
 

 
Abstract—Taking motivation from ɛ-insensitive twin support 

vector regression (ɛ-TSVR) and the projection idea, this paper 
proposes a novel ɛ-twin projection support vector regression 
models, called ɛ-TPSVR. The proposed ɛ-TPSVR, which is 
based on ɛ-TSVR, determines the regression function through a 
pair of nonparallel hyperplanes solved by two smaller sized 
quadratic programming problems. Different from ɛ-TSVR, a 
projection axis is sought for each optimization problem of 
ɛ-TPSVR such that the variance of the projected points is 
minimized. Therefore, the empirical correlation coefficient 
between each hyperplane and the projected inputs can be 
optimized. The experimental results indicate that the proposed 
ɛ-TPSVR obtains the better prediction performance than TSVR 
and ɛ-TSVR methods that were widely adopted.  
 

Index Terms—Support vector machine (SVM), Regression 
analysis, Projection algorithms, Benchmark testing, ɛ-twin 
support vector regression (ɛ-TSVR) 
 

I. INTRODUCTION 

upport vector machine (SVM) [1-3] has become a 
powerful tool in pattern classification and regression field 
for its excellent generalization performance, and has been 

successfully applied to various real-world problems [4-6]. As 
for support vector regression model (SVR), which is a 
standard tool in regression tasks, there are some classical 
methods, such as ε-support vector regression (ε-SVR) [2], the 
sequential minimal optimization (SMO) [7], smooth SVR [8], 
the parametric insensitive SVR [9], PSO-SVR [10], and 
v-support vector classification (v-SVC) [11].  

One of the main challenges for the SVR is the high cost of 
training, i.e. ࣩሺ݉ଷሻ,  where m is the number of training 
samples. Motivated by the researches on twin support vector 
machine (TSVM) [12-15], Peng [16] proposed a twin support 
vector regression (TSVR), in which the complexity of 
algorithm is reduced to ࣩሺ2 ൈ ሺ݉/2ሻଷሻ , that means the 
TSVR is four times faster than the usual SVR in theory. 
Different from SVR, the TSVR method generates two 
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nonparallel functions by solving a pair of smaller sized 
quadratic programming problems (QPPs) instead of a large 
size one, so the algorithm TSVR is much faster than a usual 
SVR. Consequently, many kinds of twin-type SVR have been 
studied extensively. For example, Shao et al. [17] proposed 
an ε-insensitive twin support vector regression (ε-TSVR), in 
which the structural risk minimization principle is 
implemented by introducing the regularization term in the 
primal problems. R. Rastogi et al. [18] presented another 
twin model for regression termed as v-TSVR, which 
extended the ε-TSVR techniques by automatically adjusting 
the value ε1 and ε2 via user defined parameters v1 and v2, so 
that the fraction of errors and support vectors can be 
controlled. 

However, the previous algorithms and models are very 
suitable for the assumption that the noise level is uniform on 
training data, or at least. For the heteroscedastic noise 
structure, in which the amount of noise depends on location 
or input, the assumption of a uniform noise level is not 
satisfied. Recently, motivated by the par-v-SVR [19], Peng 
[20] presented a novel parametric- insensitive SVR model for 
data regression, termed as twin parametric insensitive SVR 
(TPISVR). Although both par-v-SVR and TPISVR are more 
suitable for the case that the noise is more heteroscedastic 
than the classical SVR, the difference between them is that 
the strategy TPISVR is to solve two smaller sized QPPs 
rather than one large QPP, which makes it learn faster than 
par-v-SVR and SVR. Later, another efficient twin projection 
support vector regression (TPSVR) algorithm proposed by 
Peng [21] improved TPISVR through seeking a suitable 
projection axis such that the empirical variance of projected 
points is minimized.  

