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Abstract—In this paper, we propose two complex-valued
neural networks for solving a time-varying complex linear
matrix equation by constructing two new types of nonlinear
activation functions. Theoretically, we prove that the complex-
valued neural networks are globally stable in the sense of
Lyapunov stability theory. The solution of the complex-valued
neural networks converges to the theoretical solution of the
time-varying complex linear matrix equation in finite time.
Compared with existing real-valued neural networks for solving
time-varying complex linear matrix equations, the complex-
valued neural nerworks can avoid redundant computation in a
double real-valued space and thus has a low model complexity
and storage capacity. Numerical simulations are presented to
show the effectiveness of the complex-valued neural networks.

Index Terms—Time-varying complex linear matrix equation,
finite time convergence, weighted sign-bi-power activation func-
tion, complex-valued neural network.

I. INTRODUCTION

LET us consider the smoothly time-varying matrices
A(t) ∈ Cn×n and B(t) ∈ Cn×p, the goal of this paper

is to find a time-varying matrix X(t) ∈ Cn×p such that the
following time-varying complex linear matrix equation holds
true:

A(t)X(t) = B(t), with t ∈ [0,+∞). (1)

Without loss of generality, A(t) and B(t) are assumed
to be known, and their time derivatives Ȧ(t) and Ḃ(t) are
assumed to be known or could be estimated.

Throughout this paper, we use ‖A‖F , A>, AH , <(A) and
=(A) to denote the Frobenius norm, the transpose, the com-
plex conjugated transpose, the real part and the imaginary
part of a given matrix A ∈ Cm×n, respectively. This notation
is consistently used for lower-order parts of a given structure.
For example, the entry with row index i and column index j
in a matrix A, i.e., Aij , is symbolized by aij (also (x)i = xi).
Hence, we use |A| = (|akj |), Θ(A) = (Θ(akj)) and
exp(A) = (exp(akj)) denote the element-wise modulus, the
element-wise argument and the element-wise exponential of
the matrix A ∈ Cm×n, respectively. For two given matrices
A,B ∈ Cm×n, A ◦ B denotes the Hadamard product of
matrices A and B, i.e., (A ◦B)ij = aijbij .

Matrix equations are arisen in control theory, signal pro-
cessing, model reduction, image restoration, ordinary and
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partial differential equations and several applications in sci-
ence and engineering. There are various approaches either
direct methods or iterative methods to evaluate the solution
of these equations [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]. Numerous of numerical algorithms were presented for
finding the approximate solution of linear matrix equations
by using different techniques such as Taylor’s series, homo-
topy, quadrature formulas, interpolation and decomposition
[2], [3], [8], [9], [10]. Bai et al. [11] proposed a modifica-
tion of the Hermitian and skew-Hermitian splitting iteration
method for solving a broad class of complex symmetric
linear systems; Axelsson et al. [12] introduced a real valued
iterative methods for solving complex linear systems; Wang
et al. [13] presented a preconditioned modification of the
Hermitian and skew-Hermitian splitting iteration method for
solving complex symmetric linear systems; Each iteration
of their method requires the solution of two linear systems
with real symmetric coefficient matrices. Ding et al. [2],
[14], [15] extend the classical iterative methods (such as the
Jacobi and Gauss-Seidel iterative methods) for the system
of linear equations Ax = b to solve the system of linear
matrix equations (such as the generalized Sylvester matrix
equation). It has been proven that the Jacobi and Gauss-
Seidel iterative algorithms complete the calculation within
finite steps of iteration and has a time complexity O(n3)
[16]. Evidently, such serial processing algorithms performed
on digital computers may not be efficient enough in large-
scale online applications. Especially, when applied to online
solution of time-varying linear matrix equations, these related
iterative algorithms should be fulfilled within every sampling
period and the algorithms fail when the sampling rate is too
high to allow the algorithms to complete the calculation in
a single sampling period, not to mention more challenging
situations [17].

