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Abstract—Achieving precision frequency estimation plays an 

important role in radar signal processing, especially on the 

aspects of target recognition, tracking and location. Applying 

Fast Fourier Transformation to analyze the spectrum is 

convenient whereas fence effect and spectrum leakage cannot be 

easily denied and the error is too much to satisfy practical 

engineering requirement. Zoom FFT algorithm, a complex 

modulation algorithm, provides advantages in spectrum analysis 

and frequency estimation while the magnification time is limited. 

A method utilizing Newton Interpolation is proposed to improve 

the precision of frequency estimation, which the requirement of 

magnification time is unessential. The corresponding frequency 

correction equations are derived and two scenarios are 

illustrated to depict the performance of the proposed method. 

The simulation results verified that the method had an awesome 

effect on frequency estimation and the error of frequency 

measurement decreased an average by 30% compared to Zoom 

FFT algorithm. The real ranging system also indicated that the 

proposed method could improve ranging precision. 

 
Index Terms—Frequency estimation, Frequency correction, 

Complex modulation, Newton interpolation 

 

I. INTRODUCTION 

PECTRUM analysis is one of the most basic and 

frequently-used methods in modern signal processing 

technology, which is wildly applied to mechanical 

engineering, radar system, instrument and apparatus and other 

aspects of production practice. Fast Fourier Transformation 

(FFT), a classical spectrum analysis approach, tends to deal 

with dynamic signal [1]. However, the discrete spectrum 

obtained by FFT algorithm may cause serious errors in 

measurement of frequency, amplitude and phase. It is 

obviously unable to meet the requirement of practical 

engineering. For instance, in radio frequency modulation 

ranging system, ranging is carried out through the beat 

frequency, taking advantages of the transmitted and received 

signal from the target. Achieving accurate estimation of beat 

frequency is the basis of precise ranging [2]. 

In order to overcome the shortcoming of the FFT algorithm 
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and make frequency estimation more accurate, spectral 

correction becomes extremely necessary. Some researchers 

have been dedicating to study relative theory and have borne 

some fruits [3-12]. Zoom Fast Fourier Transformation 

(ZFFT), one of the correction methods, has been used in 

practical engineering because its principal and physical 

concept is explicit. The technology only concerns certain 

useful information of the whole spectrum and the resolution 

could be improved greatly without increasing data of FFT [13, 

14]. Nevertheless, there are still two flaws in ZFFT algorithm. 

One is that it is impossible to magnify the spectrum 

indefinitely due to the limitation of storage space and another 

is that the existence of the fence effect has an impact on the 

accuracy of frequency estimation.  

In this paper, we intend to explore an improved method to 

avoid the affection of the fence effect. Firstly, the frequency 

spectrum is amplified by the ZFFT algorithm. The amplified 

spectrum is still discrete. Then, based on that, by 

reconstructing the original signal using the Newton 

interpolation, the discrete spectrum is turned into a definite 

continuous spectrum and the desired frequency could be 

ascertained. The requirement of magnification time is not 

rigorous in the approach, in other words, the higher accuracy 

of frequency estimation could be obtained with less 

computational cost. The structure of this paper is arranged as 

follows: Firstly, the principal of ZFFT algorithm is presented 

briefly. Then the method based on Newton Interpolation to 

correct frequency is derived. Next, the performance of ZFFT 

and the proposed algorithm is discussed in detail. Finally, 

numerical simulation experiments and real distance 

measurement are provided to demonstrate the superior 

performance of the proposed algorithm on frequency 

estimation. 

  

II. PRINCIPLE OF COMPLEX MODULATION WITH ZFFT 

ALGORITHM 

 The kernel of the ZFFT algorithm is a complex modulation 

of the input signal. The modulated signal will experience low 

pass filtered, resampled, FFT, and frequency component 

modulated [15]. The principal of ZFFT algorithm is presented 

in Fig.1. 

Assume the input signal is ( )x n , after complex modulation, 

we get: 

      0( ) ( )*exp( 2 / )sy n x n j nf f                  (1) 

Where, 
0f and

sf  represent the center frequency of the 

input signal and the sample rate, respectively. The 

corresponding frequency spectrum relation is: 
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0( ) ( ( 2 ))jY e X j f                        (2) 

The function of the low pass filter is to prevent aliasing. 

