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Abstract—In this paper, an M/M/1 retrial queue with working
vacation, orbit search and balking is considered. Using the
matrix-analytic method, we obtain the necessary and sufficient
condition for system to be stable. We also derive the stationary
probability distribution and some performance measures. Then
we give the conditional stochastic decomposition for the queue
length in the orbit when the server is busy. Finally, we show the
effect of the model parameters on the system’s characteristics
by some numerical examples.

Index Terms—Retrial, Working vacation, Orbit search, Balk-
ing.

I. INTRODUCTION

Queueing models with server vacation have been well
studied in recent years and successfully applied in every
territory of life. Some vacation queues can be found in
Tian and Zhang [1]. On the basis of ordinary vacation,
Servi and Finn [2] first introduced a new policy as working
vacation. In order to utilize the server effectively, Do [3]
discussed an M/M/1 retrial queue with working vacations.
Now the combination of retrial and working vacation have
been studied by many scholars. Some specific results can be
referenced by Li et al. [4]. On the other hand, orbit search
is also innovated. Krishnamoorthy and Joshua [5] analyzed
a multi-server retrial queue with search of customers from
the orbit. Gao and Wang [6] considered an M/G/1 retrial
queue with orbit search. Retrial queue with orbit search can
also be found in [7,8]. Meanwhile, balking has also been
well studied, such as [9]. Moreover, in some retrial queues,
balking has been also investigated extensively. Arivudainam-
bi and Godhandaraman [10] investigated a retrial queueing
system with balking, optional service and vacation. Some
other results about a retrial queue with balking can be found
in [11,12,13].

To the authors’ best knowledge, there is no research work
investigating an M/M/1 retrial queue with working vacation,
orbit search and balking. This motivates us to deal with such
a queueing model in this paper. And if we let parameters in
this paper take proper values, many M/M/1 queues will be
special cases of our model.

The model we considered has a potential practical ap-
plication in the telephone consultation of after-sale service
system. Nowadays, many merchants have offered the tele-
phone consultation services to the guests (called customers).
Therefore, we construct a telephone consultation service
system staffed with a main server and an assistant server.
The assistant server can only provides service to the guests
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when the main server is rest from work, and the service
rate of the assistant server is usually slower than the main
server. In normal circumstances, there is a phone operator
who is responsible for establishing communications between
the merchants and the guests or writing down the order of the
calls (corresponding to the “orbit”). When a guest makes a
call, if the line is busy , the guest cannot queue but tries again
sometime later (called retrial) or cancel his call and does not
accept service (called balking). If the line is free, he will be
served immediately by the main server or the assistant server.
The guest in the orbit does not need make a call again. When
a service is completed, the server may search for the guest
in orbit in sequence with some probability to provide service
right away (called orbit search) or with a certain probability
remain idle. When the main sever can not find any guest calls,
he will have a rest, and during this period, the assistant server
will serve the guests (called working vacation). If there still
having guests in the system when a working vacation ends,
the main server will come back to provide service (start a
new busy period). If there is no guest, the assistant server
will continue to replace the main server.

This paper is organized as follows. In Section 2, we
establish the model and derive the infinitesimal generator. In
Section 3, the stationary probability distribution is obtained.
In Section 4, we give a conditional stochastic decomposition.
In Section 5, some numerical examples are presented to
illustrate the effect of some parameters on the system’s
characterisitics. Finally, Section 6 concludes this paper.

II. MODEL FORMULATION

We consider an M/M/1 retrial queue with working vaca-
tion, orbit search and balking. The detailed description of
this model is given as follows:
(1). The interarrival times of customers are exponentially
distributed with parameter λ. Upon the arrival of customers,
if the server is free, service begins immediately. If the server
is busy, on the other hand, customers will go to the orbit
with probability h (0 ≤ h ≤ 1) or leave the system with
probability h̄(h̄ = 1 − h). Request retrials from the orbit
follow a Poisson process with rate α.
(2). The server begins a working vacation each time when
the system becomes empty, and the vacation time follows an
exponential distribution with parameter θ. Moreover, when
a working vacation ends, if the system is non-empty at that
moment, a new busy period starts. If the system is still empty,
on the other hand, the server will start another working
vacation. The service in a regular busy period is governed
by an exponential distribution with parameter µ, and in
working vacation period follows an exponential distribution
with parameter η.
(3). At the completion of a service, the server searches for
the customer in orbit (if any) with probability p (0 ≤ p ≤ 1)
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or remains idle with complementary probability p̄(p̄ = 1−p).
We assume the search time is negligible.

