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An Efficient Twin Projection Support Vector
Machine for Regression

Xinyu Ouyang, Nannan Zhao, Chuang Gao, and Lidong Wang

Abstract—Taking motivation from e-insensitive twin support
vector regression (e-TSVR) and the projection idea, this paper
proposes a novel e-twin projection support vector regression
models, called e-TPSVR. The proposed &-TPSVR, which is
based on e-TSVR, determines the regression function through a
pair of nonparallel hyperplanes solved by two smaller sized
quadratic programming problems. Different from &-TSVR, a
projection axis is sought for each optimization problem of
&e-TPSVR such that the variance of the projected points is
minimized. Therefore, the empirical correlation coefficient
between each hyperplane and the projected inputs can be
optimized. The experimental results indicate that the proposed
&-TPSVR obtains the better prediction performance than TSVR
and e-TSVR methods that were widely adopted.

Index Terms—Support vector machine (SVM), Regression
analysis, Projection algorithms, Benchmark testing, e-twin
support vector regression (e-TSVR)

I. INTRODUCTION

upport vector machine (SVM) [1-3] has become a

powerful tool in pattern classification and regression field

for its excellent generalization performance, and has been
successfully applied to various real-world problems [4-6]. As
for support vector regression model (SVR), which is a
standard tool in regression tasks, there are some classical
methods, such as e-support vector regression (e-SVR) [2], the
sequential minimal optimization (SMO) [7], smooth SVR [8],
the parametric insensitive SVR [9], PSO-SVR [10], and
v-support vector classification (v-SVC) [11].

One of the main challenges for the SVR is the high cost of
training, i.e. O(m3), where m is the number of training
samples. Motivated by the researches on twin support vector
machine (TSVM) [12-15], Peng [16] proposed a twin support
vector regression (TSVR), in which the complexity of
algorithm is reduced to 0(2 x (m/2)3), that means the
TSVR is four times faster than the usual SVR in theory.
Different from SVR, the TSVR method generates two
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nonparallel functions by solving a pair of smaller sized
quadratic programming problems (QPPs) instead of a large
size one, so the algorithm TSVR is much faster than a usual
SVR. Consequently, many kinds of twin-type SVR have been
studied extensively. For example, Shao et al. [17] proposed
an g-insensitive twin support vector regression (¢-TSVR), in
which the structural risk minimization principle is
implemented by introducing the regularization term in the
primal problems. R. Rastogi et al. [18] presented another
twin model for regression termed as v-TSVR, which
extended the e-TSVR techniques by automatically adjusting
the value €1 and €2 via user defined parameters v1 and v2, so
that the fraction of errors and support vectors can be
controlled.

However, the previous algorithms and models are very
suitable for the assumption that the noise level is uniform on
training data, or at least. For the heteroscedastic noise
structure, in which the amount of noise depends on location
or input, the assumption of a uniform noise level is not
satisfied. Recently, motivated by the par-v-SVR [19], Peng
[20] presented a novel parametric- insensitive SVR model for
data regression, termed as twin parametric insensitive SVR
(TPISVR). Although both par-v»-SVR and TPISVR are more
suitable for the case that the noise is more heteroscedastic
than the classical SVR, the difference between them is that
the strategy TPISVR is to solve two smaller sized QPPs
rather than one large QPP, which makes it learn faster than
par-v-SVR and SVR. Later, another efficient twin projection
support vector regression (TPSVR) algorithm proposed by
Peng [21] improved TPISVR through seeking a suitable
projection axis such that the empirical variance of projected
points is minimized.

In addition, it is interesting to note that, in the e-TSVR
model, the regularization term (wlwj + b2)/2,k = 1,2 is
added to the primal optimization problems because of the
structural risk minimization principle. The regularization
terms in the TPSVR model, however, is wl wy/2,k = 1,2.
Because minimizing the projection zone of input points is
unrelated to the offset by, b2 has to be removed from the
regularization term in order to getting the solutions of
optimization problems correctly. This implies that the
method of solving by has to be deduced separately, which
will increase the complexity of the model. In fact, what we
expect is that the augmented vector u, = [wl b7 is
directly solved, not directly obtained wj . To this end,
inspired by e-TSVR and the idea of projection, an e-twin
projection support vector machine for regression is proposed
in this paper, which is termed as e-TPSVR. Some of the
major features of the proposed e-TPSVR are as follows:
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(1) The proposed e-TPSVR model aims to seek a suitable
projection axis such that the empirical variance of projected
points is minimized. It is more suitable for the assumption
that the noise level is heteroscedastic. In addition, because the
propose method is based on the e-TSVR model, the structural
information of data is then embedded into the regression
model.

