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Abstract—This paper addresses the problem of finite-time
stabilization by state feedback for a class of uncertain high-
order nonholonomic systens in feedforward-like form. Based
on the finite-time stability theorem, and by introducing sign
function and necessarily modifying the homogeneous domi-
nation approach, a constructive design procedure for state
feedback control is given. Together with a novel switching
control strategy, the designed controller renders that the states
of the closed-loop system are regulated to zero in a finite time.
A simulation example is provided to illustrate the effectiveness
of the proposed approach.

Index Terms—high-order nonholonomic systems, time-
varying delays, state feedback, adding a power integrator
nonholonomic systems, global asymptotic stabilization.

I. INTRODUCTION

As an important class of nonlinear systems, nonholonomic
systems have attracted a great deal of attention over the past
decades because they can be used to model numerous me-
chanical systems, such as mobile robots, car-like vehicle and
under-actuated satellites, see, e.g., [1-4] and the references
therein. However, from Brockett necessary condition [5], it
is well known that no smooth (or even continuous) time-
invariant static state feedback exists for the stabilization of
nonholonomic systems. To overcome this difficulty, with the
effort of many researchers a number of intelligent approaches
have been proposed, which can mainly be classified into
discontinuous time-invariant stabilization[6,7], smooth time-
varying stabilization[8,9] and hybrid stabilization[10]. Using
these valid approaches, the asymptotic issue of nonholonom-
ic systems has been extensively studied [11-20].

Compared to the asymptotic stabilization, the closed-loop
system with finite-time convergence usually demonstrates
faster convergence rates, higher accuracies and better distur-
bance rejection properties [21]. Motivated by this, finite-time
stabilization of nonholonomic systems has been received
intense investigation recently [22-25]. More specifically,
based on the finite-time Lyapunov stability theorem, [22]
proposed a novel switching finite-time control strategy to
nonholonomic systems in chained form with weak drifts.
The works [23] and [24] extended the results in [22] to
the nonholonomic systems in chained form with uncertain
parameters and perturbed terms, respectively. In particular,
in [25], the adaptive finite-time stabilization problem was
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considered for a class of more general nonholonomic sys-
tems, which is called high order nonholonomic systems and
can be viewed as the extension of the classical nonholo-
nomic systems. However, it should be noted that all above
papers are concerned with the systems in feedback-like form
(i,e., the x-subsystem of considered systems is a feedback-
like system), while nonholonomic systems in feedforward-
like form have received little consideration. However, there
exist some practical systems which can be transformed to
nonholonomic systems in feedforward-like form such as the
hopping robot presented in [26]. Therefore, how to design
finite-time stabilizing controllers for nonholonomic systems
in feedforward-like form is a meaningful work, which has
not been fully solved in the existing literature.

Motivated the above discussion, in this paper we focus our
attention on solving the problem of finite-time stabilization
by state feedback for a class of high order nonholonomic
systems in feedforward-like form. The contributions is high-
lighted as follows. (i) The finite-time stabilization problem of
the high order nonholonomic systems, which is neither feed-
back linearizable nor stabilized by applying the frequently-
used backstepping approach or its variants, is studied for the
first time. (ii) A sufficient condition on characterizing the
nonlinear growth of the nonholonomic feedforward systems
for its finite-time stabilization is derived. (iii) Based on the
finite-time stability theorem, and by introducing sign function
and necessarily modifying the homogeneous domination ap-
proach, a systematic state feedback control design procedure
is proposed to render the states of closed-loop system to zero
in a finite time.

The remainder of this paper is organized as follows.
Section II describes the systems to be studied and formulates
the control problem. Section III presents the control design
procedure and the main results. Section IV gives a simulation
example to illustrate the theoretical finding of this paper.
Finally, concluding remarks are proposed in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider the following class of high order
nonholonomic systems:

ẋ0 = d0u
p0

0 + ϕ0(t, x0)
ẋ1 = d1x

p1

2 u0 + ϕ1(t, x2, · · · , xn, u0, u1)
ẋ2 = d2x

p2

3 u0 + ϕ2(t, x3, · · · , xn, u0, u1)
...

