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Abstract—The paper studies the deployment dynamics of a 

long tethered spacecraft system (TSS) with an atmospheric 

sounder. The tether (several ten kilometers) is deployed from the 

spacecraft by means of a mechanism that works only for braking. 

A dynamic nominal deployment control law is designed in an 

orbital moving coordinate system taking into account the 

aerodynamic forces acting on the end-bodies (the spacecraft and 

atmospheric sounder) and inextensible tether. The motion 

stability of the TSS is analyzed. The deployment process is 

studied in a geocentric coordinate system with consideration of 

the dynamics of control mechanism operation, tether elasticity, 

and other perturbations. The numerical simulations show that 

designing the nominal deployment control law taking into 

account the aerodynamic force reduces the system’s control 

error several times for the deployment process. 

 
Index Terms—Tethered spacecraft system, atmospheric 

sounder, modeling, nominal deployment control law, motion 

stability, control error 

 

I. INTRODUCTION 

N recent years, tethered spacecraft systems (TSSs) have 

received much attention for a number of applications such 

as tether-assisted re-entry [1, 2], active debris removal and 

deorbiting [3 – 7], planetary exploration [8] and atmospheric 

sounding [9 – 11]. Generally, there are three dynamic phases 

for a typical TSS space mission: deployment, station-keeping, 

and retrieval [12]. Among these three phases, the deployment 

phase is the premise of a successful space mission, because 

the flexible TSS would exhibit an unstable motion during the 

deployment process if without control [13–15]. 

Many researchers have paid attention to the deployment 

control of the TSS for a number of occasions. The long TSS 

(the tether length is of the order of several ten kilometers) 

should be considered as a system with distributed parameters, 

and its motion is generally described by partial differential 

equations. The system with distributed parameters makes the 
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control problem complicated [16, 17]. As a result of this, 

various simplified models of the motion of the TSS have been 

used to design control laws. In these simplified models the 

tether is treated as a massless/massive rigid rod [18 – 21]. A 

validation model is used to provide more detailed insight into 

the system dynamics and to test the control laws [18, 22]. The 

flexibility and extensibility of the tether and the dynamics of 

the control mechanism operation are considered in the 

validation model. The tether is considered as a sequence of 

elements, such as beads connected by massless springs, 

lumped masses connected by massless springs-dashpot, a 

series of rigid rods, or finite elements in the validation model 

[23]. 

The most important external perturbation for the low 

orbital non-conductive TSS is the aerodynamic force [11, 24]. 

The stability of the stationary state of the TSS with an 

atmospheric sounder has been studied in detail in the classical 

monograph [9]. As shown in the monograph [9], there is an 

air-gradient instability position during the motion of the TSS. 

The air-gradient instability is shown as an increase in the 

swing amplitude with respect to the equilibrium position of 

the system. In addition to this, if the tether length is smaller 

than a critical value, the swing of the TSS will be constrained. 

Based on the study of the oscillations of a spacecraft with a 

spacecraft with a vertical tethered system under the action of 

the gravitational moment and small periodic tethered force at 

a circular orbit [25], the gravitational stabilization of the 

relative equilibrium position of the STS in a circular orbit is 

studied in [26]. The swing of a movable mass solves the 

problem of the gravitational stabilization. 

The atmospheric sounder in this paper is a kind of light 

metallic and inflatable structure, and its shape is close to 

sphere. The ballistic coefficient ( /xc S m  , where xc  is 

the drag coefficient of the object, S  is the cross-sectional 

area of the object in the direction of the object’s motion 

relative to the atmosphere,  m  is the object's mass) of the 

atmospheric sounder is relatively large. The cross-sectional 

area of the tether is calculated by t tS D L  ( tD  is the 

diameter of the tether, L  is the tether length) if the tether 

length is of the order of several ten kilometers. It turns out that 

the cross-sectional area of the tether is much larger than the 

cross-sectional areas of the end-bodies. This leads to the 

necessity of taking into account the aerodynamic force acting 

on the tether when we design the nominal deployment control 

law. 

To the best knowledge of the authors, taking into account 
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the aerodynamic force acting on the components of the TSS 

(the spacecraft, the atmospheric sounder and the tether) for 

designing the nominal deployment control law has not been 

considered. Therefore, in this paper a simplified motion 

model of the TSS taking into account the aerodynamic force 

acting on the components of the TSS is used for obtaining the 

motion stability condition for the initial deployment phase 

and designing the dynamic deployment control law. The 

dynamic deployment control law in this paper generalizes the 

control laws, which have been used in [9, 18, 27].  