Recently, many authors have shown great interest for
solving linear matrix equations on the basis of gradient-
based neural networks (GNNs) [2], [9], [18] or Zhang neural
networks (ZNNs) [17], [19], [20]. The GNN approach uses
the Frobenius norm of the error matrix as the performance
criterion and defines a neural network evolving along the
negative gradient-descent direction. In the time-varying case,
the Frobenius norm of the error matrix cannot decrease to
zero even after infinite time due to the lack of velocity
compensation of time-varying coefficients [20]. Zhang neural
networks (ZNNs) are developed for solving online time-
varying problems. Their dynamic is designed based on an
indefinite error-monitoring function instead of a usually
norm-based energy function [18], [21], [22], [23], [24], [25],
[26]. Compared with GNNs, a prominent advantage of the
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ZNN solution lies in that the lagging error diminishes to zero
exponentially as time t goes on [18], [21], [22], [23], [24],
[25], [26]. It is well known that the design of ZNN is based
on a matrix or vector-valued indefinite error function and an
exponent-type formula, which makes every entry/element of
the error function exponentially converge to zero. By defining
different Zhang functions, a series of ZNN models can be
proposed for solving the same time-varying problem [17],
[20].

Xiao and Zhang [20] have proposed two real-valued finite
time convergence ZNN models to compute the time-varying
real linear matrix equation. A finite-time convergent ZNN
models with the Li function for the online solution of the
time-varying complex linear matrix equation was studied
in [17]. Since any complex matrix can be treated as the
combination of its real and imaginary parts, the time-varying
complex linear matrix equation (1) can be rewritten as [17]:

[<(A(t)) + ι=(A(t))] [<(X(t)) + ι=(X(t))]
= <(B(t)) + ι=(B(t)),

(2)

where ι (ι2 = −1) is the imaginary unit.
Considering that the real and the imaginary parts of the

left-side and right-side of the equation (2) always holds
equal, the following time-varying matrix equations can be
further derived from equation (2) as{
<(A(t))<(X(t))−=(A(t))=(X(t)) = <(B(t)),
<(A(t))=(X(t)) + =(A(t))<(X(t)) = =(B(t)),

which can be equivalently expressed in a compact matrix
form as [

<(A(t)) −=(A(t))
=(A(t)) <(A(t))

](
<(X(t))
=(X(t))

)
=

(
<(B(t))
=(B(t))

)
∈ R2n×2p.

(3)

Hence, the n-dimensional time-varying complex lin-
ear matrix equation (1) has been transferred to the 2n-
dimensional time-varying real linear matrix equation (3). We
note that we need to design a 2n-dimensional real-valued
neural network for solving the matrix equation (3), which
adds much workload and is computationally inefficient.

Thus, the main motivation and the novelty of us, in this
paper, is to propose a complex-valued neural network for
solving the matrix equation (1), where this neural network
can avoid redundant computation in a double real-valued
space and reduce a low model complexity and storage
capacity.

This paper is organized as follows. In Section II, we recall
some preliminary results. Complex-valued neural network
models with the weighted sign-bi-power activation functions
for online solution of the time-varying complex linear matrix
equations are presented in Section III. Convergence prop-
erties of the complex-valued neural network models will
be discussed in Section IV. Gradient-based neural network
models will be presented in section V. Illustrative numerical
examples are presented in Section VI.

Before ending this section, the main contributions of this
paper are summarized and listed as follows:

1) This paper focuses on solving time-varying complex
linear matrix equations in complex domain rather than
conventionally investigated static or time-varying linear
matrix equations in real domain.

2) Two types of activation functions are constructed and
two finite-time convergent complex-valued neural net-
works are proposed and investigated for online solution
of time-varying complex linear matrix equations in
complex domain.

3) The paper carries out an in-depth theoretical analysis
for our proposed ZNN models. It is theoretically proved
that our models can converge to the theoretical solution
of time-varying complex linear matrix equations with
in finite time. In addition, the upper bound of the
convergence time are derived analytically via Lyapunov
theory.

