
Coverage Criteria for Component Path-oriented in
Software Architecture

Lijun Lun, Xin Chi, Hui Xu

Abstract—Software architecture testing is an important
method of assuring quality and enhancing reliability and com-
ponent path coverage is an essential criterion for software archi-
tecture testing adequacy. Since the rigid component path cover
testing is infeasible, we select and test some key component
paths, which outweigh others on affecting the overall quality of
the system, to enhance software architecture test efficiency and
profit. This paper presents a set of component path coverage
criteria for C2-style architecture, and proposes two component
path coverage criteria, component path with node-sequence
coverage criterion and component path with edge-sequence
coverage criterion, and proves the subsumption relationships
among them. We propose two algorithms to calculate the
component path coverage rate on these two component path
coverage criteria. Experimental results show that, for top and
bottom components, the component path of length N coverage
rate decreases from 57.14% to 34.78%, the component path
with node-sequence of node N coverage rate increases from
64.45% to 100%, and the component path with edge-sequence
of edge N coverage rate increases from 66.26% to 100%.
However for middle levels components, the component path
of length N coverage rate decreases from 26.92% to 8.70%, the
component path with node-sequence of node N coverage rate
decreases from 7.80% to 0.16%, and the component path with
edge-sequence of edge N coverage rate decreases from 7.64% to
0.08%. Experimental result shows that the proposed component
path coverage criteria provide a good foundation for software
architecture testing practice and the further research.

Index Terms—software architecture, C2-style, component
path, coverage criteria.

I. INTRODUCTION

SOFTWARE architecture is the product of the first stage
in the software development process [1], which is rep-

resented the early design decisions of the software system.
It determines the compositions of the system at the same
time, but also restricts the interaction relationships between
the compositions. If the faults of the architecture layer are
propagated to the follow stages, the cost of maintenance will
be greatly increased. Therefore, it is very important to test
software architecture as early as possible.

There are four phases in software testing which are static
analysis, selection of test coverage criteria, generation of
test suites, execution of test suites and analysis of the
reliability of the execution results [2]. There are differences
and connections between software architecture testing and

Manuscript received November 1, 2017; revised April 3, 2018. This work
was supported in part by the Natural Science Foundation of Heilongjiang
Province of China under Grant F201036 and by the Scientific Research
Foundation of Heilongjiang Provincial Education Department of China
under Grant 12541250.

Lijun Lun is with the College of Computer Science and Information
Engineering, Harbin Normal University, Harbin, 150080, China, e-mail:
lunlijun@yeah.net.

Xin Chi is with the Harbin Normal University, China, e-mail: x-
inc1990@163.com.

Hui Xu is with the Heilongjiang University of Chinese Medicine, China,
e-mail: xuhui8413@163.com.

traditional software testing. The purpose of the software
architecture testing is to find the architecture design faults
[3], which generates the test plan and test suites to guide
code testing, which is very different from the traditional
software testing. The test plan and test suites of software
architecture will be refined and verified by code layer testing,
which makes the software architecture test closely related to
traditional software testing.

Software architecture testing technology divided into in-
cludes two categories [4], one is software architecture anal-
ysis, the other is software architecture testing. Software
architecture testing are mainly two types, one is the test
software architecture, that is using simulation methods to
test the interface behaviors of software architecture, or test
the interaction relationships between components, or test
the communication relationships between components, so as
to analysis the difference between the behavior and target
system. The other is to test and guide object code gener-
ation based on software architecture. These two kinds of
software architecture testing involve the core technology of
component interaction. In software architecture, component
interaction is an important part in software architecture test-
ing [5]. An appropriate component interaction for software
architecture testing can reduce test cost. Different component
interaction, need different test cost. So, to reduce the test cost
is an important target to determine the component interaction
as soon as possible.

Component interaction is a use relationship, which rep-
resents a component specification changes may affect the
change used by other components. In software architecture,
components communicate with each other to share infor-
mation, and to provide a system function [6]. Components
need to conform a component model so as to allow them to
be independently deployed and composed as is i.e. achieve
the purpose of their creation [7]. Software architecture func-
tions provided by multiple components, thus modifying a
component may affect the function of the whole system
[8]. Component interaction should satisfy a certain coverage
criterion to achieve component function.

We have presented a set of component path coverage
criteria for C2-style architecture [6], these coverage criteria
provide a coverage measure to quantify the testing activity
and thus contribute to the improvement of the quality of
this activity in C2-style architecture. This paper proposes
two component path coverage criteria, component path with
node-sequence coverage criterion and component path with
edge-sequence coverage criterion. Firstly, set of interactions
relationships is defined corresponding to the relationship
between component and connector. Then the component
interaction graph of C2-style architecture is constructed on
the basis of these interaction relationships. Based on the
component interaction graph introduced, component path

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

with node-sequence coverage criterion and component path
with edge-sequence coverage criterion are proposed, the
subsumption relationships among them are proven, two algo-
rithms to compute the component path with node-sequence
and with edge-sequence coverage rate on component path
coverage criteria are proposed, some experimental results of
these component path coverage criteria are discussed. And
finally conclusion and future work are given.

II. RELATED WORK

We have proposed component path coverage criteria to
achieve component interactions, which are a significant
challenge for software architecture because systematically
executing all component paths in software architecture are
costly. This section reviews closely related work on this
topic. A number of coverage criteria have been proposed in
the literature to handle the problem from different aspects:
path coverage criteria and software architecture coverage
criteria.

A. Path Coverage Criteria

Paige proposed level-i path coverage criterion [9]. Infor-
mally, the criterion starts with testing all elementary paths
from the begin node to the end node. Then, if there is an
elementary subpath or cycle that has not been exercised, the
subpath is required to be checked at the next level.

McCabe proposed basis path coverage criterion [10]. In a
real software system, even if a program is not so complex,
its number of paths may be enormous, so, the path coverage
of the program requires enormous resources. The basic path
coverage is to find a path set of reducing the scale of path
coverage by means of program graph, makes each path of
path set corresponds to a test suite, so as to achieve basis
path coverage.

Miller proposed DD-PATH coverage criterion [11]. The
DD-PATH is a chain from a decision node to another decision
node in program graph. The definitions of different type of
DD-PATH that a chain can be reduced to are given follows:
(1) A single node with an in-degree = 0, (2) A single node
with an out-degree = 0, (3) A single node with an in-degree
>= 2 or out-degree >= 2, (4) A single node with an in-
degree = 1 and out-degree = 1, and (5) The chain is of a
maximal length ≥ 1.

Gourlay proposed length-n path coverage criterion
(PATHn) [12]. The length-n path is consists of consecutive
n statement in the program P. The length-n path coverage
criterion denoted the set of all paths in program of length
less than or equal to n. PATH1(P) is the set of all nodes
of program P. PATH2(P) is the set of all nodes together
with the set of all branches of program P.

Li et al. proposed Length N path coverage criterion [13].
The automated approach for generating test data was pro-
posed by solving multi-object function. An efficient approach
to automated generation of structural test data is to breed
search iteratively by profiling of program execution. The
structured test suite is generated by the way of path coverage.
Through different path, it can generate different groups of
test suite which can coverage different path. Researchers
proposed a number of improved path coverage criteria.

Li et al. proposed a uniformed path coverage criterion,
namely Length-n Subpath Coverage Criterion (LSC(n)) [14].
The Length-n Subpath is consists of consecutive n branches
in control flow, it is a subset of complete path. LSC(n)
measures the covering situation of Length-n Subpath of
program, a consecutive sub-sequence from a complete path
with n branches in control flow. By adjusting the n value,
it can obtain different program spectrum and the program
behavior reflected. With the increase of n, the strength of
LSC(n) increases monotonously.

B. Software Architecture Coverage Criteria

Rosenblum defined two formal adequate test models for
component-based software [15]. The first model is known
as C − adequate− for −P , which is defined for adequate
unit testing of a component where C refers to test adequacy
criteria and P refers to a program. The other model is known
as C − adequate− on−M, which is defined for adequate
integration testing of component based system. In essence,
software architecture coverage is a kind of coverage based
on software architecture specification. The adequacy testing
of two models is based on the test adequacy condition of
subdomains.

Stafford et al. described chaining which the goal is to
reduce the portions of an architecture that must be exam-
ined by an architect for some purpose, such as testing or
debugging [16]. In chaining, links represent the dependence
relationships that exist in an architectural specification. Links
connect elements of the specification that are directly related,
producing a chain of dependencies that can be followed
during the analysis.

Richardson et al. suggested the family of architecture-
based test criteria based on the CHAM model [17], such
as all-data-elements criteria, all-processing-elements criteria,
all-connecting-elements criteria, all-transformations criteria,
all-transformation-system criteria, and all-data-dependences
criteria.