Assume the magnification time is M . The cutoff frequency of 

the low pass filter is / 2sf M . The frequency band becomes 

narrow after filtering, therefore, resampling the signal with 

the lower sample frequency /sf M , we could get the 

signal ( )My m , the corresponding spectrum is: 

         
1

(e ) (e )
j

j M
MY Y

M






                        (3) 

Then, after FFT, we get: 

         
1

( ) ( )M

K
Y K Y

M M
                           (4) 

Therefore, the original spectrum is expanded M times by 

means of ZFFT algorithm. 

Low pass 

filter
Resample FFT

Frequency 

modulate
( )x n

2 /d sj nf f
e



( )y n ( )MY K( )My m

 
 

Fig.1 Schematic diagram of ZFFT

 

 

III.  PROPOSED METHOD FOR PRECISION FREQUENCY 

ESTIMATION 

The majority of objects information is usually indicated in 

the peak of the signal spectrum. Thus, the frequency 

estimation with respect to the peak position of the signal 

spectrum is our interests in this literature. Although the 

accuracy of frequency estimation is improved by means of 

ZFFT algorithm, there still are some errors due to fence effect. 

Considering that, the precise estimation for frequency is 

usually divided into two steps: a coarse estimation and a fine 

estimation [16]. The Fig.2 shows the frequency spectrum 

comparison between FFT and ZFFT, while the Fig.3 reveals 

that there is still deviation   between the estimated frequency 

and the true frequency. The red solid line represents the true 

frequency while the blue solid line represents the estimated 

frequency. Hence, ZFFT is regarded as coarse estimation in 

this paper. Applying Newton interpolation to correct 

frequency is considered as a fine estimation. 
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Fig. 2 Spectrum of FFT and ZFFT 

 

Newton interpolation is one of the efficient ways to 

approximate original function. 

Suppose 0 1, , , nx x x and ( )i iy f x  ( 0,1, , )i n  are already 

known, the approximate function can be described as [17]: 
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Where, 
0 1[ , , , ]nf x x x  represents the difference quotient. 
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(7) 

Where, 
0,

( ) ( )
n

i i j

j j i

x x x
 

   . 
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Fig. 3 Partial Spectrum of ZFFT 

 

Theoretically speaking, the more points we select, the 

better the effect is. However, the complexity and time of 

computation will increase sharply. 

Considering that the frequency spectrum is presented in 

many discrete points after ZFFT, we set two scenarios 

selecting several sample points of the spectrum to explore the 

method of frequency correction. The diagrams of the two 
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scenarios are shown in Fig.4 and Fig.5, respectively. 
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Fig. 4 Schematic diagram of 3 points fitting correction 
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Fig. 5 Schematic diagram of 4 points fitting correction 

 

A. Scenario1 3-Points Fitting Correction (3PFC) 

Assume the peak position and neighboring two sample 

points position are 0 0 0, 1, 1k k k  , respectively, and their 

corresponding amplitude are 0 0 0( ), ( 1), ( 1)Y k Y k Y k  , 

respectively. The Newton interpolation function can be 

shown as follows: 

0 0 0 0

0 0 0 0 0

( ) ( 1) [ 1, ]( ( 1))

             [ 1, , 1]( ( 1))( )

nN k Y k f k k k k

f k k k k k k k

     

     
      (8) 

Where, 

0 0 0 0[ 1, ] ( ) ( 1)f k k Y k Y k                                           (9) 

0 0 0 0 0 0 0

0 0 0

[ 1, , 1] [ 1, 1] [ 1, ]

1 1
                           ( 1) ( ) ( 1)

2 2

f k k k f k k f k k

Y k Y k Y k

      

    
     (10) 

In order to acquire the frequency with respect to peak 

magnitude, the extreme value of ( )nN k need to be calculated, 

then let the extreme value is zero, we get: 

     0 0

0

0 0 0

[ 1, ] 1

2 [ 1, , 1] 2
p

f k k
k k

f k k k


   

 
               (11) 

Where kp denotes the estimation position of peak 

magnitude, thus, the estimation frequency is: 

            
0
ˆ

pf k f                                  (12) 

Where f represents the resolution of the spectrum, 

/sf f N  , N  is the number of samples to be transformed. 

