that the first two equations of system (1) hold.

For \( t = t_k, k = 1, 2, \cdots \), we have
\[
u(t_k^+) = \lim_{t \to t_k^+} \Pi_{\theta < t_c < t}(1 + h_{1j})x(t) = \Pi_{\theta < t_c < t}(1 + h_{1j})x(t_k) = (1 + h_{1j})\Pi_{\theta < t_c < t}(1 + h_{1j})x(t_k) = (1 + h_{1j})u(t_k).
\]

Similarly, we can get \( v(t_k^+) = (1 + h_{2j})v(t_k) \). So, the last two equations of system (1) hold. Thus, \((u(t), v(t))\) is a solution of system (1).

(ii) Suppose that \((u(t), v(t))\) is a solution of system (1). Firstly, we show that \((x(t), y(t))\) is continuous. In fact, it is easy to see that \((x(t), y(t))\) is continuous on the interval \([t_k, t_{k+1}].\) Now, we shall check the continuity of \((x(t), y(t))\) at the impulse points \(t_k, k = 1, 2, \cdots \). Since
\[
x(t_k^+) = \Pi_{\theta < t_c < t}(1 + h_{1j})^{-1}u(t_k) = (1 + h_{1j})^{-1}u(t_k) = x(t_k),
\]
y\[
y(t_k^+) = \Pi_{\theta < t_c < t}(1 + h_{2j})^{-1}v(t_k) = (1 + h_{2j})^{-1}v(t_k) = y(t_k).
\]

Thus, \((x(t), y(t))\) is continuous on \([t_0, +\infty)\).

For any \( t \neq t_k, k = 1, 2, \cdots \), by substituting
\[
(u(t), v(t)) = \begin{pmatrix}
\Pi_{\theta < t_c < t}(1 + h_{1k})x(t), \\
\Pi_{\theta < t_c < t}(1 + h_{2k})y(t)
\end{pmatrix}
\]
to system (1), one can see that system (5) hold. Therefore, \((x(t), y(t))\) is a solution of system (5). The proof is completed. \(\square\)

**Remark 1.** System (1) with the initial condition (2) and system (5) with the initial condition (6) have the same dynamic behaviors.

**III. MAIN RESULTS**

Assume that the coefficients of (5) satisfy
\[
(H_1) \quad r^1 > a^uM_1 + c^uM_2.
\]

**Lemma 8.** Let \((x(t), y(t))\) be any positive solution of system (5) with initial condition (6). If \((H_1)\) hold, then system (5) is permanent, that is, any positive solution \((x(t), y(t))\) of system (5) satisfies
\[
m_1 \leq \liminf_{t \to \infty} x(t) \leq \limsup_{t \to \infty} x(t) \leq M_1,
\]
\[
m_2 \leq \liminf_{t \to \infty} y(t) \leq \limsup_{t \to \infty} y(t) \leq M_2,
\]
except if \(m_1 \leq x(t) \leq M_1, \ m_2 \leq y(t) \leq M_2, \) then
\[
m_1 \leq x(t) \leq M_1, \ n_2 \leq y(t) \leq M_2, \ t \in [t_0, +\infty)\).
\]

where
\[
M_1 = \frac{r^1}{b^u}, \ M_2 = \frac{g^uM_1}{\eta^u}, \ m_1 = \frac{r^1}{b^u} - a^uM_1 - c^uM_2, \ m_2 = \frac{g^uM_1}{\eta^u}.
\]

**Proof:** Assume that \((x(t), y(t))\) be any positive solution of system (5) with initial condition (6). From the first equation of system (5), we have
\[
x^{\Delta}(t) \leq x(t)(r^u - b^ux(\sigma(t))).
\]

By Lemma 3, we can get
\[
\limsup_{t \to \infty} x(t) \leq \frac{r^1}{b^u} := M_1.
\]

Then, for arbitrary small positive constant \(\varepsilon > 0\), there exists a \(T_1 > 0\) such that
\[
x(t) < M_1 + \varepsilon, \ \forall t \in [T_1, +\infty).
\]

From the second equation of system (5), when \( t \in [T_1, +\infty)\),
\[
y^{\Delta}(t) < -\eta^u y(t) + g^u(M_1 + \varepsilon).
\]
Let \(\varepsilon \to 0\), then
\[
y^{\Delta}(t) \leq -\eta^u y(t) + g^uM_1.
\]