In addition, it is interesting to note that, in the ε-TSVR 
model, the regularization term ሺݓ௞

௞ݓ் ൅ ܾ௞
ଶሻ/2, ݇ ൌ 1,2  is 

added to the primal optimization problems because of the 
structural risk minimization principle. The regularization 
terms in the TPSVR model, however, is ݓ௞

,௞/2ݓ் ݇ ൌ 1,2. 
Because minimizing the projection zone of input points is 
unrelated to the offset ܾ௞ , ܾ௞

ଶ  has to be removed from the 
regularization term in order to getting the solutions of 
optimization problems correctly. This implies that the 
method of solving ܾ௞	has to be deduced separately, which 
will increase the complexity of the model. In fact, what we 
expect is that the augmented vector ݑ௞ ൌ ሾݓ௞

் ܾ௞ሿ்  is 
directly solved, not directly obtained ௞ݓ	 . To this end, 
inspired by ε-TSVR and the idea of projection, an ε-twin 
projection support vector machine for regression is proposed 
in this paper, which is termed as ε-TPSVR. Some of the 
major features of the proposed ε-TPSVR are as follows:  
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 (1) The proposed ε-TPSVR model aims to seek a suitable 
projection axis such that the empirical variance of projected 
points is minimized. It is more suitable for the assumption 
that the noise level is heteroscedastic. In addition, because the 
propose method is based on the ε-TSVR model, the structural 
information of data is then embedded into the regression 
model.  

(2)  The Introduction of matrixes J and K makes it possible 
to solve the augmented vector ݑ௞ ൌ ሾݓ௞

் ܾ௞ሿ் . It also 
reduces computational complexity. For the definition of 
matrixes J and K, see section III for details. 

(3) In terms of generalization performance, the results of 
the experiment have indicated that the performance obtained 
by the proposed ε-TPSVR is superior to that of other classical 
twin-type SVR algorithms for the artificial dataset with the 
heteroscedastic error structure and UCI datasets. 

The rest texts of paper are organized as follows. Section II 
introduces notations used in this paper and briefly describes 
ε-TSVR and the projection axis. Section III proposes the 
linear ε-TPSVR model and its extension for the non-linear 
case. Numerical experiments have been done on both 
synthetic and real-world datasets and their results have been 
compared with TSVR, ε-TSVR and v-TSVR in Section IV, 
and section V contains concluding remarks. 

II. BACKGROUND 

In this section, we first give a brief description of ε-twin 
support vector regression (ε-TSVR) [17] and then introduce 
the concept of projection axis [21]. Without loss of generality, 
given a training set  ܶ ൌ ሼሺݔ௜, ݅ 		,௜ሻሽݕ ൌ 1,2, … , ݈， where 
௜ݔ ∈ ܴ௡  and ݕ௜ ∈ ܴ . Also let ܣ ൌ ሺܣଵ; …;ଶܣ ; ௟ሻܣ  be the 
input training sample, and 	ܻ ൌ ሺܣଵ; …;ଶݕ ; ௟ሻݕ  be the 
response of the training samples, where ܣ is a ݈ ൈ ݊ matrix, 
the i-th row ܣ௜ represents the i-th training sample, Y is a ݈ ൈ 1 
vector, and ݕ௜ represents the i-th response.  

A. ε-Twin Support Vector Regression 

Following the idea of TWSVM and TSVR, Shao et al. [15] 
proposed an approach termed as ε-twin support vector 
regression (ε-TSVR). Just like any other twin-type SVR, it 
also finds two insensitive proximal linear function: ௞݂ሺݔሻ ൌ
w௞
ݔ் ൅ ܾ௞, ݇ ൌ 1,2. By introducing the regularization terms 

ሺݓ௞
௞ݓ் ൅ ܾ௞

ଶሻ/2  and the slack variables 	ߦ, ,∗ߦ ∗ߟ	and	ߟ  , 
the primal problems can be expressed as 