II. PRELIMINARY

By Euler’s formula, a complex number α ∈ C can be
represented as α = |α| exp(ιθ), where θ ∈ (−π, π] is the
augment of the number α. Meanwhile, we can also rewrite
a complex matrix A ∈ Cm×n as |A| ◦ exp(ιΘ(A)).

The following two lemmas are needed to analyze the
convergence and stability of the complex-valued neural net-
works.

Lemma II.1. [27] The following identity holds for arbitrary
time-varying complex matrix Z(t) ∈ Cm×p:

dZH(t)

dt
=

(
dZ(t)

dt

)H
.

Lemma II.2. [27] For any two time-varying complex matri-
ces Y (t), Z(t) ∈ Cm×p, the next identity is satisfied:

d(Y (t)Z(t))

dt
=

dY (t)

dt
Z(t) + Y (t)

dZ(t)

dt
.

For a given matrix A ∈ Rm×n, the function F(A) is
defined to be element-wise applicable, odd and monotoni-
cally increasing i.e., F(A) = (f(akj)), with an odd and
monotonically increasing function f(·), where

f(akj) = 1
2k1Lipσ(akj) + 1

2k2Lip
1
σ (akj) + 1

2k3akj

with σ ∈ (0, 1) and

Lipσ(akj) =


aσkj , akj > 0,

0, akj = 0,
−aσkj , akj < 0.

Now, we construct two new activation functions to analyze
the complex-valued neural networks for solving the equation
(1). For a given complex matrix A = <(A) + ι=(A) ∈
Cm×n, two types of the weighted sign-bi-power activation
functions Ψk(A) = (ψk(eij)) (k = 1, 2) are as follows:
(a) Type I activation function array is defined by

Ψ1(<(A) + ι=(A)) = F(<(A)) + ιF(=(A)). (4)

(b) Type II activation function array is defined by the
expression

Ψ2(<(A) + ι=(A)) = F(Γ) ◦ exp(ιΘ), (5)

where Γ = |A| ∈ Rm×n (resp. Θ = Θ(A) ∈ Rm×n)
denotes element-wise modulus (resp. element-wise ar-
guments) of the complex matrix A.
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III. NEURAL NETWORK MODELS BASED ON ZNN

Here, the nonlinear methods of ZNN design for finite-
time convergent complex-valued ZNN models are presented.
Then, by exploiting this method, two finite time convergent
ZNN models are first proposed for time-varying complex
linear matrix equations based on two basic ZFs. For presen-
tation convenience, such two ZNN models are termed ZNN-I
model and ZNN-II model.

As usual, the time derivative of the complex function E(t)
is denoted by Ė(t). The complex-valued neural network
model is developed by employing three basic steps from [17],
[20]. An application of these steps in our case is described
in the following.

Step 1. (Choose a convenient Zhang Function). The first
step assumes definition of a proper fundamental matrix-
valued error-monitoring function (Zhang Function, or ZF
shortly) is defined as follows

E(t) = A(t)X(t)−B(t). (6)

In order to ensure the existence of the unique complex
and time-varying theoretical solution at any time instant
t ∈ [0,+∞). A solution of (6) can be found in the possibility
of adding a bias term λI with a positive scalar λ ∈ R, where
I ∈ Rn×n is identical matrix. This replacement of a singular
matrix by a well-conditioned matrix is known as Tikhnov
regularization method [28]. Therefore, it is reasonable to
define the following complex function as the fundamental
error-monitoring function (called ZFL1):

E(t) = (A(t) + λI)X(t)−B(t). (7)

Step 2. (Define Zhang design formula). In the second step,
with the aim to achieve global convergence of E(t) to zero,
it is necessary to use the general design pattern

Ė(t) :=
dE(t)

dt
= −γΨk(E(t)), k = 1, 2, (8)

where the design parameter γ > 0 corresponds to the in-
ductance parameter or reciprocal of a capacitance parameter,
and Ψk(·) (k = 1, 2) denotes an especially constructed
activation-function matrix mapping of neural networks.