By Lemma 2, we can get
\[
\limsup_{t \to \infty} y(t) = \frac{g^uM_1}{\eta^u} := M_2.
\]

Then, for arbitrary small positive constant \(\varepsilon > 0\), there exists a \(T_2 > T_1\) such that
\[
y(t) > M_2 + \varepsilon, \ \forall t \in [T_2, +\infty).
\]

On the other hand, from the first equation of system (5), when \( t \in [T_2, +\infty)\),
\[
x^{\Delta}(t) > x(t)[r^1 - a^u(M_1 + \varepsilon) - b^ux(\sigma(t)) - c^u(M_2 + \varepsilon)].
\]

(Advance online publication: 28 August 2018)
Let $\varepsilon \to 0$, then
\[ x^\Delta(t) \geq x(t)[r^\Delta - a^n M_1 - b^n x(\sigma(t))] - e^n M_2]. \quad (11) \]

By Lemma 3, we can get
\[ \liminf_{t \to +\infty} x(t) = \frac{r^\Delta - a^n M_1 - e^n M_2}{b^n} := m_1. \]

Then, for arbitrary small positive constant $\varepsilon > 0$, there exists a $T_3 > T_2$ such that
\[ x(t) > m_1 - \varepsilon, \forall t \in [T_3, +\infty). \]

From the second equation of system (5), when $t \in [T_3, +\infty)$, we have
\[ y^\Delta(t) > -\eta^n y(t) + g^\Delta(m_1 - \varepsilon). \]

Let $\varepsilon \to 0$, then
\[ y^\Delta(t) > -\eta^n y(t) + g^\Delta m_1. \quad (12) \]

By Lemma 2, we can get
\[ \liminf_{t \to +\infty} y(t) = \frac{g^\Delta m_1}{\eta^n} := m_2. \]

Then, for arbitrary small positive constant $\varepsilon > 0$, there exists a $T_4 > T_3$ such that
\[ y(t) > m_2 - \varepsilon, \forall t \in [T_4, +\infty). \]

In special case, if $m_1 \leq x_0 \leq M_1$, $m_2 \leq y_0 \leq M_2$, by Lemma 2 and Lemma 3, it follows from (9)-(12) that
\[ m_1 \leq x(t) \leq M_1, \quad m_2 \leq y(t) \leq M_2, \quad t \in [t_0, +\infty), \quad T. \]

This completes the proof. \hfill \Box

**Lemma 9.** $S(T) \neq \emptyset$.

**Proof:** By Lemma 11, we see that for any $t_0 \in T$ with $m_1 \leq x_0 \leq M_1$, $m_2 \leq y_0 \leq M_2$, system (5) has a solution $(x(t), y(t))$ satisfying $m_1 \leq x(t) \leq M_1$, $m_2 \leq y(t) \leq M_2$, $t \in [t_0, +\infty)$. Since $r(t), a(t), b(t), c(t), \eta(t), g(t), \sigma(t)$ are almost periodic, there exists a sequence $\{t_n\}, t_n \to +\infty$ as $n \to +\infty$ such that $r(t + t_0) \to r(t), a(t + t_0) \to a(t), b(t + t_0) \to b(t), c(t + t_0) \to c(t), \eta(t + t_0) \to \eta(t), g(t + t_0) \to g(t), \sigma(t + t_0) \to \sigma(t)$ as $n \to +\infty$ uniformly on $T$.

We claim that $\{x(t + t_0)\}$ and $\{y(t + t_0)\}$ are uniformly bounded and equi-continuous on any bounded interval in $T$.