A more complex motion model of the TSS is used for 

estimating the applicability of the proposed nominal 

deployment control law. In the complex model the tether is 

treated as a sequence of point masses with one-sided elastic 

mechanical coupling. A linear feedback controller in terms of 

the errors in the tether length and deployment rate is used. The 

tether deployment mechanism in this work, which can just 

brake the tether, is similar to the mechanism that was used in 

the space tethered experiment YES2 [19, 28]. The numerical 

simulations show that the proposed nominal deployment 

control law can significantly reduce the control error and 

swing amplitude of the TSS with respect to the equilibrium 

position. 

II. MATHEMATICAL MODEL FOR DESIGNING NOMINAL 

CONTROL LAW 

The coordinate systems OXYZ , o o oOX Y Z , o o oCx y z , 

t t tCx y z  (see Fig. 1 and Fig. 2) are used for deriving the 

motion equations of the TSS. The geocentric right-hand 

coordinate system OXYZ  is associated with the orbital plane 

of the system center of mass C , where axis OX  is in the 

direction along the nodal line, and axis OZ  is in the direction 

of the angular momentum vector of the orbital motion. The 

geocentric orbital moving coordinate system o o oOX Y Z  

rotates with respect to the coordinate system  OXYZ  with the 

angular velocity /d dt  , where   is the argument of 

latitude. The axes of the coordinate systems o o oOX Y Z  and 

o o oCx y z  are parallel (see Fig. 1), and the only difference 

between these two coordinate systems is in the coordinates of 

the origin. The coordinate system t t tCx y z  is associated with 

the tether and axis tCx  is directed along the tether. The 

relative positions of the coordinate systems t t tCx y z  and 

o o oCx y z  are described by angles   and   (see Fig. 2). 

The following assumptions are made for developing the 

simplified model of the TSS: 1) the orbit of the system center 

of mass is unchanged and nearly a circular orbit during the 

deployment; 2) the tether is deployed from the spacecraft; 3) 

the extensibility and flexibility of the tether are neglected; 4) 

the spacecraft and atmospheric sounder are regarded as the 

point masses; 5) the tether is treated as a rigid massive rod. 

The motion equations of the TSS for designing the nominal 

deployment control law are derived in [27] without taking into 

account the aerodynamic force acting on the TSS. The 

equations are derived from the Lagrangian equation with the 

generalized coordinates 1q L , 2q  , 3q  , where L  

is the tether length. 
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Fig. 1 Coordinate systems. 
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Fig. 2 Relative positions of coordinate systems Cx y zo o o  and Cx y zt t t . 

 

In this paper the motion equations of the TSS taking into 

account the aerodynamic forces acting on the spacecraft, 

atmospheric sounder and tether are presented as: 
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where 
0

1m  is the initial mass of the spacecraft, 
nm  is the mass 

of the atmospheric sounder, 
t  is the line density of the tether 

material, 
0

1 nM m m  , pT  is the nominal tensional force of 

the tether, LQ , Q , Q  are the generalized aerodynamic 

forces. 

The equations of the plane motion ( 0  ) are used for 

designing the nominal control law for the TSS deployment 

into the vertical position: 
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Additionally, in order to verify the assumption that the orbit 

of the system center of mass is unchanged and nearly a 

circular orbit during the deployment, the change in the orbital 

altitude of the system center of mass is taken into account 

[29]: 
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where   is the Earth’s gravitational parameter, cV , cH  are 

the velocity and orbital altitude of the system center of mass, 

respectively,   is the inclination angle of the trajectory of 

the system center of mass (angle between the local horizon 

and the velocity of the system center of mass), 3R  is the mean 

radius of the Earth, cvR  is the projection of the resultant 

aerodynamic force on the direction of the velocity of the 

system center of mass, cnR  is the projection of the resultant 

aerodynamic force on the normal direction of the trajectory 

plane of the system center of mass. 

