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Abstract—Kernel principal component analysis (KPCA) has 

been recently proven to be a powerful dimensionality reduction 

tool for monitoring nonlinear processes. However, the KPCA 

based monitoring method suffers from several drawbacks. 

First, the KPCA method depends strongly on its kernel 

function, but its selection of kernel parameters is problematic. 

Second, the underlying manifold structure of the data is not 

considered in process modelling. To overcome these 

deficiencies, this paper proposes a new process monitoring 

technique named extended maximum variance unfolding 

(EMVU). Because the global and local structures of process 

data probably change in some abnormal states, global and local 

graphs are designed to exploit the underlying geometrical 

structure. The feasibility and validity of the EMVU based 

process monitoring scheme are investigated through a simple 

numerical example simulation process. The experimental 

results demonstrate that the EMVU based nonlinear process 

monitoring method is a good alternative method to the 

KPCA-based monitoring method. 

 
Keywords—process monitoring; nonlinear; improved kernel 

principal component analysis; extended maximum variance 

unfolding; example simulation 

I. INTRODUCTION 

n manufacturing industry, the demands for operation 

safety have  spurred the development of process 

monitoring methods over the past several decades [1-2]. 

There are many multivariate statistical approaches, including 

principal component analysis (PCA), partial least-squares 

(PLS), and independent component analysis (ICA) [3-7]. 

These methods have been widely applied in the chemical 

industry for process monitoring [8]. Many industrial 

processes are essentially nonlinear, but these methods have a 

strong linearity assumption; thus, a linear method is 

inappropriate for extracting nonlinearities when linear 

monitoring approaches are applied to the nonlinear 

processes. In recent decades, the kernel method has found use 

in the chemical industry [9]. Additionally, the nonlinear PCA 

algorithm was developed by combining principal curves and 

neural networks [10]. Unfortunately, this algorithm suffers 
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from computational complexity. In another approach, KPCA 

and kernel partial least-squares (KPLS) address the problem 

of nonlinear data analysis. Compared to nonlinear PCA, 

KPCA can handle a wide range of nonlinearities and provides 

a much simpler computational framework. KPCA has the 

advantage that the dimension of its reduced space does not 

need to be specified before training. However, KPCA has 

two major drawbacks. The first is that the KPCA monitoring 

method depends strongly on its kernel function, including 

popular approaches such as Gaussians and Polynomials 

kernel functions. The underlying manifold structure of the 

data is not considered explicitly. The second drawback was 

discussed by [11]. If the parameters of the kernel function are 

not properly determined, it is difficult to specify an 

appropriate reduced dimension. When a prompt response is 

crucial due to dense expansions in terms of the kernel 

functions, KPCA incurs a high computational cost in the 

on-line monitoring phase. But Kernel independent 

component analysis (KICA) can combine the advantages of 

KPCA and ICA, but it is also difficult to use in nonlinear fault 

diagnosis [12-13]. 

The manifold learning method of maximum variance 

unfolding (MVU) [14], as a special variation of KPCA, has 

been proposed. The kernel matrix of MVU is automatically 

learned from the training data and can avoid the deficiencies 

of KPCA. Compared to the local techniques, MVU is a global 

technique. However, the direct application of MVU is not as 

straightforward as it seems. It can provide only a lower 

dimensional training samples of the kernel matrix, while 

process monitoring requires a functional mapping of the 

kernel function. More importantly, the boundary of the 

distribution region of the training samples is faithfully 

preserved. As a result, the direct application of MVU to 

process monitoring is inappropriate. In [11], Hu et al. tried to 

use a multivariate linear regression model to model the 

mapping between the input space and the MVU output space. 

However, this method is questionable since the high- 

dimensional and low-dimensional outputs are both nonlinear. 

In this paper, a new process monitoring technique called 

EMVU is proposed to model and monitor the nonlinear 

process data. It can inherit the advantages from both manifold 

learning and Gaussian process, thereby overcoming the 

limitations of KPCA. First, a lower dimensional output space 

is constructed, and the MVU method is applied to the 

collected training data. Then, Gaussian process is applied for 

nonlinear mapping, in contrast to conventional MVU 

method, and the new samples are obtained. Thus, EMVU can 

be viewed as an online process monitoring method. Using a 

cross-validation algorithm, T2 and squared prediction error 

(SPE) are calculated. 