ẋn−1 = dn−1x
pn−1
n u0 + ϕn−1(t, xn, u0, u1)

ẋn = dnu
pn

1

(1)

where (x0, x)
T = (x0, x1, · · · , xn)T ∈ Rn+1, u =

(u0, u1)
T ∈ R2 are the system state and control input,
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respectively. pi ∈ R≥1
odd, i = 1, · · · , n are said to be the

high orders of the system. di, i = 1, · · · , n are disturbed
virtual control coefficients. ϕi, i = 1, · · · , n are unknown
continuous functions, which denote the inputs and states
driven uncertainties. Note that the x-subsystem of system (1)
has a feedforward-like structure. This implies system (1) is
a high order nonholonomic system in feedforward-like form,
which is also called as high order nonholonomic feedforward
system in this paper.

The objective of this paper is to design a state feedback
controller in the form u0 = u0(x0), u1 = u1(x0, x) such
that the finite-time regulation of the states are achieved; i.e.,
lim
t→T

(|x0(t)|+ |x(t)|) = 0 and (x0(t), x(t)) = (0, 0) for any
t ≥ T , where T is a finite time.

To this end, the following assumptions are imposed in this
paper.

Assumption 1. For i = 0, 1, · · · , n, there are positive
constants ci1 and ci2 such that

ci1 ≤ di ≤ ci2

Assumption 2. For ϕ0, there is a positive constant a such
that

|ϕ0(·)| ≤ a|x0|

Assumption 3. For i = 1, · · · , n − 1, there are constants
b > 0 and τ ∈ (− 1∑n

l=1 p1···pl−1
, 0) such that

|ϕi(·)| ≤ b
n+1∑

j=i+1

|xj |qij

where xn+1 = u1, r1 = 1, piri+1 = ri+τ > 0, i = 1, · · · , n
and qij is constant satisfying qij > piri+1/rj .

Remark 1. Assumptions 1 and 2 are common and similar
to those usually imposed on the nonlinear systems [10,13,16].
However, it is worth pointing out that the upper bound of ϕi,
depends on the state xi+1 beside the states xi+2, · · · , xn, u1
in Assumption 3, which is less restrictive than that in [27,28]
and allows for a much broader class of systems.

In what follows, we review some useful definitions and
lemmas which will serve as the basis of the coming control
design and performance analysis.

Definition 1[21]. Consider a system

ẋ = f(x) with f(0) = 0, x ∈ Rn (2)

where f : U0 → Rn is continuous with respect to x on an
open neighborhood U0 of the origin x = 0. The equilibrium
x = 0 of the system is (locally) finite-time stable if it is
Lyapunov stable and finite-time convergent in a neighbor-
hood U ∈ U0 of the origin. By ”finite-time convergence,” we
mean: If, for any initial condition x(0) ∈ U , there is a settling
time T > 0 , such that every solution x(t) with x(0) as its
initial condition of (2) is well defined with x(0) ∈ U \ {0}
for t ∈ [0, T ) and satisfies limt→T x(t) = 0 and x(t) = 0
for any t ≥ T . If U = U0 = Rn, the origin is a globally
finite-time stable equilibrium.

Lemma 1[21]. Consider the nonlinear system described
in (2). Suppose there is a C1 function V (x) defined in a
neighborhood Û ∈ Rn of the origin, real numbers c > 0 and
0 < α < 1, such that

(i) V (x) is positive definite on Û ;

(ii) V̇ (x) + cV α(x) ≤ 0, ∀x ∈ Û .
Then, the origin of system (2) is locally finite-time stable
with

T ≤ V 1−α(x(0))

c(1− α)

for initial condition x(0) in some open neighborhood U ∈ Û
of the origin. If U = Rn and V (x) is also radially unbounded
(i.e., V (x) → +∞ as x→ +∞), the origin of system (2) is
globally finite-time stable.

