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Damage Statistics in Progressively Compressed
Arrays of Nano-pillars

Zbigniew Domariski

Abstract—Failures in arrays of nano-pillars evolve in a com-
plicated way. When a square array, involving N pillars char-
acterized by random pillar-load-thresholds {o;}, 1 <i < N, is
subjected to a load @, that crushes some weak pillars, then short
sequences of failures appear. If the load is applied progressively
to the array, these sequences develop in avalanches of failures,
consecutive numbers of intact pillars decrease and the array
approaches its limit of integrity. This limiting state of the array
is characterized by the critical load (). and the number n. < N
of non-crushed pillars, whereas ) > ). induces an irreversible
destruction of the array. Using computer simulations we study
distributions of (). and n. and we show that for arrays with
pillar-load-thresholds {o;} taken from a Weibull distribution,
the ratio Q./n. is distributed according to a skew-normal
distribution and the mean value Q, ~ N/(log(N))° with
0<éd< 1.

Index Terms—array of pillars, avalanches, critical load,
evolving failure, probability distribution.

c

I. INTRODUCTION

ARRAYS with a large number of vertical pillars assem-
bled on flat substrates are encountered in many areas
of modern technology such as bio-chemistry, nano-scale
electronics or photovoltaics [1], [2], [3], [4]. Uniaxial tension
and compression testing of micro-scale metallic pillars shows
a substantial strength increase due to size reduction of the
pillars [4]. Under the growing load, however the pillars begin
to fracture. A possible sequence of failures among pillars
decreases the device performance and may trigger a catas-
trophic avalanche of failures. This is because an array placed
under an increasing load starts to fail immediately when the
internal load intensity exceeds the critical value of weakest
pillars and the failure develops in a form of avalanches
of simultaneously crushed pillars. More exactly, avalanches
emerge when a growing load eliminates a pillar from the set
of working pillars and this elimination changes the internal
load pattern sufficiently to force the failure of other pillars
and, in consequence, generating a wave of destruction. An
efficient approach to study avalanches of failures employs
load-transfer models. Specifically, the Fibre Bundle Models
(FBM) and Random Fuse Models are frequently employed
in a context of technological applications [5], [6], [7], [8].
In this work, the array of pillars is represented by a
collection of vertical pillars located at nodes of a square
lattice, see Fig. 1, and then analysed under a Fibre Bundle
Model framework [9], [10], [11], [12], [13]. We limit our
study to the case where each pillar can only be in one of two
states: working or irreversibly crushed. In our simulations,
an ensemble of N pillars is subjected to a growing load @,
that eliminates week components and induces avalanches of
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failures. This means that when a pillar breaks, its load is
distributed among the other intact pillars and thus the prob-
ability of subsequent failures increases. The model hinges
crucially on a load-transfer-rule. Among many different rules
there are two extreme ones: global (equal) load sharing
(GLS) and local load sharing (LLS) [14], [15], [16].

Fabrication errors and material imperfections influence
the behaviour of pillars under load. Due to these imperfec-
tions, pillars’ yields are non-homogeneous and we represent
multiple pillar-failure modes by the pillar-load-thresholds.
During our simulations these load-thresholds are modelled
by quenched random variables governed by the Weibull
distribution [17], [18].

II. COMPUTATION METHOD

For the purpose of this study, we employ the LLS transfer
rule. We opt for this rule due to the fact that a multitude
of arrays of pillars have flexible supports. In consequence

Fig. 1. An array of vertical pillars: (a) schematic view, (b) example of the
LLS rule application. Disks represent pillars: black disks — working pillars,
open circles — crushed pillars, white discs — just damaged pillars with their
loads transferred to nearest intact pillars marked by patterned disks.
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during a loading process stresses accumulate in close vicini-
ties of crushed pillars. This means that within a short
interval between consecutive failures the load carried by
the destroyed pillar is transferred only to its closest intact
neighbours. Because of such a limited-range-load-transfer,
internal loads are distributed non-uniformly and regions of
load accumulation appear throughout the entire array. The
increasing internal load on the intact pillars triggers other
failures, after which each surviving pillar feels growing load.
If the load transfer does not induce further failures, a stable
pillars’ configuration emerges. This means that the given
value @ is not high enough to crush the entire array, and
the applied load has to increase. In the simulations we apply
a quasi-static loading procedure: if the system is in a stable
state the applied load @ uniformly increases to @+ 0@ until
the weakest working pillar breaks.