݉݅݊
௪భ,௕భ,క,క∗

1
2
ܿଷሺݓଵ

ଵݓ் ൅ ܾଵ
ଶሻ ൅

1
2
∗ߦ்∗ߦ ൅ ܿଵ்݁ߦ,

.ݏ .ݐ ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൌ ,∗ߦ
	 ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൒ െߝଵ݁ െ ߦ			,	ߦ ൒ 0,

																			ሺ1ሻ 

and 

݉݅݊
௪మ,௕మ,ఎ,ఎ∗

1
2
ܿସሺݓଶ

ଶݓ் ൅ ܾଶ
ଶሻ ൅

1
2
∗ߟ்∗ߟ ൅ ܿଶ்݁ߟ,

.ݏ .ݐ ሺݓܣଶ ൅ ܾ݁ଶሻ െ ܻ ൌ ,∗ߟ
	 ሺݓܣଶ ൅ ܾ݁ଶሻ െ ܻ ൒ െߝଶ݁ െ ߟ			,	ߟ ൒ 0,

																		ሺ2ሻ 

where ܿଵ, ܿଶ, ܿଷ, ܿସ, ଵߝ  and 	ߝଶ  are positive parameters, e is 
column vector of 'ones' of appropriate dimension. The main 
difference between TSVR and ε-TSVR is an extra 
regularization term  ሺݓ௞

௞ݓ் ൅ ܾ௞
ଶሻ/2, ݇ ൌ 1,2,		in (1) and (2), 

thus the structural risk minimization principle is implemented 
[17]. 

In order to get the solutions of problems (1) and (2), their 
dual problems need to be derived. By introducing the 

Lagrangian multiplies ߙ  and ߛ	 , the dual problems of the 
ε-TSVR are given by 

݉݅݊
ఈ

1
2
ܩ்ܩሺܩ்ߙ ൅ ܿଷܫሻିଵߙ்ܩ െ ܩ்ܩሺܩ்ܻ ൅ ܿଷܫሻିଵߙ்ܩ ൅ ሺ்݁ߝଵ ൅ ்ܻሻߙ,

.ݏ .ݐ 0 ൑ ߙ ൑ ܿଵ݁,
	ሺ3ሻ 

and  

݉݅݊
ఊ

1
2
ܩ்ܩሺܩ்ߛ ൅ ܿସܫሻିଵߛ்ܩ ൅ ܩ்ܩሺܩ்ܻ ൅ ܿସܫሻିଵߛ்ܩ െ ሺ்ܻ െ ,ߛଶሻߝ்݁

.ݏ .ݐ 0 ൑ ߛ ൑ ܿଶ݁,
	ሺ4ሻ 

where ܩ ൌ ሾܣ ݁ሿ. Once the QPPs (3) and (4) are solved, ݑଵ, 
 ሻ can be obtained asݔଶ and the final regressor function ݂ሺݑ
follows 

ଵݑ ൌ ቂ
ଵݓ
ܾଵ
ቃ ൌ ሺܩ்ܩ ൅ ܿଷܫሻିଵ்ܩሺܻ െ  ሺ5ሻ																						ሻ,ߙ

ଶݑ ൌ ቂ
ଶݓ

ܾଶ
ቃ ൌ ሺܩ்ܩ ൅ ܿସܫሻିଵ்ܩሺܻ ൅  ሺ6ሻ																					ሻ,ߛ

݂ሺݔሻ ൌ
1
2
൫ ଵ݂ሺݔሻ ൅ ଶ݂ሺݔሻ൯ ൌ

1
2
ሺݓଵ ൅ ݔଶሻ்ݓ ൅

1
2
ሺܾଵ ൅ ܾଶሻ	.						ሺ7ሻ 

B. Projection Axis 

In the twin-type SVR, there is usually a pair of insensitive 
bound function 	 ௞݂ሺݔሻ ൌ w௞