Definition 2 [27]. Weighted Homogeneity: For fixed co-
ordinates (x1, · · · , xn) ∈ Rn and real numbers ri > 0,
i = 1, · · · , n,
• the dilation ∆ε(x) is defined by ∆ε(x) =

(εr1x1, · · · , εrnxn) for any ε > 0, where ri is called the
weights of the coordinates. For simplicity, we define dilation
weight ∆ = (r1, · · · , rn).
• a function V ∈ (Rn, R) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
V (∆ε(x)) = ετV (x1, · · · , xn) for any x ∈ Rn \ {0}, ε > 0.
• a vector field f ∈ (Rn, Rn) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
fi(∆ε(x)) = ετ+rifi(x), for any x ∈ Rn \ {0}, ε > 0,
i = 1, · · · , n.
• a homogeneous p-norm is defined as ∥x∥△,p =

(
∑n

i=1 |xi|p/ri)1/p for all x ∈ Rn, for a constant p ≥ 1.
For simplicity, in this paper, we choose p = 2 and write
∥x∥△ for ∥x∥△,2.

Lemma 2 [27]. Suppose V : Rn → R is a homogeneous
function of degree τ with respect to the dilation weight ∆.
Then the following holds:

(i) ∂V/∂xi is homogeneous of degree τ−ri with ri being
the homogeneous weight of xi.

(ii) There is a constant c such that V (x) ≤ c∥x∥τ△.
Moreover, if V (x) is positive definite, then c∥x∥τ△ ≤ V (x),
where c is a constant.

Lemma 3 [28]. For x ∈ R, y ∈ R, p ≥ 1 and
c > 0 are constants, the following inequalities hold: (i)
|x+y|p ≤ 2p−1|xp+yp|, (ii) (|x|+|y|)1/p ≤ |x|1/p+|y|1/p ≤
2(p−1)/p(|x| + |y|)1/p, (iii) ||x| − |y||p ≤ ||x|p − |y|p|, (iv)
|x|p + |y|p ≤ (|x|+ |y|)p, (v) |[x]1/p − [y]1/p| ≤ 21−1/p|x−
y|1/p, (vi) |[x]p − [y]p| ≤ c|x− y|||x− y|p−1 + |y|p−1|.

Lemma 4[28]. Let x, y be real variables, then for any
positive real numbers a, m and n, one has

a|x|m|y|n ≤ b|x|m+n

+
n

m+ n

(m+ n

m

)−m
n

a
m+n

n b−
m
n |y|m+n,

where b > 0 is any real number.

III. FINITE-TIME CONTROLLER DESIGN

In this section, we give a constructive procedure for the
finite-time stabilizer of system (1) by state feedback. The
design of finite-time controller is divided into the following
two steps:
• We first construct a state feedback controller u1 to

stabilize the x-subsystem in a finite time;
• Then we design a controller u0 such that the x0-

subsystem is finite-time stable.
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A. The controller design of the x-subsystem
For the x0-subsystem, we choose the control u0 as

u0 = u∗0 (3)

where u∗0 is a positive constant. In this case, the x0-subsystem
becomes

ẋ0 = d0u
∗p0

0 + ϕ0(t, x0) (4)

Note that ϕ0(t, x0) satisfies the linear growth condition.
From Assumption 2, it is easy to obtain that the solution of
x0-subsystem is well-defined on [0,∞). Under the control
law (3), the x-subsystem can be written as

ẋ1 = d1u
∗
0x

p1

2 + ϕ1(t, x2, · · · , xn, u0, u1)
ẋ2 = d2u

∗
0x

p2

3 + ϕ2(t, x3, · · · , xn, u0, u1)
...

ẋn−1 = dn−1u
∗
0x

pn−1
n + ϕn−1(t, xn, u0, u1)

ẋn = dnu
pn

1

(5)

Before designing the controller, we first introduce the
following coordinate transformation:

z1 = x1, zi =
xi
εκi

, i = 2, · · · , n, υpn =
upn

1

εκn+1
(6)

where 0 < ε < 1 is a constant to be determined later and
κ1 = 0, κi+1 = κi+1

pi
, i = 1, · · · , n− 1.