The generalized aerodynamic forces are defined with the 

expressions /L LQ W L  , /Q W   , where LW  

and W  are the virtual works over the displacements L  

and  , respectively. The generalized aerodynamic forces 

for the TSS are calculated as: 

1 n tQ Q Q Q      , 1L L Ln LtQ Q Q Q   ,   (15) 

where 1Q , 1LQ  and nQ , LnQ  are the generalized 

aerodynamic forces for the spacecraft and atmospheric 

sounder (1 denotes the spacecraft, n denotes the atmospheric 

sounder). 
tQ  and 

LtQ  are the generalized aerodynamic 

forces for the tether. 

The generalized aerodynamic forces for the spacecraft and 

atmospheric sounder are calculated as [30]: 
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where k kV L   , Lk kV L  ( 1,k n ), 

1 ( / 2) /n tL L m L M  , 
0

1( / 2) /n tL L m L M  , 

ekV  are the velocities of the end-bodies due to the rotation of 

the coordinate system o o oOX Y Z , 
kS  are the cross-sectional 

areas of the end-bodies in the direction of the motion of the 

end-bodies relative to the atmosphere, kc  are the drag 

coefficients, k  are the atmospheric densities, kV  are the 

velocity modules. k  are the angles between the radius vector 

of the system center of mass cR  and the radius vectors of the 

end-bodies in o o oOX Y Z . 

The generalized aerodynamic force for the tether is 

calculated by the integration over the tether length under the 

assumption that the tether is straight: 

0
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where 
21

sin
2

tl t t t tR c DV   is the aerodynamic force 

acting on an element of the tether, tD  and tc  are the 

diameter and drag coefficient of the tether, t  and tV  are the 

angle of attack and velocity module of the tether element,  

x nl L x   is the moment arm of the aerodynamic force 

acting on the tether element with respect to the system center 

of mass. The calculation of the integral is implemented by 

discretizing the tether into elements and then summating. The 

direction of the aerodynamic force acting on the tether 

element is opposite to the resultant velocity of the tether 

element’s center of mass, i.e. assume that the TSS’s motion 

occurs in a free molecular flow, and the hypothesis on the 

diffuse reflection of molecules is used [31]. 

The atmospheric density   is calculated based on the 

standard atmosphere parameters of GOST 25645.101–83 

[32]. The integration for (20) is approached by a 5th degree 

interpolation polynomial. The rotation of the atmosphere is 

neglected for designing the nominal deployment control law. 
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III. NOMINAL DEPLOYMENT CONTROL LAW 

The nominal control law for the TSS deployment into the 

vertical position is designed under the conditions of the 

system’s motion at the end of the deployment 0L L   , 

endL L , where 
endL  is the total tether length. Equations (10 

– 11) will have the equilibrium position 
1  ( 0    ), 

which is near the local vertical, if the tensional force is 

determined from the expression: 

2 2

1 end endcos [ ( ) 3 ]p e L

bL
T a L L L Q      




,  (21) 

where a and b  are the parameters of the control law, 1  is 

the deflection angle of the tether from the local vertical, which 

is determined from (11) for 0L      . 

If 3a  , 0b   and the changes in the orbital parameters 

are neglected, then (10 – 11) will have an asymptotic stable 

equilibrium position 
1  , endL L , 0L L        . 

The demonstration of this conclusion is given in [18, 27], 

which is carried out by analyzing the eigenvalues of the 

corresponding linearized system. In addition to this, there 

exist some critical values b  ( 0b  ) for the parameter b  

when consta  . All eigenvalues of the linearized system 

become negative when b b . In this case, 0L  , 0L  , 

endL L  are satisfied due to the asymptotic stability. The 

satisfaction of these restrictions is a necessary condition for 

designing the nominal deployment control law, because it is 

assumed that the tether deployment mechanism works only 

for braking and cannot pull the tether. On the other hand, 

when the values of the parameters a  and b  are close to the 

critical values 3 a a , b b , the deployment time 

decreases. This can be an additional criterion for selecting the 

values of parameters a  and b . 

IV. ANALYSIS OF MOTION STABILITY OF TSS 

The motion stability includes the stability of the 

equilibrium position of the TSS near the local vertical (static 

stability) and deployment stability (dynamic stability). The 

dynamic stability and static stability are analyzed with the 

assumption 0L  and constL , respectively. The TSS 

may lose the motion stability due to the aerodynamic force if 

the deflection angle of the tether from the local vertical is 

larger than / 2 . The loss of motion stability may cause the 

collision of the spacecraft and atmospheric sounder, the tether 

slack and tether twining, which directly affect the flight safety 

of the TSS. 