ݔ் ൅ ܾ௞, ݇ ൌ 1,2 , i.e. the 
insensitive up- and down-bound functions by solving a pair 
of smaller sized QPPs. In order to obtain a suitable	ݓ௞,	the 
variance of  ݓ௞

௜ݔ் ൅ ܾ௞ െ  ௜  are supposed to be as small asݕ
possible. In the other word, in each QPP, it finds a projection 
axis, denoted as	ݓෝ௞ ൌ ሾݓ௞

் െ1ሿ்	, ݇ ൌ 1,2, such that each 
points will be projected on the projection axis 	ݓෝ௞, and the 
projected zone is expected to be minimized . It's important to 
note here that ܾ௞  does not contribute to the variance of  
௞ݓ
௜ݔ் ൅ ܾ௞ െ  because ܾ௞ is a fixed variable. The projected	௜ݕ

zone for each bound function is minimized as  

݉݅݊
௪ೖ

1
2݈
෍ሾݓ௞

் െ1ሿ ൤
ሺݔ௜ െ ሻݔ
௜ݕ െ ݕ

൨ ሾሺݔ௜ െ ሻ்ݔ ௜ݕ െ ሿݕ ቂ
௞ݓ
െ1ቃ

௟

௜ୀଵ

ൌ
1
2
ሾݓ௞

் െ1ሿ ൤
௫ߑ ௫௬ߑ
௬௫ߑ ௬ߑ

൨ ቂ
௞ݓ
െ1ቃ ൌ

1
2
௞ݓ
௞ݓ௫ߑ் െ ௞ݓ

௫௬ߑ் ൅
1
2
,௬ߑ ݇ ൌ 1,2,

	ሺ8ሻ 

where	Σ୶, Σ୷ are the empirical covariance matrices of inputs, 
and responses, and  Σ୷୶ is the empirical covariance matric of 
the inputs and responses. They are defined respectively as 

௫ߑ ൌ
1
݈
෍ሺݔ௜ െ ሻݔ

௡

௜ୀଵ

ሺݔ௜ െ ሻ்ݔ ൌ
1
݈
෍ݔ௜ݔ௜் െ ்ݔ̅ݔ̅
௟

௜ୀଵ

, 

௬ߑ ൌ
1
݈
෍ሺݕ௜ െ ௜ݕሻሺݕ െ ሻ்ݕ
௡

௜ୀଵ

ൌ
1
݈
෍ݕ௜ଶ െ തଶݕ
௟

௜ୀଵ

	,					 

௫௬ߑ ൌ
1
݈
෍ሺݔ௜ݕ௜ െ തሻݕݔ̅

௟

௜ୀଵ

௫௬ߑ								, ൌ ௬௫்ߑ ,																				 

where ̅ݔ and ݕത are the centroid points of inputs and responses, 
respectively. 

III. ε-TWIN PROJECTION SUPPORT VECTOR REGRESSION 

In this section, a novel ε-twin projection support vector 
machine for regression, termed as ε-TPSVR is presented, 
which is motivated by the ε-TSVR and the idea of projection. 
Using (8), the optimization problems of (1) and (2) can be 
rewritten as the following formulations, 

݉݅݊
௪భ,௕భ,క，
క∗,ఒభ

1
2
ܿଷሺݓଵ

ଵݓ் ൅ ܾଵ
ଶሻ ൅

1
2
∗ߦ்∗ߦ ൅ ܿଵ்݁ߦ ൅ ଵߣ ൬

1
2
ଵݓ
ଵݓ௫ߑ் െ ௫௬்ߑ ଵ൰ݓ ,

.ݏ .ݐ ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൌ ,∗ߦ
	 ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൒ െߝଵ݁ െ ߦ			,	ߦ ൒ 0,

	ሺ9ሻ 

and 

݉݅݊
௪మ,௕మ,
ఎ,ఎ∗,ఒమ

1
2
ܿସሺݓଶ

ଶݓ் ൅ ܾଶ
ଶሻ ൅

1
2
∗ߟ்∗ߟ ൅ ܿଶ்݁ߟ ൅ ଶߣ ൬

1
2
ଶݓ
ଶݓ௫ߑ் െ ௫௬்ߑ ଶ൰ݓ ,

.ݏ .ݐ ሺݓܣଶ ൅ ܾ݁ଶሻ െ ܻ ൌ ,∗ߟ
	 ሺݓܣଶ ൅ ܾ݁ଶሻ െ ܻ ൒ െߝଶ݁ െ ߟ			,	ߟ ൒ 0.