Then, under this transformation, system (5) is transformed
into:

ż1 = εd1u
∗
0z

p1

2 + f1(t, z2, · · · , zn, u1)
ż2 = εd2u

∗
0z

p2

3 + f2(t, z3, · · · , zn, u1)
...

żn−1 = εdn−1u
∗
0z

pn−1
n + fn−1(t, zn, u1)

żn = εdnv
pn

(7)

where

fi(t, zi+1, · · · , zn, u1) =
ϕi(t, xi+1, · · · , xn, u1)

εκi
(8)

In the next, we shall construct a continuous state feedback
controller by using the homogeneous domination approach.

Step 1. Let ξ1 = [z1]
1/r1 and choose the Lyapunov

function

V1 =W1 =

∫ z1

z∗
1

[
[s]1/r1 − [z∗1 ]

1/r1
]2−r1

ds (9)

with z∗1 = 0. From (7), it follows that

V̇1 ≤ −nε|ξ1|2+τ + εd1u
∗
0[ξ1]

2−r1(zp1

2 − z∗p1

2 ) +
∂V1
∂z1

f1

(10)
where the virtual controller is chosen as

z∗2 = −
( n

c11u∗0

)1/p1

[ξ1]
(r1+τ)/p1 := −β1[ξ1]r2 (11)

Step k (k = 2, · · · , n). In this step, we can obtain the
following property, whose similar proof can be found in [26]
and hence is omitted here.

Proposition 1. Suppose at step k−1, there is a C1, proper
and positive definite Lyapunov function Vk−1, and a set of
virtual
z∗1 = 0, ξ1 = [z1]

1/r1 − [z∗1 ]
1/r1

z∗2 = −β1[ξ1]r2 , ξ2 = [z2]
1/r2 − [z∗2 ]

1/r2

...
...

z∗k = −βk−1[ξk−1]
rk , ξk = [zk]

1/rk − [z∗k]
1/rk

(12)

with βi > 0, i = 1, · · · , k, being constants, such that

V̇k−1 ≤ −(n− k + 2)ε

k−1∑
i=1

|ξi|2+τ

+εdk−1u
∗
0[ξk−1]

2−rk−1(z
pk−1

k − z
∗pk−1

k )

+
k−1∑
i=1

∂Vk−1

∂zi
fi

(13)

Then the kth Lyapunov function

Vk = Vk−1 +Wk = Vk−1 +

∫ zk

z∗
k

[
[s]1/rk − [z∗k]

1/rk
]2−rk

ds

(14)
is C1, positive definite and proper, and there exists a C0

virtual controller z∗k+1 = −βk[ξk]rk+1 such that

V̇k ≤ −(n− k + 1)ε

k∑
i=1

|ξi|2+τ

+εdku
∗
0[ξk]

2−rk(zpk

k+1 − z∗pk

k+1)

+
k∑

i=1

∂Vk
∂zi

fi

(15)

Hence at step n, choosing

Vn =
n∑

k=1

Wk =
n∑

k=1

∫ zk

z∗
k

[
[s]1/rk − [z∗k]

1/rk
]2−rk

ds

(16)
and

v = z∗n+1 = −βn[ξn]rn+1 (17)

From Proposition 1, we arrive at

V̇n ≤ −ε
n∑

i=1

|ξi|2+τ +

n∑
i=1

∂Vn
∂zi

fi (18)

Hence, the following result is obtained.
Lemma 5. For the nonlinear system (7) under Assump-

tions 1 and 3, the state feedback controller (17) renders the
origin of the closed-loop system is semi-globally finite-time
stable.