The remainder of this paper is organized as follows: 
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Section 2 reviews and analyses the KPCA method. Section 3 

presents the algorithm analysis for EMVU, including 

manifold learning and manifold learning using Gaussian 

process. EMVU based on process monitoring is presented in 

Section 4, including offline modelling and online fault 

detection. The experiments performed using this method are 

described in Section 5, and finally, this study is summarized 

in Section 6. 

II. KERNEL PRINCIPAL COMPONENT ANALYSIS-BASED 

PROCESS MONITORING 

A. Improved KPCA method principle 

KPCA was originally proposed in [15]. KPCA is an 

extension of PCA, and it can always be solved as an 

eigenvalues problem of its kernel matrix. KPCA is an 

effective technique for dimensionality reduction when the 

data lie on a non-linear manifold. Unlike other methods, 

KPCA doesn’t need to solve nonlinear optimization problem, 

it can decrease data noise and eliminate the multiple 

correlation among the variables. Let the mean-centred 

training samples 
1 2[ , , , ] m n

nX x x x  L  denote the 

original training data set. Then we map these data sets to 

1 2( ), ( ), , ( )nx x x   L , where 
m

ix  , m is the 

number of process variables, and n is the number of 

observations. That is, ( )m f   , where ( )   is an 

implicit nonlinear mapping function,   denotes feature 

space and f is the dimension of the feature space. The 

covariance matrix in   is denoted as follows: 

           

1

1
[ ( ) c][ ( ) c]

n
T

i i

i

x x
n

 


                 

(1) 

Here, ( ) ( ) ci ix x    describes the centred feature 

space sample， c denotes the sample mean in the feature space. 

The eigenvalue problem is solved to obtain the kernel 

principal component. 

1

1

1
[ ( ) ] ( )

1
= ( ), ( )

n
T

i i

F i

n

i i

i

v v x v x
n
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n

  

 





  


                (2) 

where   is the eigenvalue and v  is the eigenvector of the 

covariance matrix and ( )
F

   denotes the inner product. 

Then, there exist coefficients i  that satisfy the following 

equality: 

1

( )
n

j j

j

v x 


                                                (3) 

Substituting eq. (3) into eq. (2),  

1 1 1

1 1

1
( ) [ ( ) ] ( ) ( )

················= ( ), ( ) ( )

n n n
T

j j i j j i

j i j

n n
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   

  

 

  

 

       (4) 

Multiplying both sides of eq. (4) by ( )T

jx  gives 

1

1 1

( ), ( )

1
= ( ), ( ) ( ), ( )

n

j k j

j

n n

j i j k i

i j
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(5) 

Define 
ijK  as a centred n n  kernel matrix and 

( ), ( )ij k jK x x  , then the eigenvalue problem in eq. 

(4), which involves only inner products in the feature space, 

can be transformed into 

1
K

n
                                                  (6) 

where 
1

n



 . Project ( )x  onto kv  in F can lead 

to observation x: 

1

, ( ) ( ), ( )
n

k

k k i i

i

t v x x x   


                  (7) 

where k=1, 2, ..., p and p denotes the number of the kernel 

principal components. We then solve the eigenvalue problem 

of eq. (5) and project from the input space into the KPCA 

space using eq. (6). A kernel function of the form 

( , ) ( ), ( )k x y x y   is introduced to avoid performing 

the nonlinear mappings and compute the inner products in the 

feature space. The Gaussian kernel function 
2

( , )

x y

ck x y e

 

  is also introduced, where c is the width 

parameter. Empirically, 
2c rm , where r is a constant, m 

is the input space dimension, and 
2  is the variance of data. 

In KPCA process monitoring, T2 and SPE are two commonly 

used statistics that can reflect the space change[16] in the two 

subspaces. T2 can be obtained as follows: 
2 1TT t t                                                           (8) 

where t is the p-dimensional score vector obtained by eq. 