In fact, for any bounded interval $[\alpha, \beta] \subset T$, when $n$ is large enough, $\alpha + t_0 > t_0$, then $t + t_0 > t_0, \forall t \in [\alpha, \beta]$. So, $m_1 \leq x(t + t_0) \leq M_1, m_2 \leq y(t + t_0) \leq M_2$ for any $t \in [\alpha, \beta]$, that is, $\{x(t + t_0)\}$ and $\{y(t + t_0)\}$ are uniformly bounded. On the other hand, $\forall t_1, t_2 \in [\alpha, \beta]$, from the mean value theorem of differential calculus on time scales, we have
\[
\begin{align*}
|x(t_1 + t_0) - x(t_2 + t_0)| & \leq M_1 |r^\Delta + (a^n + b^n) M_1 + c^n M_2| t_1 - t_2, \\
|y(t_1 + t_0) - y(t_2 + t_0)| & \leq (\eta^n M_2 + g^n M_1) |t_1 - t_2|.
\end{align*}
\]

The inequalities (13) and (14) show that $\{x(t + t_0)\}$ and $\{y(t + t_0)\}$ are equi-continuous on $[\alpha, \beta]$. By the arbitrariness of $[\alpha, \beta]$, the conclusion is valid.

By Ascoli-Arzelà theorem, there exists a subsequence of $\{t_n\}$, we still denote it as $\{t_n\}$, such that
\[ x(t + t_n) \to p(t), y(t + t_n) \to q(t), \]

as $n \to +\infty$ uniformly in $t$ on any bounded interval in $T$. For any $\theta \in T$, we can assume that $t_n + \theta > t_0$ for all $n$, and let $t \geq 0$, integrate both equations of system (5) from $t_n + \theta$ to $t + t_n + \theta$, we have
\[
x(t + t_n + \theta) - x(t_n + \theta) = \int_{t_n + \theta}^{t + t_n + \theta} x(s)[r^\Delta(s) - a^n x(s) - b^n x(\sigma(s))] - c^n y(s) \Delta s
\]
\[
= \int_0^{t + t_n + \theta} x(s + t_n)[r^\Delta(s + t_n) - a^n y(s + t_n) - b^n x(\sigma(s + t_n))] - c^n y(s + t_n) \Delta s,
\]
\[
y(t + t_n + \theta) - y(t_n + \theta) = \int_{t_n + \theta}^{t + t_n + \theta} [-\eta^n y(s) - g^n x(\sigma(s))] \Delta s
\]
\[
= \int_0^{t + t_n + \theta} [-\eta^n y(s + t_n) - g^n x(\sigma(s + t_n))] \Delta s + g^n y(s + t_n) \Delta s.
\]

Using the Lebesgue dominated convergence theorem, we have
\[
p(t + \theta) - p(\theta) = \int_0^{t + \theta} x(s)[r^\Delta(s) - a^n x(s) - b^n x(\sigma(s))] - c^n y(s) \Delta s,
\]
\[
q(t + \theta) - q(\theta) = \int_0^{t + \theta} [-\eta^n y(s) - g^n x(\sigma(s))] \Delta s + g^n y(s) \Delta s.
\]

This means that $(p(t), q(t))$ is a solution of system (5), and by the arbitrariness of $\theta$, $(p(t), q(t))$ is a solution of system (5) on $T$. It is clear that
\[ m_1 \leq p(t) \leq M_1, m_2 \leq q(t) \leq M_2, \forall t \in T. \]

This completes the proof. \hfill \Box

**Theorem 1.** In addition to the condition $(H_1)$, assume further that the coefficients of system (5) satisfy the following conditions:

$(H_2)$ $a^\Delta - g^\Delta > 0$;

$(H_3)$ $\eta^n - c^n > 0$.

Then system (5) has a unique positive almost periodic solution which is uniformly asymptotic stable.

**Proof:** Consider the associated product system of (5),
\[
\begin{align*}
x^\Delta(t) &= x_1(t) r^\Delta(t) - a(t)x_1(t) - b(t)x_1(\sigma(t)) - c(t)y_1(t), \\
y^\Delta(t) &= -\eta(t)y_1(t) + g(t)x_2(t), \quad t \in T,
\end{align*}
\]
\[
\begin{align*}
x^\Delta(t) &= x_2(t) r^\Delta(t) - a(t)x_2(t) - b(t)x_2(\sigma(t)) - c(t)y_2(t), \\
y^\Delta(t) &= -\eta(t)y_2(t) + g(t)x_2(t),
\end{align*}
\]

(Advance online publication: 28 August 2018)
Let $z(t) = (z_1(t), z_2(t))$ be a positive solution of product system (15), where

$$z_1(t) = (x_1(t), y_1(t)), z_2(t) = (x_2(t), y_2(t)).$$

It follows from (7)-(8) that for sufficient small positive constant $\varepsilon_0 (0 < \varepsilon_0 < \min\{m_1, m_2\})$, there exists a $T > 0$ such that

$$m_1 - \varepsilon_0 < x_1(t) < M_1 + \varepsilon_0,$$

$$m_2 - \varepsilon_0 < y_1(t) < M_2 + \varepsilon_0,$$

where $t \in [T, +\infty)_\tau$, $i = 1, 2$.