ሺ10ሻ 
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To solve (9), the Lagrangian function is given by 
ࣦ ൌ

ଵ

ଶ
ܿଷሺݓଵ

ଵݓ் ൅ ܾଵ
ଶሻ ൅

ଵ

ଶ
൫ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ൯

்
൫ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ൯ ൅ ܿଵ்݁ߦ

൅ߣଵ ቀ
ଵ

ଶ
ଵݓ
ଵݓ௫ߑ் െ ௫௬்ߑ ଵቁݓ െ ሺ்ܻߙ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൅ ߳ଵ݁ ൅ ሻߦ െ ,ߦ்ߚ

       

     (11) 
where ߙ ൌ ሺߙଵ, ,ଶߙ … , ௟ሻߙ  and ߚ ൌ ሺߚଵ, ,ଶߚ … , ௟ሻߚ  are the 
vectors of Lagrange multipliers. The K.T.T necessary and 
sufficient optimality conditions for (9) are given by 

డࣦ

డ௪భ
ൌ െ்ܣ൫ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ൯ ൅ ܿଷݓଵ ൅ ߙ்ܣ ൅ ଵݓ௫ߑଵߣ െ ௫௬ߑଵߣ

									ൌ 0,
   ሺ12ሻ 

డࣦ

డ௕భ
ൌ െ்݁൫ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ൯ ൅ ܿଷܾଵ ൅ ߙ்݁ ൌ 0	,														(13) 

డࣦ

డక
ൌ ܿଵ݁		 െ ߙ െ ߚ ൌ 0	,																																					(14) 

ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൒ െߝଵ݁ െ ߦ			,	ߦ ൒ 0,	                 (15) 
ሺ்ܻߙ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൅ ߳ଵ݁ ൅ ሻߦ ൌ ߦ்ߚ 	,0 ൌ 0,           (16) 

ߙ ൒ 0, ߚ ൒ 0 .                                (17) 
Since 	ߚ ൒ 0, from (14), we have 0 ൑ ߙ ൑ ܿଵ݁. Next, combing 
(12) and (13) leads to  

െ ቂܣ
்

்݁
ቃ ቀܻ െ ሾܣ ݁ሿ ቂ

ଵݓ
ܾଵ
ቃቁ൅ܿଷ ቂ

ଵݓ
ܾଵ
ቃ ൅ ቂܣ

்

்݁
ቃ  ߙ

൅ߣଵ ቂ
௫ߑ 0
0 0

ቃ ቂ
ଵݓ
ܾଵ
ቃ െ ଵߣ ൤

௫௬ߑ
0
൨ ൌ 0,                            (18) 

By defining 

ܩ ൌ ሾܣ ݁ሿ,	 ݑଵ ൌ ቂ
ଵݓ
ܾଵ
ቃ , ܬ ൌ ቂߑ௫ 0

0 0
ቃ, ܭ ൌ ൤

௫௬ߑ
0
൨,          (19) 

equation (18) can be rewritten as 
െ்ܩሺܻ െ ଵሻݑܩ ൅ ܿଷݑଵ ൅ ߙ்ܩ ൅ ଵݑܬଵߣ െ ܭଵߣ ൌ 0,													 (20) 