The interarrival times, interretrial times, service times and
vacation times are also assumed to be mutually independent.

Let Q(t) be the number of customers in the orbit at time
t, and let J(t) be the state of server at time t. There are four
possible states of the server as follows:

J(t) =



1, the server is in a working vacation
period at time t and the server is busy,

2, the server is in a working vacation
period at time t and the server is free,

3, the server is during a normal service
period at time t and the server is busy,

4, the server is during a normal service
period at time t and the server is free.

Obviously, {Q(t), J(t)} is a Markov process with state
space,

Ω = {(0, j), j = 1, 2, 3}
∪

{(n, j), n ≥ 1, j = 1, 2, 3, 4}.

Using the lexicographical sequence for the states, the
infinitesimal generator can be written as

Q̃=


B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 ,

where

B1 =


β1

λ
0
0

η
−λ
µ
0

θ
0
β2

0

0
0
0
0

 ,

A0 =


hλ 0 0 0
0 0 0 0
0 0 hλ 0
0 0 0 0

 ,

A2 =


pη 0 0 0
α 0 0 0
0 0 pµ 0
0 0 α 0

 ,

A1 =


β1 p̄η θ 0
λ β3 0 θ
0 0 β2 p̄µ
0 0 λ −(λ+ α)

 ,

and
β1 = −(hλ+ η + θ),
β2 = −(hλ+ µ),
β3 = −(λ+ α+ θ).

Due to the block structure of matrix Q̃, {Q(t), J(t)} is
called a quasi birth and death (QBD) process.

III. STABILITY CONDITION AND STATIONARY
DISTRIBUTION

Theorem 1: The QBD process {Q(t), J(t)} is positive
recurrent if and only if µ(λp+α)>hλ(λ+α).

Proof: First, we assume

A = A0 +A1 +A2

=


(p− 1)η − θ p̄η θ 0

α+ λ β3 0 θ
0 0 (p− 1)µ p̄µ
0 0 α+ λ −(λ+ α)

 .

Since matrix A is reducible, the Theorem 7.3.1 in [14] gives
the condition for positive recurrence of the QBD. After
permutation of rows and columns, the Theorem 7.3.1 states
that the QBD is positive recurrent if and only if

π∗
(

pµ 0
α 0

)
e > π∗

(
hλ 0
0 0

)
e,

where e is a column vector with all elements equal
to one, and π∗ is the unique solution of the system

π∗
(

(p− 1)µ pµ
α+ λ −(λ+ α)

)
= 0, π∗e=1. After some al-

gebraic manipulation, the QBD process is positive recurrent
if and only if pµ+ α(µ−pµ)

λ+α > hλ, ie. µ(λp+α)>hλ(λ+α).�
Theorem 2: If µ(λp+α)>hλ(λ+α), the matrix equation

R2A2+RA1+A0 = 0 has the minimal non-negative solution

R =


r1 r2 r3 r4
0 0 0 0
0 0 r5 r6
0 0 0 0

 ,

where

r1 =
[β1β3 + p̄ηλ]−

√
∆

2(pηλ+ pηθ + ηα)
,

r2 =
p̄η

λ+ α+ θ
r1,

r3 = r1r2θα+r1θ(λ+α)+r2θλ
−(λ+α)[(r1+r5)pµ+r6α−hλ−µ]−r1αp̄µ−p̄µλ ,

r4 =
r2θ + r3p̄µ

λ+ α
,

r5 =
hλ(λ+ α)

pµλ+ µα
,

r6 =
hλp̄µ

pµλ+ µα
,

and
j = pηλ+ pηθ + ηα,

∆=[(hλ+ θ + η)(λ+ α+ θ) + p̄ηλ]
2 − 4jhλ(λ+ α+ θ).