A series of increases in the value of the external load
gives Q = Q. + 6Q which induces an avalanche of failures
among all still working pillars. Application of quasi-static
loading allows us to identify a minimal load () necessary
for destruction of all the pillars and thus to get Q. and
n. that characterize the array of pillars on the edge of its
functionality.

In our simulation, pillar-strength-thresholds oy, are taken
from the Weibull distribution [19], [20]. The corresponding
probability density function is given by

(o) = (k/X) (o /N) " exp[—(om /N (1)

Parameters £k > 0 and A > 0 define the shape and scale
of this density function. Shape parameter k (also called
Weibull index) controls the amount of disorder in the system.
Without loss of generality, we assume A\ = 1 and thus the
corresponding probability density reads

pr(owm) = pei(owm) = ko " texpl-an”] ()

We address a question how these pillar-load-thresholds,
distributed according to (2), determine an effective-global
critical load ). and limiting number of working pillars
n.. Due to results of our numerical simulations, we have
found that coefficient of skewness of distribution of Q. /n.
decreases with the number of pillars and takes negative
values for arrays with N > 50 x 50 pillars. We have also
realised that our skewed data are correctly fitted by a three-
parameter skew-normal distribution (SND) [22], [23] whose
density function is defined by

erfc [ —a %=t _ 2
SND(x) = <27Tf0)exp [— (x\/i:) 1 3)

Parameters u, o0 and « are respectively: location, scale and
shape parameters of the SND.

III. RESULTS AND DISCUSSION

Applying the LLS rule, we mimic the loading process in
two-dimensional square arrays with number of pillars ranging
from N = 40 x 40 to N = 160 x 160. We have simulated
the strength of pillar-load-threshold non-homogeneity by
changing values of the Weibull parameter k. Specifically,
we have kept 2 < k < 9. To achieve reliable estimates
of Q. and n. each simulation was repeated at least 10*
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Fig. 2. Mean critical load @ for arrays with growing number of pillars
N and component-load-thresholds taken from the Weibull distribution with
k = 2 (open circles) and k = 4 (black disks). Slopes of straight lines yield
values of § in Eq. (4).

times (at least 2 x 10® times for arrays with more than
100 x 100 pillars). In such a framework we have collected
large data sets containing detailed information about applied
loads (Q) and corresponding numbers of crushed pillars (n).
Analysing these ()’s and n’s data sets we have determined
appropriate statistics by merging the both, critical load Q.
and corresponding number of intact components n., along
with some empirical estimators as e.g. the mean values and
the standard deviations.

Mean critical load

Under the computation method described above we have
gathered long records containing critical loads ). as well
as corresponding critical numbers of components n.. Then,
based on these records we have studied appropriate empirical
probability density functions. In Fig. (2) we show how the
mean critical load @, depends on the number of pillars N,
for different strengths of disorder, namely for £ = 2 (open
circles) and k = 4 (filled circles). Since for both the values
of k the computed log(Q./N) are linearly dependent on
log(log(NN)) then

N
(log(N))*’
where § is a function of k. For our chosen pair of k this
exponent ¢ equals to 0.338 £ 0.002 and 0.296 £ 0.015 for
k = 2 and k = 4, respectively.

Interestingly, for the same set of arrays, but with pillars’
load thresholds oy, distributed uniformly over [0,1] the
exponent § equals to 0.414 [24].

Q. ~ “4)

Critical number of pillars

Based on records related to n, we have also analysed the
resulting empirical probability density functions. Two of such
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Fig. 3.  Empirical probability density function (pdf) of n. for systems
with N = 1002 components with component-load-thresholds taken from
the Weibull distribution with & = 2. The solid lines represent normally
distributed n. with the parameters computed from the simulations. The
results are obtained from 10% samples.

empirical functions are presented in Fig. (3), for £k = 2, and
in Fig. (11b), for k = 4.

Analysis of all our experimental distributions of n. enable
us to fit these distributions by a normal distribution with a
mean (fz) and a variance (¢) that can be approximated by

scaling relations: fi(N,k) ~ Nu(k) and (N, k) ~ No(k).
It turns out that the scaled mean can be written as
a(N)
:u(k) = 1= k7/4 ) (5)

where the coefficient a(N) depends on system size only and
0 < a(N) <1 for all N > 50. The scaling (5) is presented
in Fig. (4) for arrays with different number of pillars. The
relative error (fi/p — 1) of this approximation lies in the
interval (—0.002,0.003).