Since $x_i(t), i = 1, 2$ are positive, bounded and differentiable functions on $\mathbb{T}$, then there exists a positive, bounded and differentiable function $m(t), t \in \mathbb{T}$, such that $x_i(t)(1 + m(t)), i = 1, 2$ are strictly increasing on $\mathbb{T}$. By Lemma 4 and Lemma 5, we have

$$\frac{\Delta}{\Delta t} L_T(x_i(t)[1 + m(t)]) = \frac{x_{i+1}(t)[1 + m(t)] + x_i(\sigma(t))m(t)}{x_i(t)[1 + m(t)]}, \quad i = 1, 2.$$

Here, we can choose a function $m(t)$ such that $\frac{m(t)}{1 + m(t)}$ is bounded on $\mathbb{T}$, that is, there exist two positive constants $\zeta > 0$ and $\xi > 0$ such that $0 < \zeta < \frac{m(t)}{1 + m(t)} < \xi, \forall t \in \mathbb{T}$.

Set

$$V(t, z_1(t), z_2(t)) = [e_{-\delta}(t, T)][L_T(x_1(t)(1 + m(t))) - L_T(x_2(t)(1 + m(t)))],$$

where $\delta \geq 0$ is a constant (if $\mu(t) = 0$, then $\delta = 0$; if $\mu(t) > 0$, then $\delta > 0$). It follows from the mean value theorem of differential calculus on time scales for $t \in [T, +\infty)_\tau$,

$$\frac{1}{M_1 + \varepsilon_0}|x_1(t) - x_2(t)| \leq \frac{1}{M_1 + \varepsilon_0}|x_1(t) - x_2(t)| \leq \frac{1}{m_1 - \varepsilon_0}|x_1(t) - x_2(t)|,$$ (17)

then

$$\min\{\frac{1}{M_1 + \varepsilon_0}, 1\}e_{-\delta}(t, T)[|x_1(t) - x_2(t)| + |y_1(t) - y_2(t)|] \leq V(t, z_1(t), z_2(t)) \leq \max\{\frac{1}{m_1 - \varepsilon_0}, 1\}e_{-\delta}(t, T)[|x_1(t) - x_2(t)| + |y_1(t) - y_2(t)|],$$

that is

$$\min\{\frac{1}{M_1 + \varepsilon_0}, 1\}e_{-\delta}(t, T)[|z_1(t) - z_2(t)|] \leq V(t, z_1(t), z_2(t)) \leq \max\{\frac{1}{m_1 - \varepsilon_0}, 1\}e_{-\delta}(t, T)[|z_1(t) - z_2(t)|].$$

Therefore, condition (1) in Lemma 6 is satisfied.

Since

$$|V(t, z_1(t), z_2(t)) - V(t, \tilde{z}_1(t), \tilde{z}_2(t))| = \left|e_{-\delta}(t, T)[|L_T(x_1(t)(1 + m(t)) - L_T(x_2(t)(1 + m(t)))]| + |y_1(t) - y_2(t)|]ight|$$

$$\leq \left|L_T(x_1(t)(1 + m(t)) - L_T(x_2(t)(1 + m(t)))| + |y_1(t) - y_2(t)|ight|$$

$$\leq \max\{\frac{1}{m_1 - \varepsilon_0}, 1\}|x_1(t) - \tilde{z}_1(t)|$$

$$+ |y_1(t) - \tilde{y}_2(t)|$$

$$+ |x_2(t) - \tilde{x}_2(t)| + |y_2(t) - \tilde{y}_2(t)|$$

$$= \max\{\frac{1}{m_1 - \varepsilon_0}, 1\}|(z_1(t) - \tilde{z}_1(t))$$

$$+ |x_2(t) - \tilde{x}_2(t)|).$$

Therefore, condition (2) in Lemma 6 holds.