Proof: From the structure of A0, A1 and A2, we can

assume R =

(
R11 R12

0 R22

)
, where R11, R12 and R22 are

all 2 × 2 matrices. Taking R into R2A2 + RA1 + A0 = 0,
we have

(
0 0
0 0

)
= R11

2

(
pη 0
α 0

)
+R11

(
β1 p̄η
λ β3

)
+

(
hλ 0
0 0

) ,

(
0 0
0 0

)
= (R11R12 +R12R22)

(
pµ 0
α 0

)
+R11

(
θ 0
0 θ

)
+R12

(
β2 p̄µ
λ −(λ+ α)

) ,

(
0 0
0 0

)
= R22

2

(
pµ 0
α 0

)
+R22

(
β2 p̄µ
λ −(λ+ α)

)
+

(
hλ 0
0 0

) .

From the first equation, we have R11 =

(
r1 r2
0 0

)
.

Similarly, R22 =

(
r5 r6
0 0

)
can be obtained from the

Engineering Letters, 27:1, EL_27_1_12

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



third equation. Taking R11 and R22 into the second equation,

we finally derived R12 =

(
r3 r4
0 0

)
by some computa-

tion. �
Under the stability condition, let (Q,J) be the stationary

limit of the process {Q(t), J(t)}, and denote

πn = (πn1, πn2, πn3, πn4), n ≥ 0,

πnj = P{Q = n, J = j}
= lim

t→∞
P{Q(t) = n, J(t) = j}, (n, j) ∈ Ω.

Note that when there is no customer in the orbit, the
probability that the server is in a busy period and does not
serve a customer is zero. Thus, π04 = 0.

Theorem 3: If µ(λp+α)>hλ(λ+α), the stationary proba-
bility distribution of (Q, J) is given by



πn1 = π01r
n
1 , n ≥ 1,

πn2 = π01r
n−1
1 r2, n ≥ 1,

πn3 = π01

[
r3

r5−r1
(rn5 − rn1 )

]
+ π03r

n
5 , n ≥ 1,

πn4 = π01

[
r4r

n−1
1 + r3r6

r5−r1
(rn−1

5 − rn−1
1 )

]
+ π03r

n−1
5 r6 , n ≥ 1,

(1)

and


π02 =

(hλ+ η + θ) + r1pη + r2α

λ
π01,

π03 =
hλ+ θ + r1pη + r2α

µ
π01,

(2)

where π01 can be determined by the normalization condition.
Proof: Using the matrix-geometric solution method, we

have
πn = (πn1, πn2, πn3, πn4) = π0R

n

= (π01, π02, π03, π04)R
n, n ≥ 0

.

Since

Rn =


rn1 rn−1

1 r2 δn1 δn2
0 0 0 0
0 0 rn5 rn−1

5 r6
0 0 0 0

 , n ≥ 1,

where

δn1 = r3
r5−r1

(rn5 − rn1 ),

δn2 = r4r
n−1
1 + r3r6

r5−r1
(rn−1

5 − rn−1
1 ),

substituting Rn into the above equation, we can obtain (1).
Moreover, π0 satisfies the next equation

π0(B1 +RA2) = 0. (3)

Using Equation (3), we can get (2) by some caculations.
Since

4∑
j=0

∞∑
n=0

πnj = 1,

we can get
π01 = (1 + x+ y + z)−1,

where

x = {(1− r1)(1− r5)[µ(hλ+ η + θ + r1pη + r2α)
+λ(hλ+ θ + r1pη + r2α)]
+λµ[(1 + r5)(r1 + r2 + r4)
+(1− r5)(r5 + r6)]}/[λµ(1− r1)(1− r5)],

y = [r3r6µ+ r3r5(hλ+ θ + r1pη
+r2α)]/[µ(r5 − r1)(1− r5)],

z = [r3r1(hλ+ θ + r1pη + r2α)
+r3r6µ]/[(r1 − r5)(1− r1)µ]. �

Clearly, the state probability of the server is given by

P1 = P {J = 1} =
∞∑

n=0
πn1 = 1

1−r1
π01 ,

P2 = P {J = 2} =
∞∑

n=0
πn2

= δ3π01 +
r6

(1−r5)r5
δ4π01,

P3 = P {J = 3} =
∞∑

n=0
πn3

= r3
r5−r1

1
1−r5

π01 − r3
r5−r1

1
1−r1

π01 +
1

1−r5
δ4π01,

P4 = P {J = 4} =
∞∑

n=1
πn4

= r4
(1−r1)r1

π01 +
r6

(1−r5)r5
δ4π01

+ r3r6
r5−r1

[
1

(1−r5)r5
− 1

(1−r1)r1

]
π01,

where

δ3 =
r4

(1− r1)r1
+

r3r6
r5 − r1

[
1

(1− r5)r5
− 1

(1− r1)r1

]
,

δ4 =
hλ+ θ + r1pη + r2α

µ
.