Then the augmented vector 	ݑଵ is given by  
ଵݑ		     ൌ ሺܩ்ܩ ൅ ܿଷܫ ൅ ்ܻܩሻିଵሺܬଵߣ െ ߙ்ܩ ൅  ሻ.            (21)ܭଵߣ

Then putting (21) into (11) and using the above K.T.T. 
conditions, the dual problem of the problem (9) is obtained as  

݉ax
ఈ

െ
1
2
ߙଵܦ்ߙ ൅ ଵܻܦ்ߙ ൅ ܩ்ܩሺܩ்ߙଵߣ ൅ ܿଷܫ ൅ ܭሻିଵܬଵߣ െ ்ߙ ଵ݂

.ݏ .ݐ 0 ൑ ߙ ൑ ܿଵ݁,
,			ሺ22ሻ 

where ܦଵ ൌ Gሺܩ்ܩ ൅ ܿଷܫ ൅ ሻିଵG୘ܬଵߣ   and ଵ݂ ൌ ܻ ൅ ߳ଵ݁ to 
simplify our expression. In the same way, the dual of the 
problem (10) can be given as 

݉ax
ఈ

െ
1
2
ߛଶܦ்ߛ െ ଶܻܦ்ߛ െ ܩ்ܩ൫ܩ்ߛଶߣ ൅ ܿସܫ ൅λ

ଶ
൯ܬ
ିଵ
ܭ ൅ ்ߛ ଶ݂

.ݏ .ݐ 0 ൑ ߛ ൑ ܿଶ݁,
,			ሺ23ሻ 

where ܦଶ ൌ ܩ்ܩ൫ܩ ൅ ܿସܫ ൅λ
ଶ
൯ܬ
ିଵ
்ܩ   and ଶ݂ ൌ ܻ െ ߳ଶ݁. 

The augmented vector 		ݑଶ is given by 
ଶݑ		 ൌ ቂ

ଶݓ

ܾଶ
ቃ ൌ ሺܩ்ܩ ൅ ܿସܫ ൅ ்ܻܩሻିଵሺܬଶߣ ൅ ߛ்ܩ ൅  ሻ,        (24)ܭଶߣ

Once the solutions ݓଵ, ܾଵ, ଶݓ  and 	ܾଶ are obtained, the 
estimated regressor can be constructed as (7). For the case of 
nonlinear regressors, an appropriately chosen kernel function 
K should be introduced, and the more detailed derivation is 
similar to the references [17, 21]. 

IV. EXPERIMENTS 

To check the performance of the proposed ε-TPSVR, we 
compare it with the popular TSVR, ε-TSVR and v-TSVR in 
several artificial and benchmark [22] datasets. All the 
computations are carried out on Windows 7 OS Intel Core 
i5-4210U CPU(2.4GHz) with 4GB RAM and MATLAB 
R2014a environment. In order to decrease the computational 
complexity of parameter selection, we set ܿଵ ൌ ܿଶ, ܿଷ ൌ ܿସ, 
ଵߝ ൌ ଵߣ ଵandߝ ൌ  ଶ. And Gaussian kernel function definedߣ
by	ܭሺܽ, ܾሻ ൌ exp	ሺെ‖ܽ െ ܾ‖ଶ ⁄ߩ  is used to process nonlinear 
data, where vectors ܽ, ܾ ∈ ܴ௡ , and the parameter ߩ	 ൒ 0 . 
Some commonly-used evaluation criterions [16] shown in 
Table I are introduced before evaluating the performance of 
these methods. 