(2) The Introduction of matrixes J and K makes it possible
to solve the augmented vector u, = [wf b]". It also
reduces computational complexity. For the definition of
matrixes J and K, see section III for details.

(3) In terms of generalization performance, the results of
the experiment have indicated that the performance obtained
by the proposed e-TPSVR is superior to that of other classical
twin-type SVR algorithms for the artificial dataset with the
heteroscedastic error structure and UCI datasets.

The rest texts of paper are organized as follows. Section I1
introduces notations used in this paper and briefly describes
&-TSVR and the projection axis. Section III proposes the
linear e-TPSVR model and its extension for the non-linear
case. Numerical experiments have been done on both
synthetic and real-world datasets and their results have been
compared with TSVR, e-TSVR and v-TSVR in Section IV,
and section V contains concluding remarks.

II. BACKGROUND

In this section, we first give a brief description of e-twin
support vector regression (¢e-TSVR) [17] and then introduce
the concept of projection axis [21]. Without loss of generality,

given a training set T = {(x;,y;)}, i =12,..,1, where
x; ER™ and y; ER. Also let A = (44;A,;...;4;) be the
input training sample, and Y = (Ay;Yyy; ...;y;) be the

response of the training samples, where A is a | X n matrix,
the i-th row A; represents the i-th training sample, Yisal X 1
vector, and y; represents the i-th response.

A. e-Twin Support Vector Regression

Following the idea of TWSVM and TSVR, Shao et al. [15]
proposed an approach termed as e-twin support vector
regression (e-TSVR). Just like any other twin-type SVR, it
also finds two insensitive proximal linear function: fj, (x) =
wrx + by, k = 1,2. By introducing the regularization terms
(Wlwy + b2)/2 and the slack variables &, &*, nandn*

the primal problems can be expressed as
1
scswiwy +b7) +5 E*Tst +ce’,
wy,by 8.6 2 (1)
s.t. Y— (Aw1+eb1)—§.
Y —(Aw; +eby) = —ge—¢&, 20,

min

and
1 1 .,
min —c4(w2 wy + b3) + = r]* n* +ce’n,
wa,ba " 2 )
s.t. (Aw, +eby)—Y = n,
(Aw, +eb,) —Y = —ge—1n, n 20,
where ¢y, ¢y, C3,C4, & and &, are positive parameters, e is
column vector of 'ones' of appropriate dimension. The main
difference between TSVR and &-TSVR is an extra
regularization term (w]wy, + bZ)/2,k = 1,2, in (1) and (2),
thus the structural risk minimization principle is implemented
[17].
In order to get the solutions of problems (1) and (2), their
dual problems need to be derived. By introducing the

Lagrangian multiplies @ and y, the dual problems of the
e-TSVR are given by

1
minEaTG(GTG +c3D)6GTa—YTG(GTG + c31)7 G Ta + (eTey, + YT)a,
a

3
s.t. 0<a<ce,
and
1
minEyTG(GTG +c,DGTYy + YTG(GTG + ¢, )'GTy — (YT —eTey)y, @
Y

s.t. 0=y <cye

where G = [A e]. Once the QPPs (3) and (4) are solved, u,,
u, and the final regressor function f(x) can be obtained as
follows

uy = ['le] = (6TG +cs)1GT(Y — ), (5)
w, =[] = @6+ a6 + ), (6)

1 1 1
flx) = E(ﬁ(x) + f,(0) = E(Wl +w,) x + E(b1 +b). (7)