In this paper, we apply the weighted sign-bi-power ac-
tivation function [29] to accelerate the ZNN to finite-time
convergence to the theoretical solution of the time-varying
complex linear matrix equation.

Step 3. (Generate a ZNN model). In the last step, the
dynamic equation of a complex neural network model for
computing the time-varying complex-valued linear matrix
equation can be established by expanding (8). The complex
matrix-valued error-monitoring function E(t) defined in (7)
possesses the following time derivative:

Ė(t) = Ȧ(t)X(t) + (A(t) + λI)Ẋ(t)− Ḃ(t). (9)

Combining (8) and (9), we can obtain the following implicit
dynamic equation of ZNN model:

A(t)Ẋ(t) = Ḃ(t)− Ȧ(t)X(t)− γΨk[(A(t) + λI)X(t)
−B(t)], k = 1, 2.

(10)
For presentation convenience, if k = 1, we call above

dynamic equation as ZNN-I model. If k = 2, we call above
dynamic equation as ZNN-II model.

IV. CONVERGENCE ANALYSIS

In this section, we prove that both ZNN-I and ZNN-II
can be globally convergent to the time-varying theoretical
solution of equation (1).

A. Convergence of the model ZNN-I

The convergence performances in finite time as the weight-
ed sign-bi-power activation function of the ZNN-I model,
defined on the basis of (4), is investigated in this subsection.
The following result is valid for the ZNN-I model with the
type I weighted sign-bi-power activation function.

Theorem IV.1. Given smoothly time-varying complex matri-
ces A(t) ∈ Cn×n and B(t) ∈ Cn×p. If the Type I activation
function is used, then the state matrix X(t) ∈ Cn×p of
the neural network (10), starting from an arbitrary initial
state X(0) ∈ Cn×p, converges to the theoretical solution
X∗(t) ∈ Cn×p of the equation (1) in finite time:

tf ≤


2 ln

[
1+

k1
k3
|e+(0)|1−σ

]
γk3(1−σ) , if |e+(0)| < 1;

2σ ln

[
k2+k3
k3

|e+(0)|
1−σ
σ

+k2

]
γk3(1−σ) +

2σ ln

[
1+

k1
k3

]
γk3(1−σ) , if |e+(0)| ≥ 1;

where |e+(0)| is the largest element in the matrix |E(0)| =
|A(0)X(0)−B(0)|.

Proof. Let X̃(t) = X(t) − X∗(t) denote the difference
between the time-varying solution X(t) generated by the
neural network (10) and the time-varying theoretical solution
X∗(t) of the equation (1). The time derivative of

(A(t) + λI)X∗(t)−B(t) = 0,

can be expressed as

Ȧ(t)X∗(t) + (A(t) + λI) Ẋ∗(t)− Ḃ(t) = 0. (11)

Substitution X∗(t) = X(t)− X̃(t) into (11) leads to

Ȧ(t)
(
X(t)− X̃(t)

)
+(A(t)+λI)

(
Ẋ(t)− ˙̃

X(t)
)
−Ḃ(t) = 0.

The last equation is equivalent to

Ȧ(t)X(t) + (A(t) + λI)Ẋ(t)− Ḃ(t) = Ȧ(t)X̃(t)

+(A(t) + λI)
˙̃
X(t).

Since X̃(t) = X(t) − X∗(t), it can be verified that X̃(t)
is the solution ensuring dynamics (10) with the initial state
X̃(0) = X(0)−X∗(0).

By using (9) in conjunction with (10), it is possible to
conclude

Ȧ(t)X̃(t) + (A(t) + λI)
˙̃
X(t) = Ė(t). (12)

It is possible to verify that

EX(t) = (A(t) + λI)X̃(t)

= (A(t) + λI)(t)X(t)− (A(t) + λI)X(t)∗

= (A(t) + λI)X(t)−B(t)

= E(t).