Jin and Offitt [18] defined six architecture relationships
between software architecture units, these relationships are
key factors in software architecture description. These rela-
tionships can also be used to define the software architecture
testing path, so as to further define the test criteria of software
architecture level. The six software architecture relationships
include component (connector) internal transfer relation,
component (connector) internal sequencing relation, com-
ponent (connector) internal sequencing relation, component
(connector) internal relation, N C relation or C N relation,
direct component relation, and indirect component relation.
According to these six relationships, they defined five soft-
ware architecture testing criteria to cover all identified soft-
ware architecture relationships. These coverage criteria can
be epitomized as individual component interface coverage
criterion, individual connector interface coverage criterion,
all direct component-to-component coverage criterion, all
indirect component-to-component coverage criterion, and all
connected components coverage criterion.

Hashim et al. presented Connector-based Integration Test-
ing for Component-based Systems (CITECB) with an ar-
chitectural test coverage criteria [19], and describe the test
models used that are based on probabilistic deterministic

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

finite automata which are used to represent gate usage
profiles at run-time and test execution. It also provides a
measuring mechanism of how well the existing test suites are
covering the component interactions and provides a test suite
coverage monitoring mechanism to reveal the test elements
that are not yet covered by the test suites.

Lun and Chi presented a component dependency path cov-
erage approach based on component dependency graph, and
proposed three component dependency path coverage criteria
[6], which are direct component dependency path coverage
criterion, indirect component dependency path coverage cri-
terion, and Length-N component dependency path coverage
criterion. It covered all testing component and connector,
and reduced scale of testing coverage set. Meanwhile, they
presented three algorithms to compute the component depen-
dency path coverage rate on these component dependency
path coverage criteria.

III. C2-STYLE ARCHITECTURE MODEL

This section first introduces the related concepts of the C2-
style architecture, then gives the definition of the component
path.

A. C2-Style Architecture Representation

We have selected the C2-style architecture as a vehicle
for exploring our ideas because it provides a number of
useful rules for high-level system composition, demonstrated
in numerous applications across several domains [20]; at the
same time, the rules of the C2-style are broad enough to
render it widely applicable [3].

The C2-style architecture [21] consists of components,
connectors, and their constraints. All components and con-
nectors have two interfaces, “top” and “bottom”. The top
(bottom) of a component can only be attached to the bottom
(top) of one connector. It is not possible for components to
be attached directly to each other. Each connector always
has to act as intermediaries between them. Furthermore, a
component cannot be attached to itself. However, connector
can be attached together. In this case, each connector consid-
ers the other as a component with regard to the publication
and forwarding of events. Component communicates by
exchanging two types of events: service requests to top of the
component and notifications of completed services to bottom
of the component.

We have defined our intermediate representation Compo-
nent Interaction Graph (CIG) model [22] and illustrate how a
C2-style architecture can be represented using our notation.
CIG is used to depict the interaction relationships between
interface of component and interface of connector.
Definition 1 Let CIG = (V, E, Vstart, Vend) be a component
interaction graph, where V = Comp ∪ Conn is the set of
nodes, Comp is a finite set of components, each component
Compi ∈ Comp has four interfaces, they are top output
interface Compi.Ipt o, top input interface Compi.Ipt i,
bottom output interface Compi.Ipb o, and bottom input
interface Compi.Ipb i. Conn is a finite set of connectors,
each connector Connj ∈ Conn has four interfaces too, they
are top output interface Connj .Int o, top input interface
Connj .Int i, bottom output interface Conni.Inb o, and
bottom input interface Conni.Inb i. E = eComp−Conn ∪

eConn−Comp ∪ eConn−Conn is a finite set of edges, where
eComp−Conn = {e | e ∈ (Compi.Ipt o, Connj .Inb i) ∨
(Compi.Ipb o, Connj .Int i)} represents the set of edges
from top (bottom) output interface of component Compi
to the bottom (top) input interface of connector Connj .
eConn−Comp = {e | e ∈ (Conni.Int o, Compj .Ipb i) ∨
(Conni.Inb o, Compj .Ipt i)} represents the set of edges
from the top (bottom) output interface of connector Conni
to the bottom (top) input interface of component Compj .
eConn−Conn = {e | e ∈ (Conni.Int o, Connj .Inb i) ∨
(Conni.Inb o, Connj .Int i)} represents the set of edges
from the top (bottom) output interface of connector Conni
to the bottom (top) input interface of connector Connj .
Vstart ⊆ Comp is the set of initial component nodes,
these components transmit messages only. That is Vstart =
{Compi | Compi.Ipb i = ∅ ∧ Compi.Ipb o = ∅, Compi
∈ Comp}. Vend ⊆ Comp is the set of terminal component
nodes, these components receive messages only. That is Vend
= {Compi | Compi.Ipt o = ∅ ∧ Compi.Ipt i = ∅, Compi
∈ Comp}.

In C2-style architecture, a component (connector) can
interact with the other component (connector) in several
ways, i.e., from component to connector, from connector
to component, and from connector to connector. The CIG
for C2-style architecture should be able to represent these
interactions between components and connectors.

In order to construct a representation for the CIG, we
carry out static analysis of the C2-style specification. First,
we identify all components and connectors and represent
as nodes, then identify all interaction relationships between
components and connectors and represent as edges. If there
exists a information flow from component Compi to con-
nector Connj , in such a case, an edge e ∈ eComp−Conn is
added to connect from the top (bottom) output interface of
Compi to the bottom (top) input interface of Connj of CIG.
If there exists a information flow from connector Conni to
component Compj , an edge e ∈ eConn−Comp is added to
connect from the top (bottom) output interface of Conni to
the bottom (top) input interface of Compj of CIG. If there
exists a information flow from connector Conni to connector
Connj , an edge e ∈ eConn−Conn is added to connect from
the top (bottom) output interface of Conni to the bottom
(top) input interface of Connj of CIG.

Clock
Logic

Status
ADT

Chute
ADT

Well
ADT

Palette
ADT

Next Tile
Placing Logic

Tile Match
Logic

Relative
Pos Logic

Status
Logic

Status
Artist

Chute
Artist

Well
Artist

Palette
Artist

Tile
Artist

Layout
Manager

Graphics
Binding

LAConn

LLConn

ALAConn

TAConn

LTConn

GLConn

Fig. 1. KLAX Architecture in the C2-Style

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

GB.Ipt_o

GLC.Inb_i

GLC.Int_o

LM.Ipb_i

LM.Ipt_o

LTC.Inb_i

LTC.Int_o

TA.Ipb_i TA.Ipt_o

TAC.Inb_i

TAC.Int_o

SA.Ipb_i

WA.Ipb_i

CA.Ipb_i

PA.Ipb_i

SA.Ipt_o

WA.Ipt_o

CA.Ipt_o

PA.Ipt_o

ALAC.Inb_i

ALAC.Int_o

SL.Ipt_o

LLC.Inb_i LLC.Int_o
TML.Ipb_i

RPL.Ipb_i

TML.Ipt_o

RPL.Ipt_o

NTPL.Ipt_o

LAC.Inb_i

LAC.Int_o

SADT.Ipb_i

CADT.Ipb_i

WADT.Ipb_i

PADT.Ipb_i

SADT.Ipb_o

CADT.Ipb_o

WADT.Ipb_o

PADT.Ipb_o

LAC.Int_i

LAC.Inb_o

ALAC.Int_i

ALAC.Inb_o

SA.Ipt_i

WA.Ipt_i

CA.Ipt_i

PA.Ipt_i

SA.Ipb_o

WA.Ipb_o

CA.Ipb_o

PA.Ipb_o
TAC.Int_i

TAC.Inb_o

NTPL.Ipt_i

TML.Ipt_i

RPL.Ipt_i

TML.Ipb_o

RPL.Ipb_o

LLC.Int_iLLC.Inb_o

SL.Ipt_i

TA.Ipt_iTA.Ipb_o

LTC.Int_i

LTC.Inb_o

LM.Ipt_i

LM.Ipb_o

GLC.Int_i

GLC.Inb_o

GB.Ipt_i

CL.Ipb_i CL.Ipb_o

Fig. 2. CIG of KLAX System

In order to illustrate our approach in a better way, we
use an example KLAX video game application to illus-
trate our proposed notions [20]. KLAX system includes 16
components and 6 connectors, which is depicted in Fig. 1.
Where the rectangle node represents component, such as
GraphicsBinding and TileArtist etc. The long rectangle with
shadow node represents connector, such as LAConn and
TAConn etc. The edge between component and connector,
and between connectors represents that there exists messages
transmission between component and connector, such as the
edge between GraphicsBinding and GLConn represents that
there exists messages transmission between GraphicsBinding
and GLConn, and the edge between LTConn and TAConn
represents that there exists messages transmission between
LTConn and TAConn.

According to the construction method of CIG [22], Fig. 2
shows the corresponding CIG for the example KLAX system
of Fig. 1 according to C2-style architecture specification
[21]. In order to simplify the representation, the name of the
component and the connector are abbreviated. Where nodes
represent the interface of the component and the connector,

and component interface with a hollow circle, connector
interface with a solid circle represents. GB.Ipt o, SL.Ipt o,
and NTPL.Ipt o are initial nodes. CL.Ipb i, PADT.Ipb i
and so on are terminal nodes.