(7), and 
1  is the diagonal matrix. Use the F-distribution[17] 

to estimate the upper control limit of T2. 

2

, , , ,

( 1)
p n p n p

p n
T F

n p
 




:                             (9) 

The SPE can be obtained as follows: 

02
2 2

1 1

( ) ( )
n p

p i i

i i

SPE x x t t 
 

                 (10) 

where 0n denotes the number of nonzero eigenvalues. The 

upper control limit of SPE can be estimated as: 
2

hSPE g                                       (11) 

where
2

b
g

a
 , and 

22a
h

b
 . Here, g is a weighting 

parameter, a is the estimated mean, b is the variance of SPE, 

and h is the number of degrees of freedom. 

In many practical nonlinear monitoring processes, a single 

KPCA model is usually not the most effective approach for 

all conditions. Different conditions may need different width 
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parameters to maximize their respective performance. The 

single Gaussian kernel function cannot satisfy all conditions. 

To overcome the shortcomings of a single Gaussian kernel 

function, we use a series of Gaussian kernel functions that 

have different width parameters: 
2

( ) ( , ) i

x y

cik x y e

 

                                  (12) 

where 
12i

ic rm  and i=1, 2,…, ns. Then 

( ) ( ) ( ) ( )1i i i ik
n

                                   (13) 

Therefore,
2( )iT (i=1, 2,…, ns) and 

2( )iSPE (i=1, 2,…, ns) 

can be constructed for each KPCA submodel. We can also 

estimate their upper control limit 
i

limitT (i=1, 2,…, ns) and 

i

limitSPE (i=1, 2,…, ns). 

B. Determine KPCA method principal component 

numbers 

In the process of nonlinear monitoring feature extraction, a 

reasonable determination of the principal component number 

is very important. An estimation of the number of the 

principal components[18] with large uncertainty is not 

appropriate. When the principal component number is greater, 

the model will be accurate. However, the analysis and 

diagnosis of this model is more complicated. If the principal 

component number is too small, then it is not too sufficient to 

extract the feature information of the nonlinear monitoring 

data. Additionally, the error rate of the analysis and diagnosis 

will be increased. Therefore, we must determine the KPCA 

method principal component numbers in the nonlinear 

monitoring feature extraction[19]. 

The number of components can be evaluated by two 

methods. One is the average method: the mean of the 

characteristic root   is calculated first, based on the 

characteristic roots, principal component numbers that are 

greater than   are chosen. The other is the empirical 

method. It can determine the principal component numbers 

by the cumulative contribution rate. 

In actual nonlinear monitoring feature extraction, we 

usually use the empirical method, determining the principal 

component numbers according to the cumulative 

contribution rate. In the simulation experiment, when the 

number of principal component is twenty-five, we can get a 

cumulative contribution rate of 85%. 

III. EXTENDED MAXIMUM VARIANCE UNFOLDING 

A. Maximum variance unfolding and constraints 

MVU is a special variation of KPCA also known as 

semi-definite embedding. It is often used for nonlinear data 

dimensionality reduction. When we use MVU, its kernel 

matrix is often semidefinite programming to avoid suffering 

from local optima. The details of the constraints are as 

follows: first, the kernel matrix should be positive 

semidefinite. This can guarantee that the elements can be 

interpreted as dot products of the training samples.  Second, 

the kernel matrix should store the dot products of mapped 

training samples to ensure that the eigenvalues of the kernel 

matrix as measures of variance can be interpreted along the 

principal components. This means that 

2

1 1

1 1 1 1

( ) 0 ( )

= ( ), ( ) 0

N N

i i

i i

N N N N

i j ij

i j i j

X X

X X K

 

 

 

   

 

  

 

 

         (14) 

The last constraint is as follows: suppose that training 

sample ix  is a steel ball. A discrete approximation of the 

underlying manifold structure is used to form the lattice of 

steel balls, and the distances and angles between the points 

and their neighbourhoods should be isometric. Then, we 

define the binary adjacency matrix , 1ijv v  to indicate the 

neighbourhood relation, i.e., 
jx  is the k-nearest neighbour of 

ix . Then, the following equation should hold: 

2 2

2

( ) ( )

2

i j i j

ii jj ij i j

x x x x

K K K x x

   

    

                  (15) 

In many nonlinear monitoring processes, the sampled 

dataset often has complicated distributions, so preserving the 

local structure is very important. To tackle this problem, the 

neighbourhood structure of the data is embedded in both 

local and global information. A specific description is as 

follows. 

