
 

 Abstract— A novel technique based on cubic spline 

interpolation with linear least square regression 

(CSILLSR) is developed to calculate the signal-to-noise 

ratio (SNR) of scanning electron microscope (SEM) 

images. The SNR from CSILLSR method is compared 

with methods of nearest, linear interpolation, a 

combination of linear interpolation and nearest, non-

linear least square regression, autocorrelation Levinson-

Durbin recursion, and adaptive slope nearest 

neighbourhood. Samples of SEM images with various 

accelerating voltages, beam diameters, surface tilts and 

contrast were applied to evaluate the performance of 

CSILLSR method in terms of SNR values of the SEM 

images. The new method is able to generate more 

accuracy results than the other six methods. In addition, 

the CSILLSR Wiener filter appears to be the best filter to 

reduce and remove white Gaussian noise from SEM 

images as compared to the average filter and median 

filter. 

 

 
Index Terms— Gaussian noise, Cubic Spline Interpolation, 

Linear Least Square Regression, SNR estimation 

 

I.INTRODUCTION 

HE quality of grayscale images and scanning electron 

microscope (SEM) images is always degraded by noise 

[1]. The SNR parameter plays a crucial role to determine the 

quality of SEM image. In semiconductor and medical 

industry, the loss of important image information needs to be 

avoided.  

 

In the past, SNR estimation techniques for SEM images had 

been introduced. Reference [2] had developed cross-

correlation function (CCF) using the Fourier transforms. 

Then, CCF technique was unable to compute the SNR 

measurement for both stored and extant images. Reference 

[3] also applied the similar CCF in digital image averaging. 

The application of CCF is extended to compute the resolution 

values of SEM critical dimension [4]. To implement the 

cross-correlation function, the alignment between the two 
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images must be performed properly, making this application 

difficult. 

II.LITERATURE REVIEW 

In order to solve the mentioned drawback, [5] set up an 

approach that can allow SNR estimation to be measured by 

using a single image. In this method, a white noise source is 

introduced to the image. Then, two techniques are proposed 

for single image SNR computation. These two techniques are 

named as nearest method and linear interpolation [6]. 

However, these two techniques obtain poor accuracy, which 

may be due to the characteristics of the images. It can be due 

to images with different texture, magnification, aperture size, 

and resolution, which can influence the SNR accuracy. 

Hence, in [7] the autoregressive (AR) model interpolation is 

applied to compute the SNR of the noisy image. However, the 

precision of the AR model is also affected and bounded by 

the nature of the images. 

Then the AR method is improved by combining with the 

Lagrange time delay (LTD) estimator [8]. This algorithm is 

termed as Lagrange time delay estimation autoregressive 

model (MLTDEAR). The MLTDEAR technique showed 

better accuracy to the SNR estimation of a single SEM image, 

when collated with the AR, first-order interpolation, and 

nearest neighbourhood models. From the analysed results, 

MLTDEAR technique has limitations in estimating SNR for 

image with varying contrast and low magnification ratio. 

The shape-preserving cubic Hermite autoregressive 

moving average (SP2CHARMA) was introduced to estimate 

the SNR under different noise environments [9].  

Later, the adaptive slope nearest neighbourhood (ASNN) 

model was developed [10]. Slope constants were added into 

the SNR estimation to improve the accuracy of the result 

better than using both simple and first-order interpolation. 

In 2015, an SNR estimation technique was proposed and 

named as adaptive tuning piecewise cubic Hermite 

interpolation (ATPCHIP) [11].  In this ATPCHIP model, a 

multiplier was implemented to the slope component for 

adjustment. An improvement to the technique was achieved 

using the piecewise cubic Hermite interpolation (PCHIP) 

technique [9]. 

In 2016, a new technique to SNR was developed called 
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autocorrelation Levinson–Durbin recursion (ACLDR) model 

[12]. ACLDR was employed as an estimator to measure and 

quantify the signal spectrum of corrupted SEM images. 