B. Component Path

Software architecture describes the components, connec-
tors, and their relationships in the system, all these relation-
ships have an impact on interactions between component and
connector. Interaction relationships between component and
connector can be represented as component path.
Definition 2 Let CIG =< V, E, Vstart, Vend > be a
component interaction graph for C2-style architecture, Cs,
Cs+1, . . . , Ct ∈ V. A path is a sequence nodes Cs → Cs+1

→ . . .→ Ct such that (Ci, Cj) ∈ E for i = 2, 3, . . ., t-2,
j = i+1, i+2, . . ., t-1, denoted as πP , The length of πP is
the number of edges that it crosses. If Cs ∈ Comp ∧ Ct

∈ Comp, the path πP is called component path, denoted as
πCP .

From the definition 2, we can see that the πCP has two
forms according to the type of edges, one is all edges from

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

the beginning of top output interface of component and
connector to the end of bottom input interface of component
and connector, other is all edges from the beginning of
bottom output interface of component and connector to the
end of top input interface of component and connector.

For example in Fig. 2, because (LayoutManager, GLConn)
∈ E, (GLConn, GraphicsBinding) ∈ E, thus, LayoutManager
→ GLConn→ GraphicsBinding is a πCP of length is 2. Sim-
ilarly, LayoutManager → GLConn → TileArtist → TAConn
→ StatusArtist → ALAConn → LAConn → ClockLogic is
a πCP of length is 7.

IV. COMPONENT PATH COVERAGE CRITERIA

Coverage criteria are key problem in software testing, how
do we decide if a test set is adequate? This question was first
addressed by Goodenough and Gerhart when they considered
the idea of a test adequacy criterion [23], that is, coverage
criteria that defines what makes an adequate test, they can
also be used as a measurement of test quality. Component
path coverage criteria are one or more rules applied to
test suite. The component path coverage criteria guideline
allow less testing blindness, guarantee testing adequacy, help
testers to develop test strategies, generate test suites, detect
as many faults as possible, and decide when to stop software
architecture testing. In this section, we propose a set of
component path coverage criteria of software architecture
using the CIG. The number of test suites required by each
component path coverage criterion is often different.

A. Direct Component Path Coverage Criterion

Definition 3 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, if each (Ci, Cj)
∈ eConn−Conn for i = s+1, s+2, . . . , t-2, j = i+1, i+2, . . . ,
t-1, we call the πCP to satisfy the direct component path
coverage criterion, denoted as DCPCC.

Intuitively, the DCPCC requires that all πCP of length
2 will be covered. For example in Fig. 2, for πCP : Layout-
Manager → GLConn → GraphicsBinding, its length is 2,
according to DCPCC, this πCP will be covered. Similarly,
LayoutManager → LTConn → TAConn → StatusArtist also
will be covered.

Let ΠDCP represents the set of component paths that
covered by test suite TS on DCPCC, ||ΠDCP || represents
the number of elements in ΠDCP , ||EP (ΠDCP (CIG))||
represents the number of component paths in CIG on
DCPCC, then component path coverage rate on DCPCC
is calculated as follows:

RDCP =
||ΠDCP ||

||EP (ΠDCP (CIG))||
× 100% (1)

B. Indirect Component Path Coverage Criterion

Definition 4 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, if each (Ci, Cj)
∈ eConn−Comp ∨ eComp−Conn ∨ eConn−Conn for i = s+1,
s+2, . . . , t-2, j = i+1, i+2, . . . , t-1, we call the πCP to satisfy
the indirect component path coverage criterion, denoted as
ICPCC.

Note that the ICPCC requires that all length of πCP is
greater than or equal to 2 will be covered. For example in

Fig. 2, for πCP : LayoutManager → LLConn → TileArtist
→ TAConn → StatusArtist → ALAConn → LAConn →
ClockLogic, its length is 7, according to ICPCC, this πCP

will be covered.
Let ΠICP represents the set of component paths that

covered by test suite TS on ICPCC, ||ΠICP || represents
the number of elements in ΠICP , ||EP (ΠICP (CIG))||
represents the number of component paths on ICPCC in
CIG, then component path coverage rate on ICPCC is
calculated as follows:

RICP =
||ΠICP ||

||EP (ΠICP (CIG))||
× 100% (2)

C. Length-N Component Path Coverage Criterion
Because CIG has many start nodes and terminal nodes,

and a fixed length of πCP is not necessarily between any
two nodes. As the length of the πCP increases, the number
of possible contexts also increases.
Definition 5 For a component path πCP : Cs → Cs+1 →
. . .→ Ct in CIG of the C2-style architecture, if the length of
πCP is less than or equal to N for i = s+1, s+2, . . . , t-2, j =
i+1, i+2, . . . , t-1, N is a natural number greater than or equal
to 2, we call the πCP to satisfy the Length-N component path
coverage criterion, denoted as LNCPCC.

Note, the LNCPCC requires that all length of πCP

greater than or equal to 2 will be covered. For example in
Fig. 2, we can see that there are six πCP s from component
LayoutManager on L3CPCC are shown as follows.

LayoutManager → LTConn → TAConn → StatusArtist
LayoutManager → LTConn → TAConn → ChuteArtist
LayoutManager → LTConn → TAConn → WellArtist
LayoutManager → LTConn → TAConn → PaletteArtist
LayoutManager → LTConn → TileArtist
LayoutManager → GLConn → GraphicsBinding
Let ΠLNCP represents the set of component

paths that covered by test suite TS on LNCPCC,
||ΠLNCP || represents the number of elements in ΠLNCP ,
||EP (ΠLNCP (CIG))|| represents the number of component
paths on LNCPCC in CIG, then component path coverage
rate on LNCPCC is calculated as follows:

RLNCP =
||ΠLNCP ||

||EP (ΠLNCP (CIG))||
× 100% (3)

D. Component Path with Node-Sequence Coverage Criterion
Definition 6 For a component path πCP : Cs → Cs+1 →
. . .→ Ct, and for any node sequence Ci, Cj , . . . , Ck ∈ V
for i, j, . . . , k = s+1, s+2, . . . , t-1 in CIG of the C2-style
architecture, if the πCP covers all nodes and nodes Ci, Cj ,
. . . , Ck reachable from Cs to Ct, we call the πCP to satisfy
the component path with node-sequence coverage criterion,
denoted as CPNSCC.

Notice that every node of node sequence in πCP doesn’t
all reachable, because some nodes in node sequence may
not be on the component path from Cs to Ct. If the node
sequence is on the component path from Cs to Ct, then the
πCP satisfies the CPNSCC.

For example in Fig. 2, we can see that there are two
πCP s from component GraphicsBinding to ChuteADT pass-
ing through two nodes LayoutManager and StatusArtist are
shown as follows.

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

GraphicsBinding → GLConn → LayoutManager → LT-
Conn→ TileArtist→ TAConn→ StatusArtist→ ALAConn
→ LAConn → ChuteADT

GraphicsBinding → GLConn → LayoutManager → LT-
Conn → TAConn → StatusArtist → ALAConn → LAConn
→ ChuteADT

Let ΠCPNS represents the set of component
paths that covered by test suite TS on CPNSCC,
||ΠCPNS || represents the number of elements in ΠCPNS ,
||EP (ΠCPNS(CIG))|| represents the number of component
paths on CPNSCC in CIG, then component path coverage
rate on CPNSCC is calculated as follows:

RCPNS =
||ΠCPNS ||

||EP (ΠCPNS(CIG))||
× 100% (4)

E. Component Path with Edge-Sequence Coverage Criterion

Definition 7 For a component path πCP : Cs → Cs+1 →
. . .→ Ct, and for any edge sequence eCi1

,Cj1
, eCi2

,Cj2
,

. . . , eCik
,Cjk

∈ E for i1, j1, i2, j2, . . . , ik, jk = s+1,
s+2, . . . , t-1 in CIG of the C2-style architecture, if the
πCP covers all nodes and edges eCi1 ,Cj1

, eCi2 ,Cj2
, . . . ,

eCik
,Cjk

reachable from Cs to Ct, we call the πCP to satisfy
the component path with edge-sequence coverage criterion,
denoted as CPESCC.

Notice that every edge of edge-sequence in πCP doesn’t all
reachable, because some edges in edge-sequence may not be
on the component path from Cs to Ct. If the edge sequence is
on the component path from Cs to Ct, then the πCP satisfies
the CPESCC.