The following assumptions are adopted for the 

approximate analysis of the motion stability: 

0k tx   , Lk kV V , θk kV V , θtx txV V ,  (22) 

where 1,k n , tx  is the angle between cR  and the radius 

vector of the center of the tether element, tx txV L   , txL  is 

the linear distance between the center of the tether element 

and the system center of mass, txV  is the velocity module of 

the tether element. The angles 0k tx    when the tether 

length is of the order of several ten kilometers. The relative 

velocities 
LkV , 

kV , 
txV  are smaller than 0.1% of the orbital 

motion velocities 
kV  and 

txV . Additionally, k tx cV V V  , 

where 
c cV R  is the orbital velocity of the system center of 

mass. 

Equation (11) is presented in the non-dimensional form by 

adopting the assumptions (22): 
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The energy integral for (23) is presented as: 
2( )
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2


  


  P E ,              (27) 
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
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( , , )  P  is the analogue potential energy of the TSS. 

According to the Lagrange-Dirichlet theory, the 

equilibrium point of the TSS is stable if the TSS’s potential 

energy has a strict local minimum on this equilibrium point, 

and is unstable if maximum. Based on this, the singular points 

of the TSS corresponding to (23) are presented in Table I, 

where 
2arcsin( / 9 )    . 

 
TABLE I 

SINGULAR POINTS ( ) OF TSS 

  3    ( 3,3)    3   

Stable points / 2  

2arcsin( / 9 )     , 

2arcsin( / 9 )       

3 / 2  

Unstable points 3 / 2  / 2 , 3 / 2  / 2  

 

According to Table I, if ( 3,3)   , then the TSS has two 

stable equilibrium positions near the local vertical. In addition 

to this, the values and signs of the shifts of the stable 

equilibrium positions with respect to the local vertical 

depends on  . If 3  , then the stable equilibrium positions 

of the TSS are horizontal. 

Therefore, the condition of static stability of the TSS is 

presented as: 

3  .                             (29) 

If the condition (29) is always satisfied, then it can be 

regarded as the necessary condition of the deployment motion 
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stability of the TSS. 

Fig. 3 shows the phase trajectory corresponding to (23) 

when 1.5   . In this case, there are two static stable 

equilibrium positions near the local vertical. 

 

 
Fig. 3 Phase trajectory corresponding to (23) ( 1.5   ) 

 

The non-dimensional parameters   and   represent the 

ratios between the aerodynamic moment and the gravitational 

moment of the end-bodies and tether, respectively. The 

dynamic stability of the system with respect to the equilibrium 

position, which is close to the local vertical, is determined by 

( , , )F    . ( , , )F     depends on the changes in the 

parameters of the TSS during the deployment. In addition, the 

influence of ( , , )F     will increase if the tether length is 

small due to the features of the parameters   and  . In 

addition to this, the gravitational moment tends to be zero 

when 0L . Therefore, the analysis of dynamic stability of 

the TSS deserves special attention paid to the initial 

deployment phase, which immediately follows the separation 

between the spacecraft and atmospheric sounder. 

The analysis of the initial deployment phase of the TSS 

shows that there are two characteristic cases. The difference 

between these two cases is the sign of  . The signs of the 

parameters   and   correspond to the sign of the 

aerodynamic moment with respect to the system center of 

mass. On the other hand, the moment due to the Coriolis force 

always points in one direction during the deployment ( 0L  ). 

The direction of the moment due to the Coriolis force is 

opposite to the direction of the angular velocity of the system 

center of mass (Ω ). Therefore, the most dangerous case from 

the point-of-view of losing the motion stability of the TSS is 

that the signs of the parameters   and   are the same, and 

the direction of the moment due to the Coriolis force 

coincides with the signs of   and  . 

The orbital altitudes of the spacecraft and atmospheric 

sounder are almost the same in the initial deployment phase. 

Therefore, 1 n  . According to this, the sign and value of 

  are presented as an interval of the ballistic coefficient 

1 ( )n t       , where 1 , n , t  are the ballistic 

coefficients of the spacecraft, atmospheric sounder and tether, 

respectively. In this case, the sufficient condition of the 

motion stability of the TSS is presented as: 

1 2       ,                         (30) 

where 1 0  , 
2 0  , 2 1    . The interval of 

  is asymmetrical, because the moment due to the Coriolis 

force always points in one direction during the deployment. 