Then (12) can be rewritten as the following Zhang design
formula:

ĖX(t) = Ė(t) = −γΨ1(E(t)).
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According to the definition of Ψ1(·), the following two
equivalent formulae in the real numbers domain appear:

<(Ė(t)) = −γF(<(E(t)))

and
=(Ė(t)) = −γF(=(E(t))).

We construct the following Lyapunov function:

L(t) =
‖E(t)‖2F

2
=

Tr
(
E(t)HE(t)

)
2

,

where Tr(P ) =
∑n
i=1 pii for any matrix P ∈ Cn×n. Since

E(t) = <(E(t)) + ι=(E(t)), the time derivative of L(t)
satisfies the following identities:

dL(t)
dt =

Tr(Ė(t)HE(t)+E(t)HĖ(t))
2

= − 1
2γTr

{(
F (< (E(t)))

T − ιF (= (E(t)))
T
)

· (< (E(t)) + ι= (E(t))) +
(
< (E(t))

T−

ι= (E(t))
T
)

(F(< (E(t))))
T

+ ιF(= (E(t)))
}

= −γTr
{
< (E(t))

T F (< (E(t)))

+= (E(t))
T F (= (E(t)))

}
.

Since F(·) is odd and monotonically increasing, we conclude

< (E(t))
T F (< (E(t))) + = (E(t))

T F (= (E(t))) ≥ 0,

and then dL(t)
dt ≤ 0. According to the Lyapunov stability

theory,
E(t)=(A(t)+λI)X(t)−B(t)

is globally convergent to zero matrix, regardless of the initial
value. That is to say, as t→∞, we have

X(t)→ (A(t) + λI)
−1
B(t).

In view of λ→ 0, the state matrix X(t) globally converges
to the time-varying theoretical solution of (1) starting from
arbitrary initial state X(0). Next, it is necessary to prove the
finite-time convergent performance of the ZNN-I model.

The initial value of the matrix valued error function E(t)
is

E(0) = (A(0) + λI)X(0)−B(0).

We define
|e+(0)| = max {|E(0)|} .

Similar to [17], one can verify inequalities

|e+(t)| ≥ |eij(t)|, −|e+(t)| ≤ |eij(t)| ≤ |e+(t)|,

for all possible values of indices i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . ,m}. This means that |eij(t)| converges to
zero for all possible i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}
when |e+(t)| reach zero. In other words, the convergence
time of ZNN-I model (10) is bounded by t+f of the dynamics
of |e+(t)|, where t+f represent the convergence time of the
dynamics of |e+(t)|.

To estimate t+f , we can begin with the following formula:

|ė+(t)| = −γψ1

(
|e+(t)|

)
.

Another Lyapunov function candidate is defined as

l+(t) = |e+(t)|2.

Since l+(t) ≥ 0, the time derivative of l+(t) is equal to

l̇+(t) = −2γ|e+(t)|ψ1

(
|e+(t)|

)
= −γ

(
k1|e+(t)|σ+1 + k2|e+(t)| 1σ+1 + k3|e+(t)|2

)
= −γ

(
k1v(t)

σ+1
2 + k2v(t)

σ+1
2σ + k3v(t)

)
.

For such a differential equation, if v(0) = |e+(0)|2 ≤ 1,
according to the Lemma 3 of [29], there exists t+f satisfying

t+f ≤
2 ln

[
1 + k1

k3
|e+(0)|1−σ

]
γk3(1− σ)

,

such that all |eij(t)| = 0 when tf > t+f .
If v(0) = |e+(0)|2 ≥ 1, according to the Lemma 3 of

[29], there exists t+f satisfying

t+f ≤
2σ ln

[
k2+k3
k3
|e+(0)| 1−σσ +k2

]
γk3(1− σ)

+
2σ ln

[
1 + k1

k3

]
γk3(1− σ)

,

such that all |eij(t)| = 0 when tf > t+f .
The above results mean that, if the Type I activation

function is adopted, neural state X(t) of the neural network
(10) with Ψ1 converges to the theoretical solution X∗(t) of
linear matrix equation (1) in finite time tf . �

B. Convergence of the model ZNN-II

In the following, we investigate the convergence of the
complex neural network model ZNN-II, defined by (10)
for k = 2. The following result can be verified about the
complex-valued neural network model ZNN-II based on a
type II activation function.