B. Projection Axis

In the twin-type SVR, there is usually a pair of insensitive
bound function fi(x) =wfx+by, k=12, ie the
insensitive up- and down-bound functions by solving a pair
of smaller sized QPPs. In order to obtain a suitable wy, the
variance of wlx; + b, —y; are supposed to be as small as
possible. In the other word, in each QPP, it finds a projection
axis, denoted as Wy, = [w] —1]7,k = 1,2, such that each
points will be projected on the projection axis Wy, and the
projected zone is expected to be minimized . It's important to
note here that b, does not contribute to the variance of
wlx; + b, — y; because by, is a fixed variable. The projected
zone for each bound function is minimized as

l —
%in%;[w,f 0[5 22t -07 w7

Soliwe 1 1
s ][_1 = SWEE W~ Wi Ee + 55, k=12,

) 5 ®
=l -1 [ x
2 [Wk ] Zyx
where X, X, are the empirical covariance matrices of inputs,
and responses, and X, is the empirical covariance matric of
the inputs and responses They are deﬁned respectively as

Z(xl X)(x,—x) = Z xx;,T — xxT,
lz 12% '

1
xy TZ(-X yt_xy) Z Zyxv

| =

NG ="

where X and y are the centroid points of inputs and responses,
respectively.

III. &-TWIN PROJECTION SUPPORT VECTOR REGRESSION

In this section, a novel e-twin projection support vector
machine for regression, termed as e-TPSVR is presented,
which is motivated by the e-TSVR and the idea of projection.
Using (8), the optimization problems of (1) and (2) can be
rewritten as the following formulations,

1 1
mi? EC3(W1TW1 +b3) += é’*Tf +ceTé+ Al( wiZw;, — nywl),
wq,b1,€,
&A1 9
s.t. Y —(Aw; +eb)) = &7,
Y —(Aw; +eb) =2 —ge—§, §20,
and
1 1
mzbn —cs(Wlw, + b%) + n ™" + ey +Az( wiz.w, — nywz),
W2,
10"z
s.t. (Aw, +eby) =Y =17,
(Aw, +eby) —Y = —ge—1n, n=0.

(10)

(Advance online publication: 1 February 2019)



Engineering Letters, 27:1, EL._27 1 13

To solve (9), the Lagrangian function is given by
L= %03(W{W1 + b} + %(Y - (Aw, + ebl))T(Y — (Aw; + eby)) + c,e¢
+A; (%wlTZ,Cw1 - Z,fywl) —aT(Y — (Aw, + eb,) + €;e + &) — BT¢,
an
where @ = (a4, @y, ...,a;) and B = (B4, Po, .., ;) are the
vectors of Lagrange multipliers. The K.T.T necessary and
sufficient optimality conditions for (9) are given by

2 —AT(Y = (Awy + eb))) + cawy + ATa + 1 2wy — A4, %,

owy y (12)
= O'

:_,i =—e"(Y — (Aw, +eb)) + csb, +eTa =0, (13)

Z—g=616 —a-f=0, (14)

Y —(Aw; +eby) = —ge—¢, £20, (5)

a(Y — (Aw; + eb) + ;e + &) =0, BTE =0, (16)

az0 =0. 17

Since B = 0, from (14), we have 0 < a < ¢,e. Next, combing
(12) and (13) leads to

(-t alp)+elp]+ ]«

+2 [%f g] [‘Zi] - [ZSY] =0, (18)
By defining
G=1a el w=[,]. =% o k= [ZSY], (19)
equation (18) can be rewritten as
—GT(Y — Guy) + csuy + GTa + Aju; — 1,K =0, (20)
Then the augmented vector u, is given by
u = (GTG + 3l + 1)) (GTY — GTa + 1, K). [©2))

Then putting (21) into (11) and using the above K.T.T.

conditions, the dual problem of the problem (9) is obtained as
m;lx—%aTDla +a™D,Y + 2,a"G(GTG + c31 + 1)) K
s.t. 0<a<ce,

where D; = G(GTG + c31 + 1,))7GT and f; =Y + €,e to

simplify our expression. In the same way, the dual of the

problem (10) can be given as

- anl' (22)

1 -1
me_EVTDZV —¥TDY = ,y"G(GTG + c 0 + ) 2]) e+ }’sz_ (23)

s.t. 0=y <cye,
-1

where D, = G(GTG + ¢ + A J) GT and f, =Y — eze.
The augmented vector u, is given by

U = [‘Zj] = (GTG +cd +4,)) Y (GTY +GTy + 1,K),  (24)
Once the solutions wy,b;,w, and b, are obtained, the
estimated regressor can be constructed as (7). For the case of
nonlinear regressors, an appropriately chosen kernel function
K should be introduced, and the more detailed derivation is
similar to the references [17, 21].