The boundary values of   can be obtained only 

numerically if the parameters of the TSS are known. For 

example, if the mass of the atmospheric sounder is 

5 kgnm  , other parameters used for calculation are 

presented in Table II. The boundary values of   can be 

obtained by means of changing the cross-sectional area of the 

atmospheric sounder:
2

1 37.69 m /kg   ,  

2

2 0.45 m /kg   . 

 
TABLE II 

PARAMETERS OF TSS (A) 

Parameter Value Unit 

Initial altitude of circular orbit: cH  270 km 

Total tether length: endL  30 km 

Line density of tether material: t  0.2 kg/km 

Tether diameter: tD  0.6 mm 

Drag coefficients of the spacecraft and 

atmospheric sounder: kc ( 1,k n ) 
2.4  

Drag coefficient of the tether: tc  2.2  

Relative velocity of separating atmospheric 

sounder from spacecraft along the local 

vertical downward:  rV  
2 m/s 

Cross-sectional area of the spacecraft: 1S  3.14 m2 

Ballistic coefficient of the spacecraft: 1  310-3 m2/kg 

Initial mass of the spacecraft: 0
1m  2500 kg 

Parameter of the control law: a  4  

Parameter of the control law: b  5  

 

If the structure of the atmospheric sounder is lightweight 

and foldable (or an inflatable balloon), the effect of the 

aerodynamic force on the initial deployment phase can be 

reduced. Firstly, the atmospheric sounder is kept compressed 

in the initial deployment phase and then the atmospheric 

sounder will be unfolded (or the inflatable balloon will be 

aerated) after passing the dangerous initial phase. The time 

for keeping the atmospheric sounder foldable can be 

calculated according to (30). 

V. ANALYSIS OF NOMINAL DEPLOYMENT TRAJECTORIES OF 

TSS 

The comparison of the nominal deployment trajectories by 

using the nominal control law (21) is shown in this section. 

The comparison is between the nominal deployment 

trajectories with and without taking into account the 

aerodynamic forces acting on the spacecraft, atmospheric 

sounder and tether. The diameter and mass of the atmospheric 

sounder for the numerical simulations in this section are 1 m 

and 20 kg, respectively. 

The nominal trajectories of the atmospheric sounder with 

Engineering Letters, 26:4, EL_26_4_11

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



 

respect to the spacecraft with and without taking into account 

the contribution of the aerodynamic force are shown in Fig. 4. 

It is shown that for the case of taking into account the 

aerodynamic force the sign of the deflection angle of the 

tether from the local vertical changes at the end of the 

deployment. 

 

 
Fig. 4 Nominal trajectories of the atmospheric sounder with respect to the 

spacecraft: (i) with consideration of the aerodynamic force, (ii) without 

consideration of the aerodynamic force. 

 

This corresponds to the increase in the braking force 

(tensional force) when the aerodynamic force is taken into 

account (see Fig. 5), where / pt t   is the non-dimensional 

time, pt  is the period of motion of the system on the initial 

circular orbit.  

 

 
Fig. 5 Tensional force: (i) with consideration of the aerodynamic force, (ii) 

without consideration of the aerodynamic force. 

 

The increase in the braking force makes the decelerating 

phase of the deployment process start earlier (see Fig. 6). Fig. 

6 shows the deployment rate with and without taking into 

account the aerodynamic force. The deployment process 

consists of the accelerating and decelerating phases. At the 

end of the deployment the condition 0L   is satisfied. The 

aerodynamic forces acting on the spacecraft (
1R ), 

atmospheric sounder (
nR ) and tether (

tR ) are shown in Fig. 7. 

It is shown that the aerodynamic force acting on the tether is 

much larger than the aerodynamic forces acting on the 

spacecraft and atmospheric sounder even though the tether’s 

diameter for simulation is relatively small ( 0.6 mmtD  ). 

During the deployment process the changes in the orbital 

altitude and angular velocity of the system center of mass are 

less than 2 km and 110
-6

 s
-1

, respectively.  
 