B. Scenario 2 4-Points Fitting Correction (4PFC) 

On the basis of the 3-points fitting correction method, only 

one more point (either (
0 2k  ,

0( 2)Y k  ) 

or
0 0( 2, ( 2))k Y k  ) is added in Scenario2. Here, we choose 

point 
0 0( 2, ( 2))k Y k   to demonstrate the method. In a 

similar way of Scenario1, the Newton interpolation function 

is: 

0 0 0 0

0 0 0 0 0

0 0 0 0 0
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( ) ( 2) [ 2, 1]( ( 2))

            [ 2, 1, ]( ( 2))( ( 1))

            [ 2, 1, , 1]( ( 2))
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f k k k k k k k
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      
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  

 (13) 

Where, 

0 0 0 0[ 2, 1] ( 1) ( 2)f k k Y k Y k                  (14) 
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       (15) 
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f k k k k Y k Y k
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 

    (16) 

Let
0 0[ 2, 1]a f k k   ,

0 0 0[ 2, 1, ]b f k k k   ,

0 0 0 0[ 2, 1, , 1]c f k k k k     and calculate the extreme value 

of ( )nN k  , let the extreme value is zero, we can get: 

2 2

1 0

( 3 ) 3 3 3

3
p

b c b bc c ac
k k

c

     
        (17) 

and 

2 2

2 0

( 3 ) 3 3 3

3
p

b c b bc c ac
k k

c

     
       (18) 

In previous studies, it is clearly that 

0( )Y k >
0( 1)Y k  > 0( 2)Y k   and 

0( )Y k >
0( 1)Y k  , thus, 

3 0b c  , 0c  . Then, we can know that 
1 2p pk k  .From 

the monotonicity of the function ( )nN k , it is monotone 

increasing when
1 2[ , ]p pk k k while it is decreasing in other 

intervals. Hence, 
1pk and 

2pk  represent the index of minimal 

value and maximum value respectively. 

Considering the practical condition of frequency estimation, 

on the one hand, the index of peak magnitude of the spectrum 

is the focus of estimation. On the other hand, we merely need 

segmental information around the peak magnitude. That 

means the maximum value is the location to correct. 

Therefore, the corrected frequency can be described as: 

             
0 2
ˆ

pf k f                                (19) 

Where, /sf f N  . 

IV. VERIFICATION 

In the previous sections, ZFFT and proposed method of 

frequency correction are introduced. In order to verify the 

effect of above methods, numerical simulation experiments 
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are conducted. Firstly, we explore the accuracy of the above 

methods with different frequency varied from 1.6MHz to 

6.4MHz in steps of 0.4MHz and calculate the respective 

errors. Furthermore, we investigate the estimated 

performance and noise sensitivity. Then, we analyze the 

influence of different deviation  within the margin of error. 

Finally, the practical ranging testing was conducted. 

A. Accuracy comparison of different methods 

In the background of a certain radar ranging system, we 

choose the theoretical center frequency of the input signal 

varied from 1.6MHz to 6.4MHz in steps of 0.4MHz to 

conduct tests. The input cosine wave amplitude was set to 1. 

The number of samples N was set to 1024 and the sampling 

rate was set to 15MHz to satisfy the Nyquist sampling 

theorem. The estimated frequency and corresponding errors 

of experiments are listed in Table I and Table II . The data in 

the bracket indicates the percentage of error reduction. 

Compared with ZFFT algorithm, the proposed methods make 

progress in the aspect of frequency precision. The errors of 

frequency estimation are generally reduced. It can be found 

that the errors reduce an average by 30 percent according to 

calculation. The absolute error curve of diverse estimated 

frequency is presented in Fig. 6. The absolute error caused by 

3PFC and 4PFC is commonly lower than ZFFT. Furthermore, 

the absolute error of the estimated detection distance 

corresponding to center frequency in ranging system is shown 

in Fig. 7.  The results imply that the proposed method has 

better precision.  

 
Table I Frequency estimation results with different algorithm 

f0/Hz ZFFT/Hz 3PFC/Hz 4PFC/Hz 

1600000 1611328 1608615 1608231 

2000000 2006835 2004114 2003733 

2400000 2402343 2399617 2399414 

2800000 2812500 2809768 2809389 

3200000 3208007 3205271 3204894 

3600000 3603515 3600775 3600399 

4000000 4013671 4010926 4010522 

4400000 4409179 4406430 4406057 

4800000 4804687 4801934 4801561 

5200000 5203195 5197265 5197066 

5600000 5610351 5607586 5607217 

6000000 6005859 6003085 6002718 

6400000 6401867 6398578 6398215 

 

Table II Frequency estimation errors with different algorithm 

f0/Hz △ZFFT/Hz △3PFC/Hz △4PFC/Hz 

1600000 11328 8615(23.9%) 8231(27.3%) 