In the same way we have fitted values of & by a function
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Fig. 4. Mean value p(k) of scaled critical number of pillars = ne/N as
a function of the Weibull shape parameter k. Arrays with N = 100 x 100
pillars - open disks, arrays with 60 x 60 pillars - filled disks. The solid lines
are drawn using (5).
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Fig. 5. Variance o (k) of scaled critical number of pillars = n./N as a
function of the Weibull shape parameter k. Arrays with N = 100 x 100
pillars - open disks, arrays with 60 X 60 pillars - filled disks. The solid lines
are drawn using (6).

o defined as: bV
o(k) = 2 ©6)

where 0 < b(N) < 1 for N >> 1. The computed standard
deviation ¢ and the scaling (6) are displayed in the inset of
Fig. (4). The relative error (6/c — 1) of this approximation
lies in the interval (—0.034, 0.025) for all simulated systems.
It is interesting to note that for arrays with pillar-load-
threshold uniformly distributed over a segment [0, 1] and
LLS transfer rule, the critical number of components is also
normally distributed [25].

Local load intensities prior to catastrophic failure

Prior to destruction of the array, the applied load attains
its maximal value @, i.e. it is the maximal load that can be
carried by the system. In the same time the array possesses
a minimal number of pillars supporting Q.. This means that
Q. /n. represents an average intensity of imposed load. In a
case when all working pillars equally share a load transferred
from destroyed pillars, the load ). is composed from values
of load-thresholds of the weakest pillars. However, within the
LLS rule, that we consider in this work, only components
that are neighbours of a failure suffer from an extra load.
This means that the intensity of imposed load is not uniform
throughout the array and ensemble of eliminated pillars does
not contain the weakest pillars only. A closer look at gathered
sets of Q. and n. yields that Q. and n. are strongly anti
correlated, see Fig. (6). The Pearson coefficient () computed
from their distributions has values r € (—0.96,—0.88)
for all collected data. In Fig. (7) we present an example
of an experimental joint probability distribution built by
assembling, sample by sample, the critical load Q). with the
number n. of components working under Q..

We start our analysis by comparing values of Q./n.
collected from two groups of arrays: (i) arrays with growing
number of pillars while the strength of disorder is kept
constant, i.e. N # const., k = const. and (ii) the number
of pillars is fixed whereas the strength of disorder changes.
Figures (8) and (9) show empirical probability density func-
tions of Q./n. for arrays of pillars representing (i) and (ii),
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Fig. 6. Critical number of components m. vs. critical load Q. for

systems with 1002 components and load-thresholds drawn from the Weibull
distribution with k& = 4. Sample size is 10%.

Fig. 7. Empirical joint probability density function of Q. and n. for arrays
with 1002 pillars and load-thresholds drawn from the Weibull distribution
with k = 4. Sample size is 10%.

respectively. In Fig. (8), that corresponds to the case (i), the
maximum of @./n. is pushed left for a growing number
of pillars. This is because for growing N the number of
relatively week pillars also increases and this gives rise to a
growing probability of subsequent failures. This is in contrast
to the case (ii), presented in Fig. (9): increasing values of k
reflect a decreasing variance of pillar-load-thresholds and, in
consequence, arrays with higher values of Q./n..

A rigorous analysis of data presented in Figs. (8) and
(9) reveals that the experimental distributions of Q./n.
have statistical properties described by the SND (3). In
these plots we have added fitting lines of skew normal
probability density functions with parameters computed from
the samples. We also present a quantile-quantile (Q-Q) plot
of the quantiles related to one of the collected data set against
the corresponding quantiles given by the SND. As it is seen
in Fig. (10), the points closely follow the straight line which
indicates that the set of empirical data comes from the popu-
lation with underlying skew normal probability distribution.
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Fig. 8. Empirical probability density functions (pdf) of Q./n. for arrays
with N = 1002 (open circles), N = 802 (triangles) and N = 602
(filled circles) pillars. Pillar-load-thresholds are governed by the Weibull
distribution with £ = 2 for all presented arrays. The solid lines represent
skew-normally distributed Q./n. with the parameters computed from the
simulations. The results are obtained from at least 10 samples for each
value of N.
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Fig. 9.  Empirical probability density functions (pdf) of Q./n. for
systems with 1002 components and load-thresholds drawn from the Weibull
distribution: £k = 2 (open circles), k = 4 (filled circles) and £k = 6
(triangles). The solid lines represent skew-normally distributed Q¢ /n. with
the parameters computed from the simulations. The results are obtained
from 10% samples for each value of k.