Next, we shall prove condition (3) in Lemma 6 holds. For convenience, We divide the proof into two cases. Let $\gamma = \min\{m_1 - \varepsilon_0, d - a^b, e - c^b\}$.

**Case I.** If $\mu(t) > 0$, set $\delta > \max\{a^b + \frac{\gamma}{m_1}, \delta\}$ and $1 - \mu(t)\delta < 0$. Calculating the upper right derivatives of $V(t)$ along the solution of system (5), it follows from (16), (17), (H2) and (H3) that for $t \in [T, +\infty)_\tau$,

$$D^+V(t, z_1(t), z_2(t)) = [e_{-\delta}(t, T)]\text{sgn}(x_1(t) - x_2(t)) \left[\frac{x_1^2(t)}{x_1(t)} - \frac{x_2^2(t)}{x_2(t)}\right]$$

$$+ \frac{\Delta}{\Delta t} \left[\frac{x_1(\sigma(t))}{x_1(\sigma(t))} - \frac{x_2(\sigma(t))}{x_2(\sigma(t))}\right]$$

$$- \frac{\Delta}{\Delta t} \left[\frac{x_1(\sigma(t))}{x_1(\sigma(t))} - \frac{x_2(\sigma(t))}{x_2(\sigma(t))}\right]$$

$$\leq \frac{\Delta}{\Delta t} \left[\frac{x_1(\sigma(t))}{x_1(\sigma(t))} - \frac{x_2(\sigma(t))}{x_2(\sigma(t))}\right]$$

Then

$$D^+V(t, z_1(t), z_2(t)) < 0.$$

(Advance online publication: 28 August 2018)
Together with (18) and (19), one can see that condition (3) in Lemma 6 is satisfied.

From the above discussion, we can see that all conditions in Lemma 6 hold. Together with Lemma 11 and Lemma 12, system (5) has a unique positive almost periodic solution which is uniformly asymptotic stable. This completes the proof.

**Theorem 2.** Under the conditions $(H_1)$–$(H_3)$, it follows from Remark 10 that system (1) with the initial condition (2) has a unique positive almost periodic solution which is uniformly asymptotic stable.

**IV. EXAMPLE AND SIMULATIONS**

Consider the following system on time scales

\[
\begin{align*}
\dot{u}(t) &= u(t)(0.8 + 0.2 \sin \sqrt{2}t - 0.045 + 0.005 \sin t)u(t) - u(u(t)) - 0.2e^t), \\
\dot{v}(t) &= -(0.4 + 0.1 \cos \sqrt{3}t)v(t) + (0.015 + 0.005 \sin \sqrt{2}t)u(t), \\
\end{align*}
\]

(20)

By a direct calculation, we can get

\[
\begin{align*}
&u^u = 1, v^u = 0.6, a^u = 0.0452, a^l = 0.0362, \\
b^u = b^l = 0.9046, c^u = c^l = 0.1809, \\
\eta^u = 0.5, \eta^l = 0.3, g^u = 0.02, g^l = 0.01, \\
M_1 = 1.2055, M_2 = 0.0737, \\
m_1 = 0.4355, m_2 = 0.0107,
\end{align*}
\]

then,

\[
\begin{align*}
r^u - (a^u M_1 + c^u M_2) &= 0.9367 > 0, \\
a^u - g^u &= 0.0162 > 0, \\
\eta^u - c^u &= 0.1192 > 0,
\end{align*}
\]

that is, the conditions $(H_1)$–$(H_3)$ hold. According to Theorem 14, system (20) has a unique positive almost periodic solution which is uniformly asymptotic stable.

Dynamic simulations of system (20) with $T = \mathbb{R}$ and $T = \mathbb{Z}$, see Figures 1 and 2, respectively.

**V. CONCLUSION**

This paper developed the theory and applications of impulsive differential equations on time scales. It is important to notice that the methods and technologies used in this paper can be extended to many other types of population dynamic systems; see, for example, [21-23]. Future work will include biological dynamic systems modeling and analysis on time scales.

**REFERENCES**


Fig. 2. \( \mathbb{T} = \mathbb{R} \). Dynamics behavior of system (20) with initial condition \((x(0), y(0)) = (0.5, 0.08)\).