Theorem IV.2. Given smoothly time-varying complex matri-
ces A(t) ∈ Cn×n and B(t) ∈ Cn×p. If the Type II activation
function is used, then the state matrix X(t) ∈ Cn×p of
the neural network (10), starting from an arbitrary initial
state X(0) ∈ Cn×p, converges to the theoretical solution
X∗(t) ∈ Cn×p of the equation (1) in finite time:

tf ≤



2 ln

[
1+

k1
k3
|e+(0)|1−σ

]
γk3(1−σ) , if |e+(0)| < 1;

2σ ln

[
k2+k3
k3

|e+(0)|
1−σ
σ

+k2

]
γk3(1−σ) +

2σ ln

[
1+

k1
k3

]
γk3(1−σ) , if |e+(0)| ≥ 1;

where |e+(0)| is the largest element in the matrix |E(0)| =
|A(0)X(0)−B(0)|.

Proof. Analogically as in the proof of Theorem IV.1, the
error dynamics is given by

Ė(t) = −γΨ2(E(t)),

where E(t) = (A(t) + λI)X(t) − B(t). According to the
definition of Ψ2(·), immediately follows

Ψ2(E(t)) = F(|E(t)|) ◦ exp(ιΘ(E(t))).

We construct the following Lyapunov function:

L(t) =
‖E(t)‖2F

2
=

Tr
(
E(t)HE(t)

)
2

,
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which further implies

dL(t)

dt
=

Tr
(
E(t)HĖ(t) + Ė(t)HE(t)

)
2

= −1

2
γTr

(
E(t)HH2 (E(t)) + E(t)H2 (E(t))

H
)

= −1

2
γTr

(
E(t)HH2 (E(t)) +

(
E(t)HH2 (E(t))

)H
)

= −γTr
(
<
(
E(t)HH2 (E(t))

))
= −γTr

{
<
[
E(t)HF (|E(t)|) ◦ exp (ιΘ(E(t)))

]}
.

Since E(t) = |E(t)| ◦ exp(ιΘ(E(t))), one can verify
dL(t)
dt = −γTr

{
<[exp

(
−ιΘ

(
E(t)H

)
◦
∣∣E(t)H

∣∣)
· (F (|E(t)|) ◦ exp (ιΘ (E(t))))]} .

Since F(·) is monotonically increasing, we conclude
F(|E(t)|) ≥ 0 for E(t) 6= 0. As a result, L(t) is negative
definite. According to the Lyapunov stability theory, the
matrix E(t) = (A(t) + λI)X(t)−B(t) globally converges
to the zero matrix from arbitrary initial value. Similarly
as in the proof of Theorem IV.1, we conclude that the
state matrix X(t) globally converges to the time-varying
theoretical solution of (1) starting from arbitrary initial state
X(0).

Because ZNN-I model (10), for k = 2, is derived by using
the intrinsically nonlinear method of ZNN design similar to
ZNN-I model, we also have

ĖX(t) = Ė(t) = −γΨ2(E(t)).

Therefore, the proof of finite time convergence can be
generalized from the proof of Theorem IV.1 and is thus
omitted. �

V. COMPARISON VERIFICATION

We compare in this section the ZNN model with the
conventional GNN model for the same online time-varying
complex linear matrix equations solving task. We have the
following GNN models for time-varying complex linear
matrix equations solving.

First, the following the scalar-valued nonnegative energy
function is defined

E(t) =
‖(A(t) + λI)X(t)−B(t)‖2F

2
.