 
Fig. 6 Deployment rate: (i) with consideration of the aerodynamic force, (ii) 

without consideration of the aerodynamic force. 

 

 
Fig. 7 Aerodynamic forces acting on the spacecraft ( 1R ), atmospheric 

sounder ( nR ) and tether ( tR ). 

VI. MATHEMATICAL MODEL WITH DISTRIBUTED 

PARAMETERS FOR VALIDATION 

A discrete model of motion is used to estimate the 

applicability of the nominal deployment control law (21). The 

motion model with distributed parameters is developed in the 

geocentric right-hand coordinate system OXYZ . In this 

model the TSS is considered as n  point masses with 

one-sided elastic mechanical coupling (see Fig. 8). 

The motion equations of the TSS taking into account the 

aerodynamic force are presented as [33]: 
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d

dt


r
V , 

1

j

j j j j j

d
m

dt
   

V
G T T R ,     (31) 

where jr ( 1,2,...,j n ) are the positions of the spacecraft 

( 1j  ), point masses of the tether ( 2,3,..., 1j n  ) and 

atmospheric sounder  ( j n ), / ( 2)j tm m n   

( 2,3,..., 1j n  ) are the tether’s point mass, 
tm  is the 

tether’s mass, n  is the number of the TSS’s point masses, jV  

is the absolute velocity, jG  is the gravitational force, jR  is 

the aerodynamic force. 

 

1
n

1n 

2

2n 

3  
Fig. 8 Model with distributed parameters for TSS. 

 

The tensional force jT  is calculated according to the 

Hooke’s law taking into account that the mechanical coupling 

is one-sided: 

1

1

j j

j j

j j

T









r r
T

r r
,  1,2,..., 1j n     (32) 

1

1

1

   ( 0)

0                            ( 0)

j j j

j j j
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j j j

L
c L

LT

L







   
    

 


   

r r
r r

r r

,  (33) 

where jL  is the unstrained length of the tether element, c  

is the stiffness of the tether. In addition, only one tensional 

force acts on the end-bodies, i.e. 0 0n T T . 

The gravitational force is calculated as: 

3

j j

j

j

m

r
 

r
G ,  1,2,...,j n           (34) 

The aerodynamic force acting on the tether element is 

calculated as: 

, , ,

1
sin( )

2
c j t t j c j c j jc D L V   R V ,    (35) 

where ,c jV  ( 1,2,..., 1j n  ) is the velocity of the center of 

tether element with respect to the atmosphere, j  is the angle 

of attack of the tether element. 

,c jV  and j  are calculated as: 

, , 1

,
2

r j r j

c j




V V
V ,                       (36) 

 1 ,

1 ,

cos
j j c j

j

j j c jV






 




r r V

r r
,                   (37) 

where ,r jV  is the velocity of the tether’s point mass with 

respect to the atmosphere. 

The aerodynamic forces acting on the tether’s point masses 

and end-bodies are calculated as: 

, 1 ,

2

c j c j

j

 


R R
R , ( 2,3,..., 1j n  )    (38) 

,1

1 1 1 1 ,1 ,1

1

2 2

c

r rc S  
R

R V V ,       (39) 

, 1

, ,

1

2 2

c n

n n n n r n r nc S


  
R

R V V .      (40) 

The relationship between the absolute and relative 

velocities is presented as: 

,r j j e j  V V Ω r , ( 1,2,...,j n )     (41) 

where 
eΩ  is the angular velocity of the Earth’s self-rotation. 

The motion equation (31) is associated with the equation 

that takes into account the dynamics of the control mechanism 

operation. The latter can be described as [18, 27]: 

1
l

e c

dV
m T F

dt
  , l

dl
V

dt
 ,        (42) 

where the coefficient em  describes the inertia of the control 

mechanism (it is assumed that constem   during the 

deployment process), l  is the unstrained length of the tether 

deployed from the control mechanism, lV  is the deployment 

rate. 

According to the feedback principle, cF  is presented as 

[19]: 

1 1 2 2c pF T p p     ,            (43) 

where 1 l L   , 2 lV L    , 1p  and 2p  are the 

feedback coefficients, pT  is the nominal tensional force 

determined in (21), L  and L  are the nominal values 

determined in (10 – 11). The limitation mincF F  is 

considered for calculating (43). The sampling step of the 

controller is taken into account in this paper. 