B. Local graph minimum 

For a local graph minimum, we first calculate the 

adjacency matrix W. The locality preserving criterion is 

given as follows[20]: 

, 1

/

( ) min ( ) ( )

= min ( ) min

min

n
T T

i j ij i j

i j

T T T T T

T T

J p p x x w x x p

p x D W Xp p x LXp

p L p



  

 





(16) 

where L is a Laplacian matrix, L D W  . 
/L  is a local 

graph matrix, 
/ TL X LX . D is a diagonal matrix, for 

which the diagonal elements are the column (or row) sum of 

W, ii ijj
D w . 

C. Global graph maximum 

For a global graph minimum, we first obtain an optimal 

outer shape manifold structure through embedding the 

neighbourhood information. Consider the local mean centre 

of each sample ix , that is more respective than the original 

mean centre x . Here, D can reveal the nearby density of the 

corresponding points. We can obtain the local mean 

vector[21]

ix  by following eq. (15). 

      
( , )

1

i j
i jxj N x

i

x X
n 

                                 (17) 

where in is the number of elements, i=1, 2,..., n, 

( , )i jN x x  contains in . Therefore, we can obtain the local 

mean vectors 1 2[ , , , ]i nX X X X L . By maximizing the 

following cost function, we can obtain the projection p: 
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1

( ) min ( )( )

min ( ) ( ) min

n
T T

i i i i

i

T T T

i i i i

J p p x x x x p

p X X X X p p Gp



  

   


    (18) 

where ( ) ( )T

i i i iG X X X X    is the global graph 

matrix. 

D. Offline modelling strategy and online process 

monitoring based on EMVU 

When applying the EMVU method to process monitoring, 

the overall procedures of the EMVU-based process 

monitoring are outlined as follows. Offline modelling: (1) 

Acquire the historical normal operating data and normalize 

the data to zero mean and unit variance. (2) Divide the 

normalized data (i = 1, 2,..., n) into two sets: the training set 

and the validation set. (3) Using the data, train the EMVU 

model in the training set. (4) Calculate the monitoring T2 and 

SPE statistics of the normal, and record the predictive 

variances of the calculated EMVU outputs. (5) Determine the 

control limits for the monitoring indices of the T2 and SPE. 

Online monitoring: (1) Record the online measurements, and 

normalize the new sample data x with the mean and standard 

deviation calculated in the modelling steps. (2) Obtain the 

outputs in the reduced space of EMVU. (3) Calculate the 

monitoring indices T2 and SPE for the EMVU outputs. (4) 

Calculate T2 and SPE, and check to see whether they exceed 

the corresponding control limits. (5) If the indices are well 

below the control limits, the process is regarded as normal, 

and the procedure returns to step (1); otherwise, a potential 

fault process should be considered. The corresponding steps 

of the EMVU method for process monitoring are shown in 

Figure 1. 

Acquire  and normalize historical 

normal operating data

Divide the normalized data into 

the training set and the validation 

set

Train the EMVU model with the 

training set

Calculate T
2
 and SPE statistics 

and record the predictive 

variances

Determine the control limits for 

the monitoring indices

End

Normalize the new sample data x

Obtain the outputs in the reduced 

space of EMVU

Train the EMVU model with the 

training set

Calculate the monitoring indices 

T
2
 and SPE for the EMVU outputs

Whether T2 and SPE 

exceed the corresponding 

control limit

Potential fault process

Yes

No

lim

i

itT

lim

i

itSPE

Online monitoring

Offline modeling

 
Fig. 1. Flowchart of EMVU method for process monitoring 

IV. CASE STUDIES 

In this section, we apply the EMVU method described in 

this paper to fault detection in a simple numerical example to 

verify the effectiveness. Here, we compare the results 

obtained using PCA, KPCA and EMVU. This process is 

shown as follows: 