Proof. Since Vn is positive definite and proper with respect
to z = (z1, · · · , zn)T , by introducing the dilation weight ∆ =
(r1, · · · , rn), from Definition 1, it can be shown that Vn is
homogeneous of degree 2 with respect to ∆. By Lemma 2,
there is a constant c̄1, such that

Vn ≤ c̄1∥z∥2∆ (19)

where c̄1 > 0 and ∥z∥∆ =
√
(
∑n

i=1 |zi|2/ri). Similarly,
since the

∑n
i=1 |ξi|2+τ is homogeneous of degree 2 + τ , by

Lemma 2 there is a constant c̄2 such that

V̇n ≤ −εc̄2∥z∥2+τ
∆ +

n∑
i=1

∂Vn
∂zi

fi (20)

According to (6), (8) and Assumption 3, we have

|fi(·)| =
∣∣∣ϕi(·)
εκi

∣∣∣ ≤ b

n+1∑
j=i+1

εqijκj

εκi
|zj |qij (21)

Engineering Letters, 27:1, EL_27_1_14

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



Note that by Assumption 3, for i+ 1 ≤ j ≤ n,

qijκj − κi

>
κj(ri + τ)

rj
− κi

=
κj(τκi + 1/(p1 · · · pi−1) + τ)

τκj + 1/(p1 · · · pj−1)
− κi

=
τκj + κj/(p1 · · · pi−1)− κi/(p1 · · · pj−1)

τκj + 1/(p1 · · · pj−1)

=
τκj + (1 + pi + pi · · · pj−2)/(p1 · · · pj−1)

τκj + 1/(p1 · · · pj−1)
≥ 1

(22)

which in turn implies that there is a constant αi > 0 such
that for 0 < ε < 1,

|fi(·)| ≤ bε1+αi

n+1∑
j=i+1

|zj |qij

= bε1+αi

n+1∑
j=i+1

|zj |qij−(ri+τ)/rj |zj |(ri+τ)/rj

(23)
Next, we decide the gain ε to guarantee the attractivity for

a given region. To this end, for an arbitrarily large number
K > 1, define compact sets N = {ϑ

∣∣∥ϑ∥ ≤ K,ϑ ∈ Rn}
and Ω = {z|Vn(z) ≤ M,M = maxz∈NVn(z)}. Clearly, Ω
is a non-empty compact set and in this set z is bounded.

From (23), we know that in the compact set Ω there is a
constant δi such that

|fi(·)| ≤ δiε
1+αi

i∑
j=1

|zj |(ri+τ)/rj (24)

Noting that for i = 1, · · · , n, ∂Vn/∂zi is homogeneous of
degree 2− ri, we know that

∂Vn
∂zi

(|z1|(ri+τ)/r1 + · · ·+ |zn|(ri+τ)/rn) (25)

is homogeneous of degree 2 + τ .
With (24) and (25) in mind, we can find a positive constant

θi such that ∣∣∣∂Vn
∂zi

∣∣∣|fi| ≤ θiε
1+αi∥z∥2+τ

△ (26)

where α = min1≤i≤n{αi} > 0.
Substituting (26) into (20) yields

V̇n ≤ −ε(c̄2 −
n∑

i=1

θiε
α)∥z∥2+τ

△ (27)

Apparently, by choosing a small enough ε, the right-hand
side of (27) is negative definite. Therefore, the trajectory
of the closed-loop system starting from Ω will stay in the
compact set Ω forever. Furthermore, it can be deduced from
(19) and (27) that there is a constant c̄3 such that

V̇n ≤ −c̄3V (2+τ)/2
n (28)

By Lemma 1 (Vn = V , c = c̄3 and (2 + τ)/2 < 1), (28)
leads to the conclusion that the closed-loop system (7) and
(17) is finite-time stable with its settling time T1 satisfying

T1 ≤ −2V
(−τ)/2
n (0)

c̄3τ
(29)

Note that by definition of of compact sets N and Ω, we
have the following relation for any arbitrarily large set N

(ξ1, · · · , ξn)T ∈ N ⇒ ∥Z∥ ≤ K ⇒ Z ∈ Ω (30)

Consequently, we have the conclusion that starting from
any points in N , the trajectory will stay in the compact set
Ω and tend to the origin in a finite time, i.e., the closed-loop
system (7)+(17) is semi-globally finite-time stable. Thus, the
proof is completed.

Since (6) is an equivalent transformation, the closed-loop
system consisting of (5), upn

1 = εκn+1υpn in (6) and (17),
has the same properties as the system (7) and (17), that is,
system (5) is semi-globally finite-time regulated at origin
with the settling time T1.