Computation of SNR values was performed on both original 

and quantified images. The ACLDR was compared with three 

other existing algorithms: namely the nearest neighbourhood, 

first-order linear interpolation and nearest neighbourhood 

combined with first-order linear interpolation. The ACLDR 

model is able to obtain higher accuracy in SNR estimation. 

A method named as nonlinear least squares regression 

(NLLSR) was proposed [13]. Images with various textures 

properties, contrasts and horizontal field width were applied 

to test the overall performance of NLLSR method, and it is 

found to be able to better estimate SNR results up to some 

extent. This method is still bounded by the properties of the 

image itself. 

A novel technique is now presented to calculate the SNR 

of SEM images based on cubic spline interpolation combine 

with linear least square regression (CSILLSR). Through this 

interpolation, the noiseless zero offset point is found. The 

SNR of SEM images with various setting such as accelerating 

voltage, beam diameter, surface tilt and contrasts are 

measured.  

This paper begins with problem formulation, then 

description on nearest method, linear interpolation method, 

the combination of these two methods, non-linear least square 

regression method (NLLSR), autocorrelation Levinson-

Durbin recursion (LDR) model, and adaptive slope nearest 

neighbourhood (ASNN) method. After that, the CSILSRSNR 

is employed and results compared with these six methods for 

the SNR estimation. Results are tabulated, discussed, and 

followed by conclusion. 

III.PROBLEM FORMULATION 

Equation (1) is employed to compute SNR value of two 

images with identical signal pattern uncorrelated with white 

Gaussian noise [11]. 

𝐴(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) + 𝑁(𝑥, 𝑦) , (1) 

where A(x,y) is a noisy image signal consisting of actual 

signal S(x,y) plus the white noise with uniformly distributed 

power spectral density represented by N(x,y). 

The autocorrelation function (ACF) for the two identical 

images of the identical signal source is shown in Fig. 1, and 

the SNR is given in (2). 

 
Fig. 1. The ACF of a single image added with white Gaussian noise. 

 

𝑆𝑁𝑅 =  
ℎ𝑁𝐹(0,𝑦)−𝜇2

ℎ(0,𝑦)−ℎ𝑁𝐹(0,𝑦)
  ,     (2) 

 

where ℎ𝑁𝐹(0, 𝑦) is the noise free peak, ℎ(0, 𝑦) is the noisy 

peak and 𝜇2 is the mean of the image. Generally, the values 

of  ℎ(0, 𝑦) and 𝜇2 are known, but the value of ℎ𝑁𝐹(0, 𝑦) 

remain unknown. Henceforth, ℎ𝑁𝐹(0, 𝑦) is needed to be 

estimated through a few techniques, which will be discussed 

next. 

IV.EXISTING METHODS 

A. Nearest method  

This simple method [5] is illustrated in Fig. 2. Two nearest 

points, h(1,y) and h(-1,y) are located next to the ACF peak. 

the noise free peak is then given by 

ℎ𝑁𝑁(0, 𝑦) = ℎ(1, 𝑦) =  ℎ(−1, 𝑦) . (3) 

 

By symmetry, either point is applicable to obtain 

𝑆𝑁𝑅 =
ℎ𝑁𝑁(0,𝑦)−𝜇2

ℎ(0,𝑦)−ℎ𝑁𝑁(0,𝑦)
  .     (4) 

 
Fig. 2. Nearest method to determine  ℎ𝑁𝐹(0, 𝑦). 