3 2

1 110 1.5 1.5 0.1y a a a c                       (19) 

2 230y b c                                                       (20) 

3 3y a c                                                            (21) 

where 
2 1a b  , and (0,1)b . 1c , 2c  and 3c  are 

random noise variables with small magnitudes. Using the 

above equations, we can obtain 500 normal sample data. 100 

faulty samples are generated using the below equations: 

2

1 10.5 2 0.5y a a c                                       (22) 

2

2 2sin( a)y a a c                                   (23) 

2

3 3cos( a)y a a c                                   (24) 

All data are shown in Fig. 2, where black represents 

normal samples and red represents faulty samples. We can 

see from Fig. 2 that there are many faulty samples close to the 

normal samples, but they are not significant. Therefore, we 

must use a method that can recognize them quickly. 
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Fig. 2. Normal and faulty data in the original input space 
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Fig. 3 Normal and faulty data in the output space 

During the process monitoring, we first build an EMVU 

model based on the normal data. Here, we select the number 

of nearest neighbours as 5, and the dimensionality of the 
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EMVU output space is 2. A Gaussian process regression 

model is utilized to approximate the nonlinear mapping 

between the inputs and the outputs. We use a simple 

second-order polynomial covariance function defined as 

2

1
( , ) ( )

D

i j ik ikk
k x x b x y


   to implement the Gaussian 

process regression model. From [22-23], the first two outputs 

of the eigenvalue spectrum can capture more than 99% 

variation information. In the KPCA model, we use the same 

kernel function form as in EMVU, and select 6 principal 

components. For the PCA model, from [24], the first two 

principal component can capture more than 90% variation 

information of the original data. 

Then, we use the three models to monitor the fault samples. 

The control indices T2 and SPE of EMVU are shown in Fig. 4, 

the KPCA output is shown in Fig. 5 and the PCA results are 

shown in Fig. 6. By considering EMVU's output space in Fig. 

3, we can see that there are many faulty samples located 

outside the normal sample. According to Fig. 4, for a large 

number of points, the SPE exhibits model fitness, but in this 

case, T2 statistic is not very sensitive. Therefore, SPE control 

performs better than T2. However, in Fig. 4, the T2 and SPE 

of EMVU statistics are calculated in the output space. The 

bottom plot shows the monitoring result based on the 

predictive variance: the predictive variance contains similar 

information between the training data and the test data in the 

input space, and the T2 and SPE of EMVU statistics show 

better detection ability, as verified in Fig. 3. From all the 

three figures, we can see that the control limits adopt the 

corresponding confidence level at 99%. The missing alarm 

rates of EMVU reach 24%. The detailed monitoring results 

can be seen in Fig. 4, which shows that KPCA is better than 

PCA but worse than EMVU. In addition, KPCA requires 6 

PCs to obtain these characteristics but the EMVU only need 2 

outputs. Therefore, the EMVU method is better than KPCA 

and PCA for use in a nonlinear monitoring system. 

V. CONCLUSION 

This paper proposes a new nonlinear process monitoring 

technique based on improved KPCA and extended MVU 

method to perform fault detection and identification. 

Compared to PCA, by using KPCA and extended MVU 

monitoring method, we can obtain the following attractive 

advantages. (1) EMVU considers the manifold structure of 

data and leads to lower-order models. The dimensions of the 

model space can be set effectively determined. (2) We can 

determine the parameters in the EMVU model easily. By 

learning its implicit mapping, the parameters in an EMVU 

model can be determined automatically through a supervised 

procedure. (3) In on-line nonlinear monitoring, 

dimensionality reduction was performed for a new observed 

process sample, making this method more powerful in fault 

detection. Then, case studies on a simple numerical example 

demonstrated the effectiveness of the proposed method. 
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