To test the regression performance of our proposed 
ε-TPSVR, ଵ݂ሺݔሻ ൌ sinሺݔሻ ⁄ݔ , ݔ ∈ ሾെ4ߨ, ሿߨ4  and ଶ݂ሺݔሻ ൌ
మݔ| య⁄ |, ݔ ∈ ሾെ4ߨ,  ሿ are introduced to generate all artificialߨ4
datasets. The training data's observed values are polluted by 
the form ݕ ൌ ݂ሺݔሻ ൅ ݎݎ݁ , where the noise ݁ݎݎ ൌ
ሺ0.5 െ |ݔ| ⁄ߨ8 ሻ݁ depends on input. Variable  ݁ is the form of  
,ሾܽݑ ܾሿ or		ܰሺߤ, ,ሾܽݑ	ଶሻ, whereߪ ܾሿ represents the uniformly 
random variable in ሾܽ, ܾሿ  and ܰሺߤ, ଶሻߪ  represents the 
Gaussian random variable with means ߤ and variance	ߪଶ. It 
implies that these examples have the heteroscedastic error 
structure.  

TABLE  I 
PERFORMANCE METRICS AND THEIR CALCULATION 

Metric Calculation 

SSE ∑ ሺݕ௜ െ ො௜ሻଶݕ
௟
௜ୀଵ   

SSR ∑ ሺݕො௜ െ തሻଶ௟ݕ
௜ୀଵ   

SST ∑ ሺݕ௜ െ തሻଶ௟ݕ
௜ୀଵ   

SSE/SST ∑ ሺݕ௜ െ ො௜ሻଶݕ
௟
௜ୀଵ ∑ ሺݕ௜ െ തሻଶ௟ݕ

௜ୀଵ⁄   

SSR/SST ∑ ሺݕො௜ െ തሻଶ௟ݕ
௜ୀଵ ∑ ሺݕ௜ െ തሻଶ௟ݕ

௜ୀଵ⁄   

 
Fig. 1 shows the one run results of ε-TPSVR and our 

ε-TPSVR on ଵ݂ሺݔሻ with Gaussian noise with mean zero and 
standard deviation 0.2, and Fig. 2 makes the same 
comparison with ଶ݂ሺݔሻ. In Fig. 1 and Fig. 2, the solid line is 
the noiseless test data, and heteroscedastic noise is added to 
the test data as training data, which is the cross in the figures. 
It can be seen from the figures that the heteroscedastic noise 
different from usual additive noise has the characteristic of 
depending on location or input, so it's harder to deal with. 260 
noisy data are selected as training data, 500 data are selected 
as test data without noise, and the final regression function is 
trained by ε-TSVR and our ε-TPSVR. Horizontal coordinate 
represents the number of training points. In particular, in 
order to see the regression effect more clearly, the horizontal 
coordinates only show the range from 50 to 450 in Fig. 1, and 
the horizontal coordinates only show the range from 200 to 
300 in Fig. 2. One of the dotted lines is the regression result 
of the proposed ε-TPSVR method, and the other dotted line is 
the regression result of the ε-TSVR method. The SSE values 
of ε-TSVR and ε-TPSVR algorithms in Fig. 1 are 0.4276 and 
0.3674 in order, and the SSE values of them in Fig. 2 are 
1.5449 and 1.0983 in order. It can be clearly observed from 
the figures that the result of ε-TPSVR is closer to the black 
solid line than the result of ε-TSVR. It is because that some 
points in the heteroscedastic zone are discarded, whereas 
ε-TSVR cannot filter out the possible noise points. It is also 
for this reason that data structure information is embedded in 
our ε-TPSVR learning process. 

Next, the effectiveness of the proposed ε-TPSVR is further 
verified by comparing it with TSVR, ε-TSVR and v-TSVR. 
To fairly compare with the performance of TSVR, ε-TSVR, 
v-TSVR and ε-TPSVR, 20 independent groups’ data on the 
two functions with different types of noise are generated 
randomly using Matlab toolbox, including 260 samples 
during training and 500 samples during testing for each 
function. Besides, testing data points are uniformly sampled 
from the objective function without any noise. The measure 
results are listed in Table Ⅱ and Table Ⅲ. It is easy to see 
that our method obtains the smaller SSE values and SSE/SST 
values than the other methods on these two problems, which 
indicates that the proposed ε-TPSVR gets better performance 
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