Beside the fact, that we display this Q-Q plot only for an
estimate purpose, we have examined our simulated data sets
using different goodness of fit tests. We have also estimated
values of the location, scale and shape parameters of the
SND by employing the maximum likelihood procedure.

We finalize our analysis of quantities, that represent arrays
of vertical pillars on their edge of functionality, with an
example of the array whose 100 x 100 component-load-
thresholds are characterized by the Weibull shape parameter
k = 4. This array is sufficiently large, with still moderate
disorder, to be representative for arrays studied in this
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Fig. 10. Quantile-Quantile plot of the quantiles of the set of computed

Qc/ne vs. the quantiles of the skew normal probability distribution for
arrays with 100 x 100 pillars and load-thresholds taken from the Weibull
distribution with k = 4. Sample size is 10%.

work. In Fig. (11) we present experimental distributions
of quantities collected during simulations carried out with
this arrays of pillars, i.e. distributions of: n., Q., Q./n. as
well as Q. vs. n.. We have already mentioned that the
experimental distribution of ()., presented in Fig. (11a) can
be fitted correctly by the Weibull distribution [21]. Also Figs.
(6) and (7) are related to this array, namely they show the
experimental joint probability distribution of ). and n..

IV. SUMMARY

In this paper we have analysed statistics of failures in
progressively loaded arrays of pillars. We considered sets of
compressed vertical nano-sized pillars placed in nodes of a
square array. Pillars’ imperfections are modelled by quench
random load-thresholds governed the Weibull probability
distribution. Based on results of simulations, collected under
the LLS rule, we conclude that the experimental distributions
of the critical load @, critical number of pillars n. as well as
the local-load intensity Q./n. can be effectively estimated.
By fitting discrete distributions we have found that prior to
catastrophic destruction: (i) the ratio Q)./n.. is skew-normally
distributed, (ii) the number of working pillars is normally
distributed and (iii) for N >> 1, the mean and variance of
normally distributed n./N scale like (1 — u/N) ~ 1/k7/*
and o ~ 1/k, respectively, (iv) for large values of N the
mean value ), diverges as N/(log(N))?, with 0 < § < 1.

REFERENCES

[1] J.R. Greer, D. Jang, J.-Y. Kim, J. Burek, "Emergence of New Me-
chanical Functionality in Material via Size Reduction,” Adv. Functional
Materials, vol. 19, pp. 2880-2886, Sept. 2009.

[2] P. Sievila, N. Chekurov, 1. Tittonen, ”The fabrication of silicon nano-
structures by focused-ion-beam implantation and TMAH wet etching,”
Nanotechnology, vol. 21, id. 145301, March 2010.

[3] N. Chekurov, K. Grigoras, A. Peltonen, S. Franssila, I. Tittonen, "The
fabrication of silicon nanostructures by local gallium implantation and
cryogenic deep reactive ion etching,” Nanotechnology, vol. 20, id.
065307, Feb. 2009.

0.002 -

pdf n

T
L

0.001

0.000 P ! P S

3000 3400 Q 4600
C

0.006

0.005—

0.004

pdf

0.002—

0.001

20— (c¢)

03 0.35 Qu/ne 0.45 05

Fig. 11.  Empirical probability density functions (pdf): (a) critical load
Q¢, (b) critical number of pillars n. and (c) ratio Q./n.. Arrays involve
N = 100 x 100 pillars and pillar-load-thresholds are taken from the Weibull
distribution with k& = 4. The solid lines represent fitted distributions: (a)
Weibull, (b) normal (c) skew-normal, with the parameters computed from
the simulations. Presented results are evaluated from 10% samples.

(Advance online publication: 1 February 2019)



Engineering Letters, 27:1, EL._27 1 03

[4] D. Jang, J.R. Greer, “Transition from a strong-yet-brittle to a stronger-
and-ductile state by size reduction of metallic glasses,” Nature Materi-
als, vol. 9, pp. 215-219, Feb. 2010.

[5] C.Manzato, A. Shekhawat, P. K. V. V. Nukala, M. J. Alava, J. P. Sethna,
and S. Zapperi, “Fracture Strength of Disorder Media: Universality,
Interactions, and Tail Asymptotics,” Phys. Rev. Lett., vol. 108, id.
065504, Feb. 2012.