For example in Fig. 2, component path set on CPNSCC
doesn’t cover edge (LLConn, LAConn), so, on the ba-
sis of component path on CPNSCC, adding a compo-
nent path can satisfy CPESCC. Thus, we can see that
there are four πCP s from component LayoutManager to
ChuteADT passing through two edges eTileArtist,TAConn

and eALAConn,LAConn are shown as follows.
LayoutManager → LTConn → TileArtist → TAConn →

StatusArtist → ALAConn → LAConn → ChuteADT
LayoutManager → LTConn → TileArtist → TAConn →

ChuteArtist → ALAConn → LAConn → ChuteADT
LayoutManager → LTConn → TileArtist → TAConn →

WellArtist → ALAConn → LAConn → ChuteADT
LayoutManager → LTConn → TileArtist → TAConn →

PaletteArtist → ALAConn → LAConn → ChuteADT
Let ΠCPES represents the set of component

paths that covered by test suite TS on CPESCC,
||ΠCPES || represents the number of elements in ΠCPES ,
||EP (ΠCPES(CIG))|| represents the number of component
paths on CPESCC in CIG, then component path coverage
rate on CPESCC is calculated as follows:

RCPES =
||ΠCPES ||

||EP (ΠCPES(CIG))||
× 100% (5)

V. THE RELATIONSHIP AMONG COMPONENT PATH
COVERAGE CRITERIA

In this section, we prove the relationship among com-
ponent path coverage criteria at first, and then give the
subsumption relationships among these component path cov-
erage criteria.

A. The Properties of Component Path Coverage Criteria

Theorem 1 The test suite that satisfying the LN+1CPCC
also satisfies the LNCPCC, and vice versa.
Proof: Let TLN

be test suite that satisfies the LNCPCC,
TLN+1

be test suite that satisfies the LN+1CPCC. Suppose,
the test suite that satisfies LN+1CPCC doesn’t satisfies
LNCPCC, that there exists a subpath πLNCP of length N,
make that πLNCP is covered by TLN

and doesn’t cover by
TLN+1

. If πLNCP is a complete path, according to definition
2, it is a πLN+1CP . Because, TLN+1

satisfies the πLN+1CP

coverage, thus, there exists a test suite tsi ∈ TSLN+1
, make

that the πLNCP is covered by ti, that is conflict. If πLNCP

doesn’t a complete path, there exist predecessor nodes or
successor nodes of πLNCP , let it is Ck. Thus, πLNCP + Ck

is a πLN+1CP . Because TLN+1
satisfies the LN+1CPCC, so,

there exists a test suite tsi ∈ TSLN+1
, make that the πLNCP

+ Ck is covered by ti. According to definition 2, πLNCP is
also covered by ti, that is conflict. Thus, the test suite that
satisfying the LN+1CPCC also satisfies the LNCPCC.

On the contrary, take Fig. 2 for example, where the
corresponding test suite of πCP LayoutManager → LTConn
→ TileArtist can covered by πL2CP , but for πL3CP Layout-
Manager → LTConn → TAConn → StatusArtist, this test
suite doesn’t cover πL3CP . Thus, the test suite that satisfying
the LNCPCC also satisfies the LN+1CPCC.
Theorem 2 For given an C2-style architecture, the test suite
that satisfying the ICPCC also satisfies the CPESCC.
Proof: According to definition 4, the component path gener-
ated by ICPCC will cover all edges eCi1

,Cj1
, eCi2

,Cj2
, . . . ,

eCik
,Cjk

from Cs to Ct, but, the component path with edge-
sequence set generated by CPESCC will cover part edges
of edges eCi1 ,Cj1

, eCi2 ,Cj2
, . . . , eCik

,Cjk
. Thus, the test suite

that satisfying the ICPCC also satisfies the CPESCC.
Theorem 3 For given an C2-style architecture, the test suite
that satisfying the CPESCC also satisfies the CPNSCC.
Proof: According to definition 7, the component path with
edge-sequence set generated by CPESCC will cover all
edges eCi1

,Cj1
, eCi2

,Cj2
, . . . , eCik

,Cjk
from Cs to Ct, but,

the component path with node-sequence set generated by
CPNSCC will cover part nodes of nodes Ci1 , Cj1 , Ci2 ,
Cj2 , . . . , Cik , Cjk . Thus, the test suite that satisfying the
ICPCC also satisfies the CPESCC.
Theorem 4 The test suite that satisfying the CPESCC also
satisfies the DCPCC.
Proof: According to definition 7, the component path gen-
erated by CPESCC will coverage all edges eConn−Conn,
eComp−Conn, and eConn−Comp from Cs to Ct, but, the
component path generated by DCPCC is a subset of these
component paths with edge-sequence. Thus, the test suite
that satisfying the CPESCC also satisfies the DCPCC.
Theorem 5 For given an C2-style architecture, the test suite
that satisfying the L∞CPCC is equivalent to the ICPCC.
Proof: When the length of πCP is∞, according to definition
2, all indirect component paths can be considered as a
special LNCPCC. At the moment, the test suite that satisfies
LNCPCC will cover all indirect component paths. So, make
that the test suite that satisfying LNCPCC also satisfies
ICPCC. On the contrary, the test suite that covering all
indirect component paths of software architecture also cover
πCP∞ . Thus, when the length of πCP is ∞, the L∞CPCC
is equivalent to the ICPCC.

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

Theorem 6 For given an C2-style architecture, the test suite
that satisfying the LKCPCC also satisfies the CPESCC.
Proof: When the length of πCP is∞, according to definition
2, all indirect component paths can be considered as a special
LKCPCC. At the moment, the test suite that satisfies
LNCPCC will cover all indirect component paths. So, make
that the test suite that satisfying LKCPCC also satisfies
CPESCC. On the contrary, the test suite that covering all
indirect component paths of software architecture also cover
πCP∞ . Thus, when the length of πCP is ∞, the L∞CPCC
is equivalent to the ICPCC.

According to Theorem 6, we also can prove the properties
of component path coverage criteria as follows:
• There exists a positive integer J, and J < K, test

suite that satisfying the LJCPCC also satisfies the
CPNSCC.

• There exists a positive integer I, and I < J, test suite that
satisfying the LICPCC also satisfies the DCPCC.

B. Subsumption Relationships Among Component Path Cov-
erage Criteria

Different test coverage criteria have different degree of
strict requirements on test quality, and have the ability to re-
veal faults and test overhead. Therefore, [24], [25], [26] et al.
defined the subsumption relationships between test coverage
criteria, then discussed the basis properties of subsumption
relationships, and elaborated the relationship between testing
adequacy and the ability to reveal faults by formal theory
analysis and proof. We discuss the subsumption relationships
among component path coverage criteria.

According to the definition [25], for two coverage criteria
C1 and C2, the test suite t ∈ T satisfies test coverage criterion
C1, represents as t ↓ C1. If ∀ t ∈ T, there exists test suite
t ↓ C1 ⇒ t ↓ C2, then the coverage criterion C1 subsumes
the coverage criterion C2.

We consider that this definition is also suitable for five
component path coverage criteria. A component path cov-
erage criterion CPCCa subsumes another component path
coverage criterion CPCCb, if and only if there exists test
suite ts ∈ TS, it makes ts ↓ CPCCa ⇒ ts ↓ CPCCb.
From the theoretical point of view, strength can be analyzed
by the subsumption relationships. Based on subsumption
relationships, we analyze the hierarchy relationships among
the πCP coverage criteria. According to Zhu [24], the
subsumption relation is perhaps the property that we know
best about adequacy criteria, although not all of them can
be easily placed in the hierarchy, such as specification-based
criteria. Zhu has also shown that under certain circumstance
the subsumption relation can provide information to compare
the effectiveness of the criteria.

The subsumption hierarchy relationships for the compo-
nent path coverage criteria presented is shown in Fig. 3,
where the bidirectional arrow represents the equivalence
relationship, the solid arrow represents the subsumption
relationship, the dotted arrow represents the subsumption
relationship with several levels. Meanwhile, infinite, K, J,
and I are positive integers, and satisfy infinite < K < J < I.

From Fig. 3, we can see that, the test suite ts that covers
all the indirect component paths certainly covers all the com-
ponent paths with edge-sequence in C2-style architecture, so

ICPCC

LinfiniteCPCC LKCPCC LJCPCC LICPCC

CPESCC

DCPCC

CPNSCC

Fig. 3. Subsumption relationships among component path coverage criteria

the indirect component path coverage criterion subsumes the
component path with edge-sequence coverage criteria, that is
the ICPCC subsumes the CPESCC. In the same way, the
CPESCC subsumes the CPNSCC and DCPCC. Mean-
while, the LinfiniteCPCC is equivalent to the ICPCC
and the LinfiniteCPCC subsumes the LKCPCC with
several level. The practical issue for testers, then, is to
determine which component path coverage criterion to select
for a particular situation. This includes determining how to
balance such factors as effectiveness and cost.

VI. ALGORITHMS FOR COMPONENT PATH COVERAGE
RATE

We now present algorithms to calculate the component
path coverage rate using component path coverage criteria.
Where algorithms to determine RDCP , RICP , and RLNCP

have been discussed in [6]. In this section, we propose two
algorithms to calculate RCPNS and RCPES on CPNSCC
and CPESCC from beginning node Cs to stopping node
Ct. The two algorithms contain four procedures as follows:
• Procedure isConnected(Cs, Ci, Cj , . . . , Ck, Ct): is used

to determine the connectivity of nodes Ci, Cj , . . . , Ck.
In these nodes, select the closest node from Cs as a
beginning node, depth first traversal of the CIG, if the
other nodes can be traversed, it is connected; conversely,
it is not connected.