The probability that the server is busy is

Pb = P {J = 1}+ P {J = 3} = P1 + P3.

The probability that the server is free is

Pc = P {J = 2}+ P {J = 4} = P2 + P4 = 1− Pb.

Let L be the number of customers in the orbit, we can get

E [L] =
∞∑

n=1
n(πn1 + πn2 + πn3 + πn4)

= π01
(r1+r2+r4)(1−r5)

2+(1−r1r5)r3+(2−r1−r5)r3r6
(1−r5)

2(1−r1)
2

+π03
r5+r6
(1−r5)

2 .

Let L̃ be the number of customers in the system, we have

E
[
L̃
]
=

∞∑
n=1

n(πn2 + πn4) +
∞∑

n=0
(n+ 1)(πn1 + πn3)

= E [L] + P1 + P3 = E [L] + Pb.

IV. CONDITIONAL STOCHASTIC DECOMPOSITION

Lemma 1: If µ(λp+α)>hλ(λ+α), let Q0 be the condition-
al queue length of the retrial M/M/1 queue with orbit search
and balking in the orbit given that the server is busy, then
Q0 has a probability generating function

GQ0(z) =
1− r5
1− r5z

.

Proof: The proof of this lemma is similar to the proof of
Lemma 1 in Li et al. [15], so we omit it here.

Let Qb be the condition queue length of our system in
the orbit when the server is busy, if µ(λp+α)>hλ(λ+α), we
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Fig. 1. The expected queue length in the orbit with the change of α.

can get

GQb
(z) =

∞∑
n=0

P{Qb = n} · zn

=
∞∑

n=0

πn1+πn3

Pb
· zn

= 1−r5
1−r5z

· 1−r5z+r3z+δ4(1−r1z)
(1−r1z)(1−r5)Pb

= GQ0(z)GQc(z).

Thus, Qb can be decomposed into the sum of two indepen-
dent random variables: Qb=Q0+Qc, where Q0 is defined
in Lemma 1, and follows a geometric distribution with
parameter 1− r5, the additional queue length Qc has a
probability generating function GQc

(z).
Remark 1:
(1) If α→∞, h=1, the model becomes an M/M/1 queue

with working vacation.
(2) If h=1, the model reduces to an M/M/1 retrial queue

with working vacation and orbit search.
(3) If p=0, the model becomes an M/M/1 retrial queue

with working vacation and balking.
(4) If h=1, p=0, the model reduces to an M/M/1 retrial

queue with working vacation.

V. NUMERICAL RESULTS

In this section, under the stationary condition, we present
some numerical examples to illustrate the effect of some
parameters on the expected queue length E[L] and the
probability and the server is Pb. The various parameters
of this model are arbitrarily chosen as λ = 0.8. θ = 0.3,
η = 0.2, µ = 1.6, α = 0.8, h = 0.5, unless they are
considered as variable or their values are mentioned in the
respective figures.

A. Sensitivity Analysis

Fig.1 and Fig. 2 show the effect of α on the expected
queue length E[L] and the probability that the server is busy
Pb, respectively. We can see that E[L] is decreasing with
an increasing value of α, but Pb is increasing. As the value
of α increases, the mean retrial time decreases. From the
instant when the server is free, an arriving customer and
retrial customers compete to access the server. So the smaller
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Fig. 2. The probability that the server is busy with the change of α.
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Fig. 3. The expected queue length in the orbit with the change of η.
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Fig. 4. The probability that the server is busy with the change of η.

the mean retrial time is, the bigger the probability that the
server is busy is, which increases Pb, and decreases the value
of E[L]. When p = 0.9, we can see that the effect of α on
E[L] and Pb is not obvious, the reason is that the server will
search for the customer in orbit with probability p when a
service is completed. We can also find that E[L] decreases as
the values of p increase. While Pb has an opposite tendency.