The momentum conservation principle is used at the   

moment of separating the atmospheric sounder from the 

spacecraft. The absolute velocities of the spacecraft and 

atmospheric sounder are calculated as: 

1
n

c r

m

M
  V V V , 1n r V V V ,    (44) 

where rV  is the relative velocity of separating the 

atmospheric sounder from the spacecraft along the local 

vertical downward. cV  is the absolute velocity of the system 

center of mass before separation. 

The dimension of motion model (31) increases during the 

deployment process, as it is necessary to add new point 

masses due to the continual increase in the tether length [18]. 

VII. ANALYSIS OF DEPLOYMENT DYNAMICS OF TSS 

The parameters used for numerical simulations in this 

section are presented in Table II and Table III. The values of 

the feedback coefficients ( 1p , 2p ) can ensure the stability of 

the deployment process [18]. The sampling step 0.01sh  . 

The sampling step describes the time interval of the 

deployment control mechanism output, i.e. the output of the 

deployment control mechanism updates every h  seconds. 
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TABLE III 

PARAMETERS OF TSS (B) 

Parameter Value Unit 

Inertia of control mechanism: em  0.2 kg 

Stiffness of the tether: c  7070 N 

Minimum control force for deployment 

mechanism: minF  
0.01 N 

Feedback coefficient: 1p  0.243 kg/s2 

Feedback coefficient: 2p  7.824 kg/s 

 

The trajectories of the atmospheric sounder with respect to 

the spacecraft are shown in Fig. 9. The control force of the 

deployment mechanism and the nominal control force are 

shown in Fig. 10. Fig. 11 and Fig. 12 show the control errors 

in the tether length and deployment rate. Fig. 9(a), Fig. 10(a), 

Fig. 11(a) and Fig. 12(a) correspond to the case without 

consideration of the aerodynamic force for determining the 

nominal variables ( )L t  and ( )L t . Fig. 9(b), Fig. 10(b), Fig. 

11(b) and Fig. 12(b) correspond to the case taking into 

account the contribution of the aerodynamic force. The results 

of numerical simulations show that using the nominal 

deployment control law without taking into account the 

aerodynamic force leads to the large control errors in bringing 

the atmospheric sounder into the local vertical (see Fig. 10(a), 

Fig. 11(a) and Fig. 12(a)). This control error causes a large 

swing amplitude with respect to the local vertical (see Fig. 

9(a)). Taking into account the aerodynamic force for 

designing the nominal control law dramatically reduces the 

swing amplitude (see Fig. 9(b)) and control errors (see Fig. 

10(b), Fig. 11(b) and Fig. 12(b)). In this case, the swing 

amplitude with respect to the local vertical is reduced 

approximately 3 times, as shown in Figure 9. The swing of the 

TSS is caused by the joint effect of the gravitational and 

aerodynamic forces [9]. The change in the orbital altitude of 

the system center of mass is also less than 2 km. 

 

 
(a) 

 
(b) 

Fig. 9 Trajectories of the atmospheric sounder with respect to the spacecraft 

(i – perturbed trajectory; ii – nominal trajectory): (a) without consideration 

of the aerodynamic force; (b) with consideration of the aerodynamic force. 

 

 
(a) 

 
(b) 

Fig. 10 Control force of the deployment mechanism ( cF ) and nominal 

control force ( pT ): (a) without consideration of the aerodynamic force; (b) 

with consideration of the aerodynamic force. 
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(a) 

 
(b) 

Fig. 11 Control error in the tether length: (a) without consideration of the 

aerodynamic force; (b) with consideration of the aerodynamic force. 

 

 
(a) 

 
(b) 

Fig. 12 Control error in the deployment rate: (a) without consideration of the 

aerodynamic force; (b) with consideration of the aerodynamic force. 

 

The comparison of the swing amplitude with respect to the 

local vertical for various altitudes of the circular orbit ( cH ) 

and tether lengths is shown in Table IV. 