[6] Z. Bertalan, A. Shekhawat, J.P. Sethna, and S. Zapperi, “Fracture
strength: Stress concentration, extreme value statistics and the fate of
the Weibull distribution,” Phys. Rev. Applied, vol. 2, id. 034008, Sept.
2014.

[7]1 S. Zapperi, P. Ray, H.E. Stanley, and A. Vespignani, “Analysis of
damage clusters in fracture processes,” Phys. A, vol. 270, pp. 57-62,
Aug. 1999.

[8] Z. Domanski, “Simulation Study of Failures in Progressively Loaded
Multicomponent Systems,” Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
Computer Science 2017, 25-27 October, 2017, San Francisco, USA,
pp. 742-746.

[9] D. Sornette, “Elasticity and failure of a set of elements loaded in
parallel,” J. of Physics A: Mathematical and General, vol. 22, No. 6,
pp. L243-L.251, March 1989.

[10] A. Hansen, P.C. Hemmer, and S. Pradhan, “The Fiber Bundle Model:
Modeling Failure in Materials,” Weinheim, Wiley-VCH, 2015.

[11] S. Pradhan, A. Hansen A., and B.K. Chakrabarti, “Failure processes
in elastic fiber bundles,” Rev. Mod. Phys., vol. 82, pp. 499-555, March
2010.

[12] M.J. Alava, PK.V.V. Nukala, and S. Zapperi, “Statistical models of
fracture,” Adv. In Physics, vol. 55, pp. 349-476, April 2006.

[13] F. Kun, F. Raischel, R.C. Hidalgo, and H.J. Herrmann, “Extensions
of fibre bundle models,” in Modelling Critical and Catastrophic Phe-
nomena in Geoscience, Lecture Notes in Physics, P. Bhattacharyya and
B.K. Chakrabarti, Eds, vol. 705, Berlin: Springer 2006, pp. 57-92.

[14] R.C. Hidalgo, Y. Moreno, F. Kun, and H.J. Herrmann, “Fracture model
with variable range of interaction,” Phys. Rev. E, vol. 65, id. 046148,
April 2002.

[15] R.C. Hidalgo, S. Zapperi, and H.J. Herrmann, “Discrete fracture model
with anisotropic load sharing,” J. Stat. Mech., id. P01004, Jan. 2008.

[16] T. Derda, “Analysis of damage processes in nanopillar arrays with
hierarchical load transfer,” J. Appl. Math. Comput. Mech., vol. 15(3),
pp. 27-36, 2016.

[17] F. Raischel, F. Kun, and H.J. Herrmann, “A simple beam model for
the shear failure of interfaces,” Phys. Rev. E, vol. 72, id. 046126, Oct.
2005.

[18] J. Knudsen and A.R. Massih, “Breakdown of disordered media by
surface loads,” Phys. Rev. E, vol. 72, id. 036129, Sept. 2005.

[19] W. Weibull, “A statistical distribution function of wide applicability,”
J. Appl. Mech., vol. 18, pp. 293-297, Sept. 1951.

[20] N.M. Pugno and R.S. Ruoff, “Nanoscale Weibull statistics,” J. Appl.
Phys., vol. 99, id. 024301, Jan. 2006.

[21] Z. Domarnski and T. Derda, “Distribution of critical load in arrays
of nanopillars,” Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2017, 5-7 July,
2017, London, UK, pp. 797-801.

[22] A. Azzalini and A.R. Massih, “A class of distributions which includes
the normal ones,” Scand. J. Statist., vol. 12, pp. 171-178, June 1985.

[23] A. Azzalini, “The Skew-Normal and Related Families,” Cambridge:
Cambridge University Press, 2013.

[24] Z. Domanski, T. Derda, and N. Sczygiol, “Critical avalanches in Fiber
Bundle Models of Arrays of Nanopillars,” Lecture Notes in Engineering
and Computer Science: Proceedings of International Multiconference
of Engineers and Computer Scientists 2013, March 13-15, 2013, Hong
Kong, pp. 765-768.

[25] “Statistics of critical avalanches in vertical nanopillar arrays,” in
Transactions on Engineering Technologies. Lecture Notes in Electrical
Engineering, G.C. Yang, S.I. Ao, X. Huang, O. Castillo, Eds., vol. 275,
Dordrecht: Springer, 2013, pp. 1-11.

(Advance online publication: 1 February 2019)