In Fig.3 and Fig.4, with the change of working vacation
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Fig. 5. The expected queue length in the orbit with the change of p.
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Fig. 6. The probability that the server is busy with the change of p.

service rate η, the curves of the expected queue length E[L]
and the probability Pb are provided. We can find that the
queue length E[L] and the probability Pb both decrease with
an increasing value of η. This is because that the server
provides service at a lower speed during the vacation period
rather than stopping service completely. As a result, E[L]
and Pb both show a downward trend.

Fig.5 and Fig.6 illustrate the effect of p on the E[L] and
Pb, respectively. It is obvious that the greater the value of
p is, the smaller the mean orbit size is, and the bigger the
probability Pb is. This is due to the fact that with the value
of p increases, more customers can be searched from the
orbit. We can also see that E[L] decreases as the value of
α increases, while Pb increases with an increasing value of
α. Moreover, when p approaches to 1, the model reduces
to an M/M/1 queue with working vacation and balking but
without retrial, we can see that the retrial rate α has no effect
on E[L] and Pb.

B. Cost Analysis

In this subsection, we establish a cost function to search
for the optimal service rate η, so as to minimize the expected
operating cost function per unit time.

Define the following cost elements:
CL=cost per unit time for each customer present in the

orbit;
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Fig. 7. The effect of η on the expected operating cost per unit time.

Cµ=cost per unit time for service during a normal service
period;
Cη=cost per unit time for service in a working vacation

period;
Cθ=cost per unit time during a vacation period.
We establish an expected operating cost function per unit

time as:

min
η

: f(η) = CLE[L] + Cµµ+ Cηη + Cθθ.

As the operating cost function per unit time is highly non-
linear and complex, it is difficult to get the derivative of
it. We assume CL=26, Cµ=40, Cη=28, Cθ=15, and use the
parabolic method to find the optimum value of η, say η∗. The
parabolic method generates a quadratic function through the
evaluated points in each iteration, and the objective function
f(x) can be approximated by the quadratic function. Ac-
cording to the polynomial approximation theory, the unique
optimum of the quadratic function agreeing with f(x) at 3-
point pattern {x0, x1, x2} occurs at

x = 1
2
f(x0)(x

2
1−x2

2)+f(x1)(x
2
2−x2

0)+f(x2)(x
2
0−x2

1)
f(x0)(x1−x2)+f(x1)(x2−x0)+f(x2)(x0−x1)

.

The parabolic method uses this approximation to improve the
current 3-point pattern by replacing one of its points with an
approximate optimum x. Then, repeating in this way isolates
an optimum for f(x) in an ever-narrowing range. The step
of the parabolic method can be found in [16].

TABLE I
THE PARABOLIC METHOD IN SEARCHING THE OPTIMUM SOLUTION .

iterations x0 x1 x2 f(x0) f(x1) f(x2) x f(x) tolerance
0 0.1 0.3 0.4 106.497033 105.464339 106.238467 0.260018 105.347749 0.039982
1 0.1 0.260018 0.3 106.497033 105.347749 105.464339 0.251132 105.339754 0.008886
2 0.1 0.251132 0.260018 106.497033 105.339754 105.347749 0.247162 105.338429 0.003970
3 0.1 0.247162 0.251132 106.497033 105.338429 105.339754 0.246076 105.338313 0.001086
4 0.1 0.246076 0.247162 106.497033 105.338313 105.338429 0.245640 105.338297 0.000435
5 0.1 0.245640 0.246076 106.497033 105.338297 105.338313 0.245508 105.338295 0.000132
6 0.1 0.245508 0.245640 106.497033 105.338295 105.338297 0.245459 105.338295 0.000049

With the information of Fig.7, we can get that there is
an optimal service rate η to make the cost minimize. Imple-
menting the computer software MATLAB by the parabolic
method and the error is controlled by ε = 10−4. After six it-
erations, Table I shows that the minimum expected operating
cost per unit time converges to the solution η∗ = 0.245459
with a value f(η∗) = 105.338295.
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VI. CONCLUSION

This paper analyzes a single-server retrial queue with
working vacation, orbit search and balking. Using matrix-
analytic method, the condition for the system to be stable
is derived, and the steady-state distributions and some per-
formance measures are also obtained. Finally, we present
some numerical examples to study the effect of various
parameters, and consider a cost minimization problem. For
future research, using the supplementary variable method,
one can consider the similar model but with general retrial
times.
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