Then, a complex-valued gradient algorithm is designed to
evolve along a negative gradient descent direction of this
energy function until the minimum point can be reached.
Obviously, the negative gradient of this energy function can
be derived as follows.

− ∂(E(t))

∂(X(t))
= −(A(t) + λI)H((A(t) + λI)X(t)−B(t)

)
.

Third, by using the above negative gradient, we can con-
struct the following complex-valued GNN model for online
solution of the complex-valued linear equation system.

dX(t)

dt
= −γ

(
A(t) + λI

)H
Ψk

(
(A(t) + λI)X(t)−B(t)

)
,

(13)
where Ψk(·) (k = 1, 2) are two types of activation functions
defined in section II. Design parameter γ > 0 is used to
scale the convergence rate of the fully complex-valued GNN
model, and complex state vector X(t) ∈ Cn×p, starting from
any initial state X(0) ∈ Cn×p.

VI. NUMERICAL EXAMPLES

In this section, we show that we can use the neural network
(10) with different activation functions to solve the time-
varying complex linear equations (1) via several examples.
Meanwhile, we also compare our neural networks (10) with
the gradient-based neural network (13) via an example. the
computations are implemented in Matlab Version 2013a on
a laptop with Intel Core i5-4200M CPU (2.50GHz) and
7.89GB RAM. All ordinary differential equations are solved
by the Matlab function “ode23” or “ode45”.

A. Numerical tests based on ZNN

Example 1 [17]. Consider the following time-varying
matrices A(t) and B(t) with

A(t) = sin(4t) + ι cos(4t),

B(t) = [sin(3t) + 1− ι cos(2t) cos(6t) + ι(sin(5t) + 2)].

Numerical values of X(t) in different time points are
computed numerically via the formula

X(t) = (A(t) + λI)−1B(t), (14)

If we take initial vector X(0) = (1, 1)> and choose the
weighted sign-bi-power activation function as f(·) with σ =
1
3 , then state variables trajectories of real part and imaginary
part of the model ZNN-II (10) with γ = 20 and λ = 10−2

are shown in Figure 1 (a) and Figure 2 (a) and in Figure
1 (b) and Figure 2 (b), respectively, where the red curves
denote the theoretical solution computed by (14) and blue
curves denote the solution computed by the model ZNN-II.

Trajectories of residual errors ‖ (A(t) + λI)X(t) −
B(t)‖F , generated by using the complex model ZNN-II with
λ = 10−3 and γ = 20 is shown in Figure 3 (a) and λ = 10−5

and γ = 2× 106 is shown in Figure 3 (b), respectively.
It is seen from Figure 1 and Figure 2 that state variables

X(t) of ZNN-II converges directly to the theoretical
solution of (1) within a rather short time. In addition, Figure
3 (a) and (b) show the transient convergence behavior of
‖ (A(t) + λI)X(t)−B(t)‖F synthesized by ZNN-II.

Example 2. Consider the time-varying matrix

A(t) =


2 sin(t) 0 1 sin(t)

0 cos(t) 2 sin(t) 1
cos(t) 1 0 2 cos(t)

1 2 cos(t) sin(t) 0



+ι


cos(t) sin(t) 0 cos(t)
sin(t) cos(t) 2 cos(t) sin(t)
sin(t) t 0 2 sin(t)

1 2 sin(t) cos(t) 0

 .

and

B(t) = (sin(t)+ι cos(2t) sin(2t) ι sin(3t) sin(4t)+ιt)>.

If we take initial vector X(0) = (0, 0, 0, 0)> and choose
the weighted sign-bi-power activation function as f(·) with
σ = 1

3 , then state variables trajectories of real part and
imaginary part of the model ZNN-I (10) with γ = 200 and
λ = 10−3 are shown in Figure 4 (a) and (b), respectively.
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(a) The first column.

(b) The first column.