2000000 6835 4114(39.8%) 3733(45.3%) 

2400000 2343 -383(83.7%) -586(75.0%) 

2800000 12500 9768(21.9%) 9389(24.9%) 

3200000 8007 5271(34.2%) 4894(38.9%) 

3600000 3515 775(77.9%) 399(88.6%) 

4000000 13671 10926(20.1%) 10522(23.0%) 

4400000 9179 6430(29.9%) 6057(34.0%) 

4800000 4687 1934(58.7%) 1561(66.7%) 

5200000 3195 -2735(14.3%) -2934(8.2%) 

5600000 10351 7586(26.7%) 7217(30.2%) 

6000000 5859 3085(47%) 2718(53.6%) 

6400000 1867 -1422(23.8%) -1785(43.9%) 
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            Fig. 7 Absolute error of range estimated 

 

B. Influence of noises 

In practical measurement environment, signals are usually 

affected by noise from kinds of uncontrollable factors. As a 

result, the accuracy of estimation is probably reduced and the 

frequency estimation has randomness. Considering that, we 

add zero-mean Gaussian noise in theoretical input signal to 

assess sensitivity of the proposed algorithm to white noise. 

The noise level is estimated by Signal-Noise Ratio (SNR). 

Assuming that the SNR is changed from 0dB to 20dB in steps 

of 1dB, we conduct the Monte-Carlo simulation 1000 times 

for distinct SNR and observe the estimation performance 

compared with the Cramer-Rao lower bound (CRLB). The 

CRLB of the mean squared error is shown in [18]: 

          
2

2

2 2

6

4 ( 1)

s

f

f

N N


 



                     (20) 
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Where  is the SNR, since 1N  , the CRLB of the Root 

Mean Squared Error (RMSE) can be simplified as: 

            

2

2 3

3

2

s

f

f

N


 
                             (21) 

The calculating results of Root Mean Squared Error with 

respect to SNR are plotted in Fig.8. From the Fig. 8, the 

higher the SNR is, the better the performance of estimation is, 

which is in agreement with practical experience. The 

performance of improved algorithms in this paper is 

obviously more excellent than ZFFT algorithm. With the 

decrease of SNR, the estimated Root Mean Squared Error 

increases exponentially, which means ZFFT algorithm is not 

applicable in the condition of low SNR. However, the 3PFC 

or 4PFC algorithm reduces the error to a certain extent and 

approaches the CRLB closely as the SNR increasing. 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

SNR/dB

R
M

S
E

 

 

ZFFT
3PFC
4PFC
CRLB

-4
x 10

4PFC

ZFFT

3PFC

CRLB

 
Fig. 8 Comparison of estimation performance with different SNR 

 

C. Influence of deviation 

In previous depictions, the deviation   reflects the index 

error between the estimated frequency and the true frequency. 

It is related to the sample frequency. In this subsection, we 

consider the influence of various deviation in frequency 

estimation. Fig.9-12 show the RMSE with respect to SNR in 

the condition of different   (   0.1, 0.2, 0.3 or 0.4). 

However, the curves of ZFFT algorithm are not marked in 

these figures due to its excessive errors. 
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Fig. 9 RMSE of frequency estimation vs. SNR with 0.1   
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Fig. 10 RMSE of frequency estimation vs. SNR with 0.2   
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Fig. 11 RMSE of frequency estimation vs. SNR with 0.3   
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Fig. 12 RMSE of frequency estimation vs. SNR with 0.4   

 

From Fig.9-12, we can see that the noise is the main factor 

when SNR is below 5dB .With the increase of  , the root 

mean squared error increases gradually. The performance of 

3PFC has advantages when   is small whereas the 

performance of 4PFC is better when   is large. 

D. Experiment Verification 

To verify the application of proposed method in practical 

test, we designed an experiment based on Frequency 

Modulated Continuous Wave (FMCW) system. The range 
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measurement diagram is shown in Fig.13. The detection 

module in the system is illustrated in the Fig.14. 
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Fig. 13 Diagram of the measurement 
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The carrier frequency is set to be 24.5GHz, frequency 

deviation is 2MHz. and transmit power is 8mW. The distance 

between the wall and the detection module is preset to be 2m, 

3m, 4m, 5m, 6m, 7m and 8m, respectively. After positioning 

the detection module, turn on the PC to test three times and 

observe the range value. The test results of the three methods 

are presented in Table III~Table V, respectively. The average 

absolute error of the three group results is shown in Fig. 15. 