Iv. EXPERIMENTS

To check the performance of the proposed e-TPSVR, we
compare it with the popular TSVR, ¢-TSVR and v-TSVR in
several artificial and benchmark [22] datasets. All the
computations are carried out on Windows 7 OS Intel Core
i5-4210U CPU(2.4GHz) with 4GB RAM and MATLAB
R2014a environment. In order to decrease the computational
complexity of parameter selection, we set ¢c; = ¢, €3 = C4,
& = gand 4; = 1,. And Gaussian kernel function defined
by K(a,b) = exp(—|la — b||?/p is used to process nonlinear
data, where vectors a,b € R™, and the parameter p > 0.
Some commonly-used evaluation criterions [16] shown in
Table I are introduced before evaluating the performance of
these methods.

To test the regression performance of our proposed
e-TPSVR, fi(x) = sin(x)/x, x € [—4m, 4x] and f,(x) =
[x?/3], x € [—4m, 4] are introduced to generate all artificial
datasets. The training data's observed values are polluted by
the form y = f(x) +err , where the noise err =
(0.5 — |x|/8m)e depends on input. Variable e is the form of
ul[a, b] or N(u,c?), where u[a, b] represents the uniformly
random variable in [a,b] and N(u,0?) represents the
Gaussian random variable with means u and variance o2. It
implies that these examples have the heteroscedastic error
structure.

TABLE I
PERFORMANCE METRICS AND THEIR CALCULATION
Metric Calculation

SSE i (i — 92

SSR @i - 9)°

SST i = 9)?
SSE/SST i = 902/ 2iea i = 3)°
SSR/SST Y@ = 0/ 0n — §)?

Fig. 1 shows the one run results of e&-TPSVR and our
&-TPSVR on f; (x) with Gaussian noise with mean zero and
standard deviation 0.2, and Fig. 2 makes the same
comparison with f,(x). In Fig. 1 and Fig. 2, the solid line is
the noiseless test data, and heteroscedastic noise is added to
the test data as training data, which is the cross in the figures.
It can be seen from the figures that the heteroscedastic noise
different from usual additive noise has the characteristic of
depending on location or input, so it's harder to deal with. 260
noisy data are selected as training data, 500 data are selected
as test data without noise, and the final regression function is
trained by e-TSVR and our e-TPSVR. Horizontal coordinate
represents the number of training points. In particular, in
order to see the regression effect more clearly, the horizontal
coordinates only show the range from 50 to 450 in Fig. 1, and
the horizontal coordinates only show the range from 200 to
300 in Fig. 2. One of the dotted lines is the regression result
of the proposed e-TPSVR method, and the other dotted line is
the regression result of the e-TSVR method. The SSE values
of e-TSVR and e-TPSVR algorithms in Fig. 1 are 0.4276 and
0.3674 in order, and the SSE values of them in Fig. 2 are
1.5449 and 1.0983 in order. It can be clearly observed from
the figures that the result of e-TPSVR is closer to the black
solid line than the result of e-TSVR. It is because that some
points in the heteroscedastic zone are discarded, whereas
e-TSVR cannot filter out the possible noise points. It is also
for this reason that data structure information is embedded in
our e-TPSVR learning process.