B. The controller design of the x0-subsystem

From the discussion of the above subsection, we know that
x(t) ≡ 0 when t ≥ T1. Therefore, we just need to stabilize
the x0-subsystem in a finite time. When t ≥ T1, for the
x0-subsystem, we can take the following control law

up0

0 = g0[x0]
α0 , 0 < α0 < 1 (31)

g0 = − 1

c01

(
k0 + ψ0(x0)

)
(32)

where k0, α0 are positive constants, and ψ0(x0) ≥
a|x0|1−α0 ≥ 0 is a smooth function. For instance, we can
simply choose ψ0(x0) = a(1 + x20).

Taking the Lyapunov function V0 = x20/2, a simple
computation gives

V̇0 ≤ −k0x1+α0
0 ≤ −k0V (1+α0)/2

0
(33)

Thus by Lemma 1, x0 tends to 0 within a settling time
denoted by T2 and

T2 ≤ 2V
(1−α0)/2
0 (0)

k0(1− α0)
(34)

Up to now, we have finished the finite-time state feedback
stabilizing controller design of the system (1). Consequently,
the following theorem can be obtained to summarize the main
results of the paper.

Theorem 1. Under Assumptions 1-3, if the proposed
control design procedure together with the above switching
control strategy is applied to high order nonholonomic feed-
forward system (1), then the states of closed-loop system are
semi-globally regulated to zero in a finite time.

IV. SIMULATION EXAMPLE

To verify the proposed controller, we consider the follow-
ing high order nonholonomic feedforward system:

ẋ0 = u30
ẋ1 = x

5/3
2 u0 + x23

ẋ2 = x3 + u1sin
2x3

ẋ3 = u1

(35)

where xi, i = 0, 1, 2, 3, are system states, u0 and u1 are
control inputs. It is worth pointing out that system (35)
cannot be finite-time stabilized by using the existing control
methods because of the presence of feedforward-like terms
x43 and u1sin2x3 . Choose τ = −1/6, then r1 = 1, r2 = 1/2,
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Fig. 1. The responses of the closed-loop system (35)–(37).

r3 = 1/3 and r4 = 1/6. By Lemma 4, it can be verified that
|ϕ1| ≤ |x3|4 and |ϕ2| ≤ 2

3 |sinx3|
3+ 1

3 |u1|
3 ≤ (|x3|3+|u1|3),

that is, Assumption 3 is satisfied with q13 = 2, q23 = q24 = 3
and b = 1. By choosing u∗0 = 1 and following the design
procedure given in Section 3, we can design a state feedback
controller

u1 = −ε13/5β3
[
[x3/ε

8/5)]3 + β3
2 [x2/ε

3/5]2 + β3
2β

2
1 [x1]

]1/6
(36)

to render the x-subsystem of (35) semi-globally finite-time
stable with a settling time T1. Then, when t ≥ T1, for the
x0-subsystem, we switch the control input u0 to

u50 = −k0[x0]1/3 (37)

where β1, β2, β3, ε and k0 are appropriate positive constants.
The simulation is carried out with the following choices: ε =
0.8, β1 = 1, β2 = 1.5, β3 = 4, k0 = 3 and the initial value
(x0(0), x1(0), x2(0), x3(0))= (−4, 2, 1, 0). The responses of
the closed-loop system (35)-(37) are shown in Figure 3, from
which the validness of the controller is demonstrated.

V. CONCLUSION

This paper has solved the problem of finite-time stabiliza-
tion by state feedback for a class of uncertain high order
nonholonomic feedforward systems. With the help of the
homogeneous domination approach, a constructive design
procedure for state feedback control is given. Together with
a novel switching control strategy, the designed controller
can guarantee that the closed-loop system states are finite-
time regulated to zero. It should be noted that the proposed

controller can only work well when the whole state vector
is measurable. Therefore, a natural and more interesting
problem is how to design an output feedback stabilizing
controller for the systems studied in the paper when only
partial state vector is measurable, which is now under our
further investigation.
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