Compared with the simulation results, the practical testing 

results of the three methods are little worse due to the 

influence of encapsulating material. However, it can still be 

found that the proposed methods have better effect on ranging 

compared with ZFFT. The Fig. 15 indicates that the ranging 

precision of 3PFC or 4PFC is obviously higher than ZFFT. 

In order to illustrate the ranging effect of the three methods 

better, multiple experiments are carried out at different 

distances (the number of experiments is set to be 100 times). 

The root mean square error of each test distance value is 

calculated as shown in Fig. 16. No matter what the detection 

distance, the error of 3PFC and 4PFC are obviously lower 

than ZFFT. 

 
Table III First group results of range measurement 

Range/m ZFFT/m 3PFC/m 4PFC/m 

2 2.34 1.95 2.10 

3 2.73 3.12 2.95 

4 3.51 3.91 4.05 

5 4.69 5.08 5.08 

6 5.60 6.25 6.30 

7 6.25 6.95 7.14 

8 8.60 7.82 8.13 

 

Table IV Second group results of range measurement 

Range/m ZFFT/m 3PFC/m 4PFC/m 

2 2.52 1.90 2.05 

3 2.83 3.02 3.08 

4 3.51 3.94 4.09 

5 4.59 5.08 5.06 

6 5.45 6.17 6.16 

7 6.29 6.95 7.16 

8 8.60 7.88 8.15 

 

Table V Third group results of range measurement 

Range/m ZFFT/m 3PFC/m 4PFC/m 

2 2.51 1.92 1.95 

3 2.78 3.08 3.06 

4 3.51 4.06 4.05 

5 4.54 4.92 5.06 

6 5.48 6.15 6.18 

7 6.26 7.05 7.13 

8 8.58 7.90 8.11 
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         Fig. 15 Absolute error of different range with three methods 
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          Fig. 16 RMSE of different range with three methods 

 

To further verify the evaluation of proposed methods under 

dynamic condition, a vehicle testing is designed. Test 
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schematic diagram is depicted in Fig. 17. The detection 

module is loaded on a vehicle. The corner reflector is used to 

replace the target. The test range is preset to be 5m. At the 

same time, taking into account the error in the distance 

measurement, the indicators are placed respectively at the 4m, 

5m and 6m far from the corner reflector. Then, the distance 

from the vehicle to the corner reflector is divided into four 

intervals (I1, I2, I3 and I4). An indicator light (as shown in Fig. 

18) is connected to the signal output port of the detection 

module. By observing the indicator light on or off, the ranging 

accuracy is judged to meet the requirement. When the light 

flashing in the I2 or I3, the results can be recognized within 

the margin of error. The car goes into the corner reflector at 

the speed of 10m/s, 30m/s and 50m/s, respectively. The 

testing times at each speed are set to be 20. The statistical 

results of the number of lighting in each interval are 

calculated. The Fig.19 gives the percentage results of lighting 

times in each interval. 

 

4m 1m 1m

Direction

Car

Corner reflector

I1 I2 I3 I4  
Fig. 17 Schematic diagram of vehicle testing 

 

 
Fig. 18 Scene of vehicle testing 

 

At the speed of 10m/s (Fig.19 (a)), it does not appear much 

difference in the results of the three methods. All the results 

meet the error requirement. Nevertheless, as the velocity 

increasing (Fig.19 (b) and Fig.19 (c)), the error comes to 

appear in the ZFFT algorithm while the proposed methods 

still remain the precision.  
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Fig. 19 Statistic results of vehicle testing with different speed  

V. CONCLUSION 

This paper proposes a frequency correction algorithm 

based on Newton interpolation, which provides accurate 

frequency estimation. We theoretically analyze the traditional 

complex modulation, namely ZFFT algorithm, and derive the 

corrected expression of the proposed algorithm. The 

proposed method maintains the complexity of computation at 

a tolerable level and straightforward to understand. 

Furthermore, the magnification time of ZFFT algorithm is not 

required to be large, which saves a lot of storage space in the 

practical hardware operation and paves the way for the other 

further research in frequency estimation to satisfy higher 

requirement. White Gaussian noise is also discussed in 

experiments, simulation results state that the proposed 

algorithm has great performance on sensitivity to additive 

noise compared with ZFFT algorithm. The ranging 

measurement under practical condition indicates that the 

proposed method is of great benefit for improving frequency 

precision. 
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