Next, the effectiveness of the proposed e-TPSVR is further
verified by comparing it with TSVR, e-TSVR and v-TSVR.
To fairly compare with the performance of TSVR, e-TSVR,
v-TSVR and e-TPSVR, 20 independent groups’ data on the
two functions with different types of noise are generated
randomly using Matlab toolbox, including 260 samples
during training and 500 samples during testing for each
function. Besides, testing data points are uniformly sampled
from the objective function without any noise. The measure
results are listed in Table II and Table III. It is easy to see
that our method obtains the smaller SSE values and SSE/SST
values than the other methods on these two problems, which
indicates that the proposed e-TPSVR gets better performance
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than the other algorithms and it is more suitable for the case

that the noise is heteroscedastic.
1.2 : ; ; — .

+ Samples I
— Il

e-TSVR
e-TPSVR

0.8}

045100 150 200 250 300 350 400 450

Fig. 1 Predictions of ¢-TSVR and ¢-TPSVR on f; (x) with
err=N(0, 0.22).

1.5k, .,
1 x . s 1
05! ' .
AY [+ samples
O " f2
e-TSVR
i e:-TPSVR_
0% 220 240 260 280 300

Fig. 2 Predictions of e&-TSVR and e-TPSVR on f,(x) with
err=N(0,0.2%).

In addition, we test three UCI datasets: Servo, Wisconsin
breast cancer datasets, Auto-Mpg, Concrete compressive
strength, which are usually used in testing machine learning
algorithms. To avoid biased comparisons, the standard
ten-fold cross-validation is used to compute the optimal
values. The results of the performance criteria are listed in
Table IV. Also, it can be seen from Table IV that our method
outperforms the other methods.

TABLE 11
PERFORMANCE COMPARISON ON ARTIFICIAL DATASETS FOR U[-0.2,0.2]
DataSets Regressor SSE SSE/SST ~ SSR/SST

TSVR e oo 00007

) STSVR R 00003 00123
TSR Golos 00003 00124

STPSVR (0 G004 o011

TSR 0RO Do dooe

I T v
V-TSVR 8:32%1 8:88&% (l):géégi

STPSVR (0 000l 00062

TABLE Il

PERFORMANCE COMPARISON ON ARTIFICIAL DATASETS FOR N(0,0.1%)
DataSets Regressor SSE SSE/SST  SSR/SST
VR Goss oo 001

o emsw e e e
o Qe poes yios

e Qe g b

VR G0sn ool ooodl
R
i o

v s g o

V. CONCLUSION

In this paper, a novel e-twin projection support vector
regression models (e-TPSVR) is proposed. The idea of
proposed e-TPSVR is based on e-TSVR formulation.
However, because the term of projection axis is introduced to
maximize the empirical correlation coefficient between the
up-or down-bound targets and the projected inputs, our
proposed v-TPSVR derives better approximate than other
e-TSVR algorithm. The experimental results on several
artificial and UCI datasets show that our proposed method
gives similar or better generalization performance with
TSVR, e-TSVR and v-TSVR. Moreover, how to select the
optimal hyper parameters and how to determine them rapidly
are the difficult problems and should be studied in the
following work.

TABLE IV
PERFORMANCE COMPARISON ON UCI DATASETS
DataSets Regressor SSE SSE/SST SSR/SST

62364+ 02959+ 12939+

TSVR 47243 04411 0.8266
6.6304+ 03048+  1.2746+

s &TSVR 5.3403 0.4539 0.8466
YO gyr  6:6304F 03048+ 12746+
5.3402 0.4539 0.8466
55540+ 02533  1.2992+

eTPSVR 71309 03334 07315
42841+  1.0006+ 03918+

TSVR 1.5430 03366 02123
40145+ 09162+  0.1615%

Wisconsin ~ CTOVR 1.6350 0.2299 0.0725
B.C. 40171+ 09167+  0.1582+
v-TSVR 1.6316 0.2273 0.0717
39181 0.8953+  0.1903+

eTPSVR 7 5766 0.2552 0.0752
18759+ 03001+  0.8666+

TSVR 0.6674 0.1524 01771
1.6526= 02636+  0.7850+

Auto &TSVR 0.6477 0.1474 0.1287
Mpg 1.6528+ 02636+  0.7850+
v-TSVR 0.6473 0.1473 0.1287
15957+ 02547+  0.7986%

eTPSVR 16112 0.1398  0.1423
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