• Procedure Sequence(C1, C2, . . . , Cn): is used to obtain
the sequence of intermediate nodes C1, C2, . . ., Cn

of nodes Ci, Cj , . . . , Ck in order to generate an
intermediate node sequence. The beginning node of
node sequence is C1, and the stopping node of node
sequence is Cn.

• Procedure Prefix(Ck1, πPk1): is used to obtain the prefix
of node Ck1 of component path πPk1.

• Procedure Postfix(Ck2, πPk1): is used to obtain the
postfix of node Ck2 of component path πPk1.

A. Algorithm for RCPNS

Algorithm RCPNSA can be used to calculate the com-
ponent path with node-sequence coverage rate. The main
idea of RCPNSA algorithm can be briefly stated as follows:
Firstly, it calls isConnected() to determine the connectivity
among beginning node Cs, intermediate nodes Ci, Cj , . . . ,
Ck, and stopping node Ct. Then, it calls Sequence() to
determine the direction of Ci, Cj , . . . , and Ck from Cs to Ct

and represents as C1, C2, . . . , Cn. Finally, it calls procedure
CPNSA() to generate component path coverage set from Cs

to Ct passing through nodes C1, C2, . . . , and Cn.
The method of calculating RCPNS is shown as Algorithm

1.

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

Algorithm 1 RCPNSA(CIG, Cs, Ci, Cj , . . . , Ck, Ct,
RCPNS)
Require: CIG, Cs is beginning component, Ci, Cj , . . . , Ck

are component or connector nodes, Ct is stopping compo-
nent.
Ensure: RCPNS is component path coverage rate on
CPNSCC.
Begin
1 if (!isConnected(Cs, Ci, Cj , . . . , Ck, Ct)) then
2 return;
3 end if
4 Sequence(C1, C2, . . . , Cn) ← Ci, Cj , . . . , Ck;
5 CPNS’ = ∅;
6 CPNS’ = CPNSA(Cs, C1, C2, . . . , Cn, Ct)
7 Output RCPNS = ||CPNS’|| / ||CPNS|| × 100%;
8 return RCPNS ;

Procedure CPNSA(Cs, C1, C2, . . . , Cn, Ct)
9 CPNSSet = ∅;
10 TempP1 = MidP(Cs, C1);
11 CPNSSet = CPNSSet + TempP1;
12 for (k = 1; k <= n; k ++)
13 TempP2 = MidP(Ck, Ck+1);
14 CPNSSet = CPNSSet + TempP2;
15 end for
16 TempP3 = MidP(Cn, Ct);
17 CPNSSet = CPNSSet + TempP3;
18 return CPNSSet;

Procedure MidP(Ci, Cj)
19 πP = ∅;
20 for (k1 = i; k1 < j; k1 ++)
21 add Ck1 to πP ;
22 for (k2 = k1 + 1; k2 <= j; k2 ++)
23 if (eCk1,Ck2

∈ E ∧ Ck2 /∈ πP) then
24 add Ck2 to πP ;
25 end if
26 end for
27 end for
28 return πP ;
End RCPNSA

We employ the CIG shown in Fig. 2 to demonstrate
algorithm RCPNSA. Let us consider examples showing the
computation of component path coverage rate from com-
ponent GraphicsBinding to component ClockLogic passing
through two nodes ALAConn and TileArtist on CPNSCC.
That is Cs = GraphicsBinding, Ct = ClockLogic.

Firstly, according to step 1, isConnected(GraphicsBinding,
ALAConn, TileArtist, ClockLogic) = true, so, there ex-
ists πCP from GraphicsBinding to ClockLogic passing
through ALAConn and TileArtist. According to step 4, Se-
quence(GraphicsBinding, TileArtist, ALAConn, ClockLogic)
← GraphicsBinding, ALAConn, TileArtist, ClockLogic.

Secondly, calls procedure CPNSA(GraphicsBinding,
TileArtist, ALAConn, ClockLogic) to generate component
path coverage set. According to step 10, computing
TempP1 = MidP(GraphicsBinding, TileArtist) by calling
MidP(). According to steps 19-27 of MidP(), we get
πP = {GraphicsBinding → GLConn → LayoutManager
→ LTConn → TileArtist}. After return, CPNSSet =
{GraphicsBinding → GLConn → LayoutManager →

LTConn → TileArtist}.
Thirdly, according to steps 12-15, computing TempP2

from TileArtist to ALAConn by calling MidP(). We get
CPNSet = {GraphicsBinding→ GLConn→ LayoutManager
→ LTConn → TileArtist → TAConn → StatusArtist →
ALAConn, GraphicsBinding→ GLConn→ LayoutManager
→ LTConn → TileArtist → TAConn → ChuteArtist →
ALAConn, GraphicsBinding→ GLConn→ LayoutManager
→ LTConn → TileArtist → TAConn → WellArtist →
ALAConn, GraphicsBinding→ GLConn→ LayoutManager
→ LTConn → TileArtist → TAConn → PaletteArtist →
ALAConn}.

Finally, computing TempP3 from ALAConn to Clock-
Logic by calling MidP(). According to steps 19-27, we get
TempP3 = {ALAConn → LAConn → ClockLogic}.

Thus, according to step 6, CNPS’ = {GraphicsBinding
→ GLConn → LayoutManager → LTConn → TileArtist
→ TAConn → StatusArtist → ALAConn → LAConn →
ClockLogic, GraphicsBinding → GLConn → LayoutMan-
ager → LTConn → TileArtist → TAConn → ChuteArtist
→ ALAConn → LAConn → ClockLogic, GraphicsBinding
→ GLConn → LayoutManager → LTConn → TileArtist →
TAConn → WellArtist → ALAConn → LAConn → Clock-
Logic, GraphicsBinding → GLConn → LayoutManager →
LTConn → TileArtist TileArtist → TAConn → PaletteArtist
→ ALAConn → LAConn → ClockLogic}.

Therefore, the number of component paths on CPNSCC
from GraphicsBinding to ClockLogic passing through LA-
Conn and TileArtist is 4.

While the all number of component paths on CPNSCC
for GraphicsBinding to ClockLogic passing through two
nodes is 196. Hence, according to step 7, the RCPNS =
4 / 196 × 100% = 2.04%.

B. Algorithm for RCPES

Algorithm RCPESA can be used to calculate the com-
ponent path with edge-sequence coverage rate. The main
idea of RCPESA algorithm can be briefly stated as follows:
Firstly, it calls isConnected() to determine the connectivity
among beginning node Cs, intermediate nodes Ci1 , Cj1 ,
Ci2 , Cj2 , . . . , Cik , Cjk , and stopping node Ct. It continues
to call Sequence() to determine the direction of Ci1 , Cj1 ,
Ci2 , Cj2 , . . . , Cik , and Cjk from Cs to Ct and represents
as C1, C2, . . . , Cn. Then, it calls procedure CPNSA() to
generate component path coverage set from Cs to Ct passing
through nodes C1, C2, . . . , and Cn. Finally, it calls procedure
CPESA() to generate component path coverage set that has
not been covered edges by procedure CPNSA().

The method of calculating RCPES is shown as Algorithm
2.

We employ the CIG shown in Fig. 2 to demonstrate algo-
rithm RCPESA. Let us consider examples showing the com-
putation of component path coverage rate from component
WellADT to component GraphicsBinding passing through t-
wo edges eALAConn,LAConn and eLayoutManager,LTConn on
CPESCC. That is Cs = WellADT, Ct = GraphicsBinding.

Firstly, according to step 1, isConnected(WellADT,
ALAConn, LAConn, LayoutManager, LTConn, Graphics-
Binding) = true, so, there exists πCP from WellADT
to GraphicsBinding passing through eALAConn,LAConn

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

Algorithm 2 RCPESA(CIG, Cs, eCi1 ,Cj1
, eCi2 ,Cj2

, . . . ,
eCik

,Cjk
, Ct, RCPES)

Require: CIG, Cs is beginning component, eCi1 ,Cj1
,

eCi2 ,Cj2
, . . . , eCik

,Cjk
are edges, Ct is stopping component.