Fig. 1. Trajectories of the state variables of the model ZNN-II in Example
1.

The red curves denote the theoretical solution computed
by (14) and blue curves denote the solution computed by the
model ZNN-I.

Trajectories of residual errors ‖ (A(t) + λI)X(t) −
B(t)‖F , generated by using the complex model ZNN-I with
λ = 10−3 and γ = 200 is shown in Figure 5 (a) and
λ = 10−6 and γ = 2 × 107 is shown in Figure 5 (b),
respectively.

It is seen from Figure 1 (a) and (b) that state variables
X(t) of ZNN-I converges directly to the theoretical solution
of (1) within a rather short time. In addition, Figure 5
(a) and (b) show the transient convergence behavior of
‖ (A(t) + λI)X(t)−B(t)‖F synthesized by ZNN-I.

B. Numerical tests based on GNN

To show our ZNN models’s superiority, we compare in
this subsection the ZNN model with the conventional GNN
model for the same online time-varying complex linear
matrix equations solving task.

Example 3. We consider the time-varying matrix in Ex-

(a) The second column.

(b) The second column.

Fig. 2. Trajectories of the state variables of the model ZNN-II in Example
1.

ample 2

A(t) =


2 sin(t) 0 1 sin(t)

0 cos(t) 2 sin(t) 1
cos(t) 1 0 2 cos(t)

1 2 cos(t) sin(t) 0

 .

+ι


cos(t) sin(t) 0 cos(t)
sin(t) cos(t) 2 cos(t) sin(t)
sin(t) 1 0 2 sin(t)

1 2 sin(t) cos(t) 0

 .

and

B(t) = (sin(t)+ι cos(2t) sin(2t) ι sin(3t) sin(4t)+ιt)>.

Take the initial vector v(0) = (0, 0, 0, 0)T and choose the
weighted sign-bi-power activation function as f(·) with σ =
1
3 . State variables trajectories of the GNN model (13), for
k = 1, with γ = 200 and λ = 10−6 are graphically illustrated
in Figure 6 (a) and (b), respectively.

From the Figures 6, we can see that ZNN state X(t) can
always converge to the theoretical solution of (1), whereas
GNN state X(t) does not fit well with the theoretical solution
of (1).

In fact, the ZNN superiority comes from the fact that ZNN
exploits the time-derivative information of matrix A(t) and
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(a) γ = 20

(b) Semilog plot with γ = 2× 106

Fig. 3. Trajectories of the residual errors of the model ZNN-II in Example
1.

B(t) during the real-time inverting process, which ensures
that ZNN could globally exponentially converge to the exact
solution of the time-varying complex linear matrix equations.
In contrast, GNN has not exploited such important informa-
tion, and thus it may not be effective on solving such time-
varying complex linear matrix equations.

VII. CONCLUSION AND FURTHER CONSIDERATIONS

In this paper, we have proposed two complex-valued
neural networks for solving the matrix equation (1) under
certain conditions. To achieve this goal, we have designed
two new complex-valued activation functions based on the
weighted sign-bi-power activation function. We have proved
that the solution of our neural networks can converge to the
theoretical solution of the matrix equation (1) in finite times.
For comparative purposes, the conventional gradient-based
neural networks (GNN) are also developed and exploited for
solving such a time-varying complex linear matrix equation.
The computer simulation results verify the superiorness of
the ZNN models, as compared with the GNN models for
solving time-varying complex linear matrix equations in
complex domain.

Sometimes, the coefficient matrix A(t) in (1) may be not
a square matrix, that is, A(t) ∈ Cm×n with m 6= n. Without

(a) The real part of the first column.

(b) The imaginary part of the first column.

Fig. 4. Trajectories of the state variables of the model ZNN-I in Example
2.

loss of generality, suppose that m > n. Hence, the future
work is to solving this matrix equation A(t)X(t) = B(t),
where all entries of A(t) and B(t) are smooth functions with
respect to t ≥ 0.
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