 
TABLE IV 

SWING AMPLITUDE WITH RESPECT TO THE LOCAL VERTICAL (KM):  

1 – WITHOUT CONSIDERATION OF THE AERODYNAMIC FORCE 

2 –WITH CONSIDERATION OF THE AERODYNAMIC FORCE 

end (km)L  250 kmcH  270 kmcH  300 kmcH  

 1 2 1 2 1 2 

20 3.89 0.74 3.26 0.55 2.31 0.44 

30 6.84 2.33 6.71 2.31 5.91 2.25 

40 7.31 4.43 7.78 4.88 7.95 4.91 

 

The simulation results in Table IV show that the swing 

amplitude decreases for all cases considered in this paper if 

the nominal deployment control law is designed taking into 

account the aerodynamic force. However, the effectiveness of 

the proposed nominal control law decreases with the increase 

in the tether length. In addition to this, if the total tether length 

end 60 kmL  , using the proposed nominal control law 

cannot reduce the control errors or swing amplitude in 

bringing the atmospheric sounder into the local vertical. 

For the case that the masses of the spacecraft and 

atmospheric sounder are comparable, for example, 
0

1 100 kgm  , 20 kgnm  , the results in Table IV change 

very little. However, in this case, the change in the orbital 

altitude of the system center of mass becomes larger due to the 

increase in the ballistic coefficient of the spacecraft. 

The assessment of the influence of the sampling step on the 

control process quality is shown in Table V. Table V shows 

the comparison of the swing amplitude ( A ) for various 

sampling steps h . 

The numerical results in Table V show that the increase in 

the sampling step leads to the increase in the swing amplitude 

with respect to the local vertical. However, there is a range for 

h . In this range the swing amplitude are approximately 

constant. The range for the numerical results in Table V is 

 0.01s, 0.04 sh . If 0.04 sh , then the deployment 
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control process becomes unstable. 

 
TABLE V 

SWING AMPLITUDE WITH RESPECT TO THE LOCAL VERTICAL  

(WITH CONSIDERATION OF THE AERODYNAMIC FORCE) 

h  
2(s 10 )  

1 2 3 4 

A  
(km)  

2.31 2.46 2.46 2.22 

 

h  
2(s 10 )  

4.25 4.5 5 6 

A  
(km)  

4.92 10.55 13.36 13.83 

 

In fact, there are a range of uncertainties in the model of 

atmospheric density. Therefore the simulation results are 

tested with the change in the atmospheric density ( 20% ) in 

the model with distributed parameters (31). It is shown that 

the simulation results change very little compared with the 

results in Table II. 

In addition, the changes in the orbital inclination, angle   

(see Fig. 2), inertia of the control mechanism ( em ) and taking 

into account the rotation of the atmosphere (41) have little 

influence on the control errors and swing amplitude. 

The form of the tether in the model with distributed 

parameters (31) during the deployment process is close to 

straight for all considered cases in this work. Additionally, the 

tether is divided into ten elements. The number of the tether 

elements is sufficient, as the increase in the number does not 

cause any changes in the simulation results. 

VIII. CONCLUSION 

Based on the analysis of the dynamics of the TSS with the 

atmospheric sounder, the following conclusions can be 

drawn: 

(1) The nominal deployment control law is designed in 

the simplified model, in which the tether is treated as a rigid 

rod. The aerodynamic forces acting on all components of the 

system are taken into account for designing the nominal 

control law. 

(2) The condition of static stability of the TSS with 

respect to the local vertical is given as (29). In addition to this, 

in general cases, the minimum of   is needed to be obtained 

when we select parameters of the TSS. 

(3) The initial deployment phase is the most dangerous 

phase for the TSS from the point-of-view of the system’s 

dynamic stability with consideration of the effect of the 

aerodynamic force. Because in this phase the stabilizing effect 

of the gravitational moment is minimal. 

(4) The signs of the parameters   and   are necessary 

to be chosen differently. Otherwise, the TSS may lose the 

motion stability in the initial deployment phase. 

(5) Using the nominal deployment program without 

consideration of the aerodynamic force causes large control 

error and swing amplitude with respect to the vertical at the 

end of the deployment. 

(6) Taking the aerodynamic force into account for 

designing the nominal deployment control law can reduce the 

control error and swing amplitude with respect to the vertical 

several times. 

(7) There is a range for the sampling step, in which the 

mean control error and the swing amplitude with respect to 

the vertical are approximately constant. For the case 

considered in this paper the range is  0.01 s, 0.04 sh . 

(8) The above conclusions stay applicable for the changes 

in the orbital inclination, angle  , inertia of the control 

mechanism (
em ), and with consideration of the rotation of 

the atmosphere. 
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