Ensure: RCPES is component path coverage rate on
CPESCC.
Begin
1 if (!isConnected(Cs, Ci1 , Cj1 , Ci2 , Cj2 , . . . , Cik , Cjk ,
Ct)) then
2 return;
3 end if
4 Sequence(C1, C2, . . . , Cn) ← Ci1 , Cj1 , Ci2 , Cj2 , . . . ,
Cik , Cjk ;
5 CPES’ = ∅;
6 CPNS’ = ∅;
7 CPNS’ = CPNSA(Cs, C1, C2, . . . , Cn, Ct);
8 CPES’ = CPESA(Cs, C1, C2, . . . , Cn, Ct, CPNS’);
9 Output RCPES = ||CPES’|| / ||CPES|| × 100%;
10 return RCPES ;

Procedure CPESA(Cs, Ci, Cj , . . . , Ck, Ct, CPNS’)
11 CPESSet = ∅;
12 for (k1 = 1; k1 <= |CPNS’|; k1 ++)
13 if (πPk1 ∈ CPNS’) then
14 CPESSet = CPESSet + πPk1;
15 for (k2 = 1; k2 <= |E|; k2 ++)
16 if (eCk1,Ck2

∈ E ∧ Ck1 ∈ πPk1 ∧ Ck2 ∈ πPk1 ∧
eCk1,Ck2

/∈ CPESSet) then
17 TempP1 = Prefix(Ck1, πPk1);
18 TpmpP2 = Postfix(Ck2, πPk1);
19 CPESSet = TempP1 + Ck1 + Ck2 + TempP2;
20 end if
21 end for
22 end if
23 end for
24 return CPESSet;
End RCPESA

and eLayoutManager,LTConn. According to step 4, Se-
quence(WellADT, LAConn, ALAConn, LTConn, Layout-
Manager, GraphicsBinding) ← WellADT, ALAConn, LA-
Conn, LayoutManager, LTConn, GraphicsBinding.

Secondly, calls procedure CPNSA(WellADT, LAConn,
ALAConn, LTConn, LayoutManager, GraphicsBinding) to
generate component path coverage set CPNS’ = {WellADT
→ LAConn → ALAConn → StatusArtist → TAConn →
TileArtist → LTConn → LayoutManager → GLConn →
GraphicsBinding, WellADT → LAConn → ALAConn →
ChuteArtist→ TAConn→ TileArtist→ LTConn→ Layout-
Manager→ GLConn→ GraphicsBinding, WellADT→ LA-
Conn → ALAConn → WellArtist → TAConn → TileArtist
→ LTConn → LayoutManager → GLConn → Graphics-
Binding, WellADT → LAConn → ALAConn → Palette →
TAConn → TileArtist → LTConn → LayoutManager →
GLConn→ GraphicsBinding} on CPNSCC. According to
step 8, calls procedure CPESA(WellADT, LAConn, ALA-
Conn, LTConn, LayoutManager, GraphicsBinding, CPNS’)
to generate component path coverage set from WellADT to
GraphicsBinding on CPESCC.

Thirdly, according to steps 13-14, πP1 = WellADT →
LAConn → ALAConn → StatusArtist → TAConn →

TileArtist → LTConn → LayoutManager → GLConn →
GraphicsBinding and CPESSet = {WellADT → LAConn
→ ALAConn → StatusArtist → TAConn → TileArtist →
LTConn → LayoutManager → GLConn → GraphicsBind-
ing}. According to step 16, eTAConn,LTConn ∈ E ∧ TAConn
∈ πP1 ∧ LTConn ∈ πP1 ∧ eTAConn,LTConn /∈ CPESSet,
so, according to steps 17-18, obtains the prefix TempP1
= WellADT → LAConn → ALAConn → ChuteArtist of
TAConn of πP1 and the postfix TempP2 = LayoutManager
→ GLConn → GraphicsBinding of LTConn of πP1. Then,
connects the prefix with TAConn, LTConn, and the postfix
to generate path WellADT → LAConn → ALAConn →
StatusArtist → TAConn → LTConn → LayoutManager
→ GLConn → GraphicsBinding and adds to CPESSet.
According to step 19, CPESSet = {WellADT → LAConn
→ ALAConn → StatusArtist → TAConn → TileArtist →
LTConn → LayoutManager → GLConn → GraphicsBind-
ing, WellADT → LAConn → ALAConn → StarusArtist
→ TAConn → LTConn → LayoutManager → GLConn →
GraphicsBinding}.

Fourth, according to steps 13-14, we get πP2 = WellADT
→ LAConn → ALAConn → ChuteArtist → TAConn →
TileArtist → LTConn → LayoutManager → GLConn →
GraphicsBinding and CPESSet = {WellADT → LAConn
→ ALAConn → StatusArtist → TAConn → TileArtist →
LTConn → LayoutManager → GLConn → GraphicsBind-
ing, WellADT → LAConn → ALAConn → StarusArtist
→ TAConn → LTConn → LayoutManager → GLConn →
GraphicsBinding, WellADT → LAConn → ALAConn →
ChuteArtist → TAConn → TileArtist → LTConn → Lay-
outManager→ GLConn→ GraphicsBinding}. According to
step 16, because eTAConn,LTConn ∈ E ∧ TAConn ∈ πP2 ∧
eTAConn,LTConn ∈ CPESSet, so, eTAConn,LTConn doesn’t
require to be added to CPESSet.

Similarly, the other component paths generation are the
same.

Thus, the component path coverage set on CPESCC is
CPES’ = {WellADT → LAConn → ALAConn → Sta-
tusArtist → TAConn → TileArtist → LTConn → Layout-
Manager → GLConn → GraphicsBinding, WellADT →
LAConn → ALAConn → StarusArtist → TAConn → LT-
Conn → LayoutManager → GLConn → GraphicsBinding,
WellADT → LAConn → ALAConn → ChuteArtist →
TAConn → TileArtist → LTConn → LayoutManager →
GLConn → GraphicsBinding, WellADT → LAConn →
ALAConn → WellArtist → TAConn → TileArtist → LT-
Conn → LayoutManager → GLConn → GraphicsBinding,
WellADT → LAConn → ALAConn → PaletteArtist →
TAConn → TileArtist → LTConn → LayoutManager →
GLConn → GraphicsBinding}.

Therefore, the number of component paths from WellADT
to GraphicsBinding passing through eALAConn,LAConn and
eLayoutManager,LTConn is 4.

While the all number of component paths from WellADT
to GraphicsBinding passing through two edges is 64. Hence,
according to step 9, the RCPES = 4 / 64 × 100% = 6.25%.

VII. EXPERIMENTAL STUDIES

In order to verify the effectiveness and performance of
the proposed component path coverage criteria, we carry out
lots of experiments. In this section, we present an analysis of

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

TABLE I
TOTAL NUMBER OF COMPONENT PATHS FOR DCPCC, ICPCC, AND LNCPCC

Component
DCPCC ICPCC

LNCPCC

name N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

GraphicsBinding 1 50 1 1 2 6 10 10 30 50

LayoutManager 6 50 2 6 10 10 30 50 50 50

TileArtist 5 26 5 5 6 26 26 26 26 26

StatusArtist 7 10 1 7 8 9 10 10 10 10

ChuteArtist 7 10 1 7 8 9 10 10 10 10

WellArtist 7 10 1 7 8 9 10 10 10 10

PaletteArtist 7 10 1 7 8 9 10 10 10 10

StatusLogic 7 17 2 7 17 17 17 17 17 17

NextTilePlacingLogic 5 5 5 5 5 5 5 5 5 5

TileMatchLogic 6 6 6 6 6 6 6 6 6 6

RelativePosLogic 6 6 6 6 6 6 6 6 6 6

ClockLogic 8 30 3 8 10 14 18 22 26 30

StatusADT 8 30 3 8 10 14 18 22 26 30

ChuteADT 8 30 3 8 10 14 18 22 26 30

WellADT 8 30 3 8 10 14 18 22 26 30

PaletteADT 8 30 3 8 10 14 18 22 26 30

TABLE II
TOTAL NUMBER OF COMPONENT PATHS FOR CPNSCC AND CPESCC

Component CPNSCC CPESCC
name N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

GraphicsBinding 184 603 1161 1420 1124 560 160 20 390 1387 2924 4001 3668 2244 880 200 20

LayoutManager 134 312 404 300 120 20 - - 292 758 1120 1004 540 160 20 - -

TileArtist 88 123 81 20 - - - - 114 211 204 101 20 - - - -

StatusArtist 19 18 11 5 1 - - - 35 50 40 20 7 1 - - -

ChuteArtist 19 18 11 5 1 - - - 35 50 40 20 7 1 - - -

WellArtist 19 18 11 5 1 - - - 35 50 40 20 7 1 - - -

PaletteArtist 19 18 11 5 1 - - - 35 50 40 20 7 1 - - -

StatusLogic 32 30 11 - - - - - 39 47 45 10 - - - - -

NextTilePlacingLogic 5 - - - - - - - 10 1 - - - - - - -

TileMatchLogic 6 - - - - - - - 12 6 - - - - - - -

RelativePosLogic 6 - - - - - - - 12 6 - - - - - - -

ClockLogic 89 206 322 344 248 116 32 4 165 464 833 1006 837 480 152 40 4

StatusADT 89 206 322 344 248 116 32 4 165 464 833 1006 837 480 152 40 4

ChuteADT 89 206 322 344 248 116 32 4 165 464 833 1006 837 480 152 40 4

WellADT 89 206 322 344 248 116 32 4 165 464 833 1006 837 480 152 40 4

PaletteADT 89 206 322 344 248 116 32 4 165 464 833 1006 837 480 152 40 4

the experimental results proposed component path coverage
criteria in the previous section.

A. Experimental Results

We apply our method to the KLAX system as a case
study for testing purposes, and statistics the total number
of component paths. The total number of component paths
is shown in Table I-II. In Table I, the first column represents
the component name of KLAX system, the second column
represents the number of component paths for the first
column component on DCPCC, the third column repre-
sents the number of component paths for the first column
component on ICPCC, the fourth column represents the
number of component paths of length N for the first column
component on LNCPCC. In Table II, the first column
represents the component name of KLAX system, the second
column represents the number of component paths with
node N for the first column component on CPNSCC,
the third column represents the number of component paths

with edge N for the first column component on CPESCC,
the symbol “-” means that there doesn’t exist component
path for component. For example, the number of component
paths for component LayoutManager on DCPCC is 6. The
number of component paths for component WellArtist on
ICPCC is 10. The number of component paths of length
6 for component StatusArtist on LNCPCC is 10. The
number of component paths with node 1 for component
GraphicsBinding on CPNSCC is 184. The number of
component paths with edge 2 for component StatusADT on
CPESCC is 464. There doesn’t exist the component paths
which the number of component paths with node greater than
8 and the number of component paths with edge greater than
9.

From the Table I-II, we can see that the total number
of component paths on ICPCC is greater than component
paths for component on DCPCC. Note that ICPCC sub-
sumes on DCPCC, if all component paths on ICPCC
are tested, then so are all component paths on DCPCC.

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

TABLE III
COMPONENT PATH COVERAGE RATE FOR RDCP , RICP , AND RLNCP

Component RDCP RICP RLNCP (%)
name (%) (%) N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

GraphicsBinding 0.96 14.29 2.17 0.96 1.49 3.30 4.35 3.70 9.68 14.29

LayoutManager 5.77 14.29 4.35 5.77 7.46 5.49 13.04 18.52 16.13 14.29

TileArtist 4.81 7.43 10.87 4.81 4.48 14.29 11.30 9.63 8.39 7.43

StatusArtist 6.73 2.86 2.17 6.73 5.97 4.95 4.35 3.70 3.23 2.86

ChuteArtist 6.73 2.86 2.17 6.73 5.97 4.95 4.35 3.70 3.23 2.86

WellArtist 6.73 2.86 2.17 6.73 5.97 4.95 4.35 3.70 3.23 2.86

PaletteArtist 6.73 2.86 2.17 6.73 5.97 4.95 4.35 3.70 3.23 2.86

StatusLogic 6.73 4.86 4.35 6.73 12.69 9.34 7.39 6.30 5.48 4.86

NextTilePlacingLogic 4.81 1.43 10.87 4.81 3.73 2.75 2.17 1.85 1.61 1.43

TileMatchLogic 5.77 1.71 13.04 5.77 4.48 3.30 2.61 2.22 1.94 1.71

RelativePosLogic 5.77 1.71 13.04 5.77 4.48 3.30 2.61 2.22 1.94 1.71

ClockLogic 7.69 8.57 6.52 7.69 7.46 7.69 7.83 8.15 8.39 8.57

StatusADT 7.68 8.57 6.52 7.69 7.46 7.69 7.83 8.15 8.39 8.57

ChuteADT 7.69 8.57 6.52 7.69 7.46 7.69 7.83 8.15 8.39 8.57

WellADT 7.69 8.57 6.52 7.69 7.46 7.69 7.83 8.15 8.39 8.57

PaletteADT 7.69 8.57 6.52 7.69 7.46 7.69 7.83 8.15 8.39 8.57

The total number of component paths on ICPCC is greater
than the total number of component paths with node N on
CPNSCC, and the total number of component paths with
node N on CPNSCC is greater than the total number of
component paths on DCPCC. Note that component path
on ICPCC subsumes component path with node N on
CPNSCC. The total number of component paths with
edge N on CPESCC is greater than the total number
of component paths on DCPCC. Although most of the
total number of indirect component paths are less than the
total number of component paths with edge-sequence of
edge N, the reason is that the component path with edge-
sequence of edge N covers edges in indirect component
path. So, the total number of component paths with edge-
sequence of edge N is larger. The CPESCC fills the
gaps between ICPCC and DCPCC. The total number of
component paths with edge-sequence of edge N is greater
than component paths with node-sequence of node N for
component. Note that component path with edge-sequence
of edge N subsumes component path with node-sequence of
node N. The total number of component paths with edge-
sequence of edge N decreases with increasing edge, a few
component paths with edge-sequence of edge N grows with
increasing node. The number of edges that the component
path with edge-sequence needs to test should be more. The
total number of component paths with edge-sequence of edge
N increases with increasing node, and the total number of
component paths with edge-sequence of edge N increases
with decreasing node.

B. Experimental Results Analysis

Table III-IV report the component path coverage rate
on DCPCC, ICPCC, LNCPCC, CPNSCC, and
CPESCC for each component of KLAX system. In Table
III, the first column represents the component name of KLAX
system, the second column represents the component path
coverage rate on DCPCC for the first column component,
the third column represents the component path coverage

rate on ICPCC for the first column component, the fourth
column represents the component path of length N coverage
rate on LNCPCC for the first column component. In Table
IV, the first column represents the component name of KLAX
system, the second column represents the component path
coverage rate on CPNSCC for the first column component,
the third column represents the component path coverage rate
on CPESCC for the first column component, the symbol
“-” means that there doesn’t exist component path coverage
rate for component.

From the Table III-IV, we can see that for compo-
nent GraphicsBinding, ClockLogic, StatusADT, ChuteADT,
WellADT, and PaletteADT, the component path from length
9 to length 2 coverage rates on LNCPCC decreases from
57.14% to 34.78%. However, for component StatusArtist,
ChuteArtist, WellArtist, and PaletteArtist, the component
path of length 2, 3, 4, 5, 6, 7, 8, and 9 coverage rates on
LNCPCC decreases from 26.92% to 8.70%. The reason is,
component at the top/bottom of software architecture due to
large number of components interacts with other levels, the
number of component paths of length also increases relative,
it’s the component path coverage rate is relatively high. But
the component at the middle level, its number of component
paths is less than top/bottom component, that is the number
of component paths will be decreased in middle level,
making the component path coverage rate is relatively low.
For component GraphicsBinding, ClockLogic, StatusADT,
ChuteADT, WellADT, and PaletteADT, the component path
coverage rate will increase as the number of passing through
nodes increases. The component path with node-sequence of
node 1, 2, 3, 4, 5, 6, 7, and 8 coverage rates on CPNSCC
increases from 64.45% to 100%. However, for component
StatusArtist, ChuteArtist, WellArtist, and PaletteArtist, the
component path coverage rate will decrease as the number of
passing through nodes decreases. The component path with
node 1, 2, 3, 4, and 5 coverage rate on CPNSCC decreases
from 7.80% to 0.16%. The same reason is, component at
the top/bottom of software architecture due to large number

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

TABLE IV
COMPONENT PATH COVERAGE RATE FOR RCPNS AND RCPES

Component RCPNS (%) RCPES (%)
name N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

GraphicsBinding 18.85 27.79 35.08 40.80 45.18 48.28 50.00 50.00 21.26 28.10 33.93 39.13 43.45 46.67 48.89 50.00 50.00

LayoutManager 13.73 14.38 12.21 8.62 4.82 1.72 - - 15.92 15.36 13.00 9.82 6.40 3.33 0.11 - -

TileArtist 9.02 5.67 2.45 0.57 - - - - 6.22 4.27 2.37 0.99 0.24 - - - -

StatusArtist 1.95 0.83 0.33 0.14 0.04 - - - 1.91 1.01 0.46 0.20 0.08 0.02 - - -

ChuteArtist 1.95 0.83 0.33 0.14 0.04 - - - 1.91 1.01 0.46 0.20 0.08 0.02 - - -

WellArtist 1.95 0.83 0.33 0.14 0.04 - - - 1.91 1.01 0.46 0.20 0.08 0.02 - - -

PaletteArtist 1.95 0.83 0.33 0.14 0.04 - - - 1.91 1.01 0.46 0.20 0.08 0.02 - - -

StatusLogic 3.28 1.38 0.30 - - - - - 2.13 0.95 0.52 0.10 - - - - -

NextTilePlacingLogic 0.51 - - - - - - - 0.55 0.02 - - - - - - -

TileMatchLogic 0.61 - - - - - - - 0.65 0.12 - - - - - - -

RelativePosLogic 0.61 - - - - - - - 0.65 0.12 - - - - - - -

ClockLogic 9.12 9.49 9.73 9.89 9.97 10.00 10.00 10.00 9.00 9.40 9.67 9.84 9.92 9.98 10.00 10.00 10.00

StatusADT 9.12 9.49 9.73 9.89 9.97 10.00 10.00 10.00 9.00 9.40 9.67 9.84 9.92 9.98 10.00 10.00 10.00

ChuteADT 9.12 9.49 9.73 9.89 9.97 10.00 10.00 10.00 9.00 9.40 9.67 9.84 9.92 9.98 10.00 10.00 10.00

WellADT 9.12 9.49 9.73 9.89 9.97 10.00 10.00 10.00 9.00 9.40 9.67 9.84 9.92 9.98 10.00 10.00 10.00

PaletteADT 9.12 9.49 9.73 9.89 9.97 10.00 10.00 10.00 9.00 9.40 9.67 9.84 9.92 9.98 10.00 10.00 10.00

of components interacts with other levels, the number of
component paths of length also increases relative, it’s the
component path coverage rate is relatively high. However,
the component at the middle level, its number of component
paths is less than top/bottom component, that is the number
of component paths will be a decrease in the middle level,
making the component path coverage rate is relatively low.
For GraphicsBinding, ClockLogic, StatusADT, ChuteADT,
WellADT, and PaletteADT, the component path coverage
rate will increase with the number of passing through edges
increases. The component path with edge-sequence of node
1, 2, 3, 4, 5, 6, 7, 8, and 9 coverage rate on CPESCC
increases from 66.26% to 100%. However, for component
StatusArtist, ChuteArtist, WellArtist, and PaletteArtist, the
component path coverage rate will decrease as the number of
passing through edges decreases. The component path with
edge-sequence of edge 1, 2, 3, 4, 5, and 6 coverage rates on
CPESCC decreases from 7.64% to 0.08%. The reasons are
the same ones.

VIII. CONCLUSION

A high quality software architecture needs to be tested as
far as possible to ensure good interaction among components
to avoid interaction faults. In order to solve this problem, on
the basis of component path analysis, this paper proposes two
component path coverage criteria for covering intermediate
nodes and edges, that is component path with node-sequence
coverage criterion and component path with edge-sequence
coverage criterion. These component path coverage criteria
define the adequacy of component path testing at several
different levels. Meanwhile, we also discuss the subsumption
relationships among component path coverage criteria. Two
algorithms are given to compute component path coverage
rate that can satisfy two component path coverage criteria.
The experimental results show that testing effects are greatly
determined by the selection of component path coverage
criteria. Through the discussion of this paper, enriching
and perfecting the existing software architecture coverage

criteria. Software testers can get some conclusions that assist
them to apply these coverage criteria, the difference among
using different component path coverage criteria provide
reference in practice. At the same time, so that we will do
further research on the more powerful coverage criteria.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for
their detailed comments and insightful suggestions, which
helped in refining and improving the presentation of the
paper.

REFERENCES

[1] H. Mei and J. R. Shen, “Progress of research on software architecture,”
Journal of Software, vol. 17, no. 6. pp. 1257-1275, 2006.

[2] H. Zhu, P. A. V. Hall and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366-427,
1997.

[3] H. Muccini, A. Bertolino and P. Inverardi, “Using software architecture
for code testing,” IEEE Trans. Softw. Engi., vol. 30, no. 3, pp. 160-171,
2004.

[4] A. Bertolino, P. Inverardi and H. Muccini, “An explorative journey
from architectural tests definition downto code test execution,” in
Proceedings of the International Conference on Software Engineering,
May 2001, pp. 211-220.

[5] J. F. Chen, Y. S. Lu and H. H. Wang, “Component security testing
approach based on extended chemical abstract machine,” International
Journal of Software Engineering and Knowledge Engineering, vol.22,
no. 1, pp.59-83, 2012.

[6] L. J. Lun and X. Chi, “Component Dependency Path Coverage Criteria
for C2-Style Architecture Testing,” IAENG International Journal of
Computer Science, vol. 42, no. 4, pp. 368-377, 2015.

[7] L. G. Yu and S. Ramaswamy, “Component dependency in object-
oriented software,”, Journal of Computer Science and Technology, vol.
22, no. 3, pp. 379-386, 2007.

[8] J. A. Stafford, A. L. Wolf and M. Caporuscio, “The application of
dependence analysis to software architecture descriptions,” Formal
Methods for Software Architectures, LNCS 2804, 2003, pp. 52-62.

[9] M. R. Paige, “Program graphs, an algebra, and their implication for
programming,” IEEE Trans. Softw. Engi., vol. 1, no. 3, pp. 286-291,
1975.

[10] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Engi., vol.
2, no. 4, pp. 308-320, 1976.

[11] E. F. Miller, “Tutorial: program testing techniques,” in Proceedings
of IEEE Annual Computer Software and Applications Conference,
November 1977, pp. 107-120.

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

[12] J. S. Gourlay, “A mathematical framework for the investigation of
testing,” IEEE Trans. Softw. Engi., vol. 9, no. 6, pp. 686-709, 1983.

[13] B. L. Li, Z. S. Li and J. C. Ni, “Research for test case generation based
on Length N criterion,” Journal of Sichuan University: Engineering
Science Edition, vol. 40, no. 3, pp. 132-137, 2008.

[14] Y. Li, Z. D. Su, L. Z. Wang and X. D. Li, “Steering symbolic execution
to less traveled paths,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, October 2013, pp. 13-32.

[15] D. S. Rosenblum, “Adequate testing of component-based software,”
Technical Report, TR97-34, 1997.

[16] J. A. Stafford, D. J. Richardson and A. L. Wolf, “Chaining: a software
architecture dependence analysis technique,” Technical Report CU-CS-
845-97, 1997.

[17] D. J. Richardson, J. A. Stafford and A. L. Wolf, “A formal approach
to architecture-based software testing,” Technical Report, 1998.

[18] Z. L. Jin and J. Offutt, “Deriving tests from software architectures,”
in Proceedings of International Symposium on Software Reliability
Engineering, November 2001, pp. 308-313.

[19] N. L. Hashim, S. Ramakrishnan and H. W. Schmidt, “Architectural test
coverage for component-based integration testing,” in Proceedings of
International Conference on Quality Software, October 2007, pp. 262-
267.

[20] N. T. Richard, N. Medvidovic, K. M. Anderson, E. J. Whitehead and J.
E. Robbins, “A component- and message-based architecture style for
GUI software,” IEEE Trans. Softw. Engi., vol. 22, no. 6, pp. 390-406,
1996.

[21] M. Muccini, M. Dias and D. J. Richardson, “Systematic testing of
software architectures in the C2 style,” in Fundamental Approaches to
Software Engineering, LNCS 2984, 2004, pp. 295-309.

[22] L. J. Lun, S. T. Wang, X. Chi and H. Xu, “Automatic generation
of basis component path coverage for software architecture testing,”
Computing and Informatics, vol. 36, no. 2, pp. 386-404, 2017.

[23] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data
selection,” IEEE Trans. Softw. Engi., vol. 1, no. 2, pp. 156-173, 1975.

[24] H. Zhu, “A formal analysis of the subsume relation between software
test adequacy criteria,” IEEE Trans. Softw. Engi., vol. 22. no. 4, pp.
248-255, 1996.

[25] A. P. Mathur and W. E. Wong, “A formal evaluation
of mutation and data flow based test adequacy criteria,”
http://citeseer.nj.nec.com/Mathor94formal.html.

[26] P. G. Frankl and E. Weyuker, “A formal analysis of the fault-detecting
ability of testing methods,” IEEE Trans. Softw. Engi., vol. 19, no. 3,
pp. 202-213, 1993.

Lijun Lun was born in Harbin, Heilongjiang Province, China, in 1963.
He received his B.S. degree and Master degree in Computer Science and
Technology from Harbin Institute Technology of Computer Science and
Technology, China, in 1986 and 2000 respectively.

He is currently a professor in computer science and information engi-
neering at Harbin Normal University of Harbin. He has published more
than 70 papers in international and Chinese scientific journals. His research
interests include software modeling, software analysis, empirical software
engineering, software architecture, software testing, and software metrics.

Xin Chi was born in Harbin, Heilongjiang Province, China, in 1990. She
received her B.S. degree in Computer Science and Technology from Harbin
Normal University of Computer Science and Information Engineering,
China, in 2013.

She has published more than 20 papers in international and Chinese
scientific journals. Her research interests include software architecture
testing and software metrics.

Hui Xu was born in Harbin, Heilongjiang Province, China, in 1984. She
is currently a Ph.D. candidate in computer science and technology at
Harbin Engineering University, Harbin. She received her B.S. degree in
Information and Computer Engineering from Northeast Forestry University,
and Master degree in Computer Science and Technology from Harbin
Normal University, China, in 2006 and 2009 respectively.

She has published more than 10 papers in international and Chinese
scientific journals. Her research interests include social computing and
complex networks.

Engineering Letters, 27:1, EL_27_1_06

(Advance online publication: 1 February 2019)

__