B. Linear interpolation method 

In the linear interpolation method [5] illustrated in Fig. 3, 

two nearest points are taken both before and after the ACF 

peak. They are h(1,y), h(2,y), h(-1,y), and h(-2,y). The 

interpolate values are 

 

ℎ𝑖𝑛𝑡(0, 𝑦) = ℎ(1, 𝑦) + [ℎ(1, 𝑦) − ℎ(2, 𝑦)]                        

Or ℎ𝑖𝑛𝑡(0, 𝑦) = 2[ℎ(1, 𝑦)] − ℎ(2, 𝑦)     (5)                     

             

ℎ𝑖𝑛𝑡(0, 𝑦) = ℎ(−1, 𝑦) + [ℎ(−1, 𝑦) − ℎ(−2, 𝑦)]  

Or ℎ𝑖𝑛𝑡(0, 𝑦) = 2[ℎ(−1, 𝑦)] − ℎ(−2, 𝑦)                   (6)             

 

 

Since these points are similar, either of (5) or (6) can be 

used for the noise free peak value,  

𝑆𝑁𝑅 =  
ℎ𝑖𝑛𝑡(0, 𝑦) − 𝜇2

ℎ(0, 𝑦) − ℎ𝑖𝑛𝑡(0, 𝑦)
 .                                        (7) 

 
Fig. 3. Linear interpolation method to determine ℎ𝑖𝑛𝑡(0, 𝑦). 

 

C. Combination of linear interpolation and nearest 

methods (CLIN) 

CLIN [13] takes the average result from both linear 
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interpolation method and nearest method, which is then 

assigned as the predicted noise free peak hnn+int(0,y). The 

steps are as below. 

 

ℎ𝑛𝑛+𝑖𝑛𝑡(0, 𝑦) =
ℎ𝑛𝑛(0,𝑦)+ℎ𝑖𝑛𝑡(0,𝑦)

2
   , (8) 

 

 Equation (9) and (10) are the simplified version of (8). 

ℎ𝑛𝑛+𝑖𝑛𝑡(0, 𝑦) =
3[ℎ(1,𝑦)]−ℎ(2,𝑦)

2
 , (9) 

 

ℎ𝑛𝑛+𝑖𝑛𝑡(0, 𝑦) =
3[ℎ(−1,𝑦)]−ℎ(−2,𝑦)

2
  , (10) 

 

Either (9) or (10) can be employed into (11) to compute the 

SNR.  

𝑆𝑁𝑅 =
ℎ𝑛𝑛+𝑖𝑛𝑡(0,𝑦)−𝜇2

ℎ(0,𝑦)−ℎ𝑛𝑛+𝑖𝑛𝑡(0,𝑦)
 ,   (11) 

 

D. SNR estimation based on non-linear least square 

regression  

 

The fourth method is termed non-linear least square 

regression (NLLSR) [13]. The below (12) shows constant 

growth or decay where ℎ̅(0)is the noise free peak, 𝛼 is the 

initial amount, 𝛽 is the relative growth rate, 𝑥 is the distance 

along the x-axis of the ACF curve and the 𝜀 is the random 

white noise. 

 

ℎ̅(0) = �̂� = (α) exp(𝑥𝛽) . (𝑒), (12) 

 

By taking logarithm, (13) is generated. 

 

𝑙𝑛 (�̂�) = ln(𝛼) + 𝑥𝛽 + ln  (𝑒) (13) 

 

The first order of NLLSR may be used to estimate the SNR 

value. Equation (13) can be simplified into (14), where 𝛼 and 

β are the constants. 

 

hNLLSR = �̂� = 𝛼 𝜀 (𝑥)β  , (14) 

 

Then, (15) can be utilized to get the SNR value.  

𝑆𝑁𝑅 =
ℎ𝑁𝐿𝐿𝑆𝑅(0,𝑦)−𝜇2

ℎ(0,𝑦)−ℎ𝑁𝐿𝐿𝑆𝑅(0,𝑦)
=

𝛼 𝜀 (𝑥)β −𝜇2

ℎ(0,𝑦)−𝛼 𝜀 (𝑥)β , (15) 

 

E. Autocorrelation Levinson-Durbin recursion model  

The fifth method to get the SNR is named as 

autocorrelation Levinson-Durbin recursion (LDR) model 

[12]. The maximum point is taken as the Levinson order-

update coefficient (𝑣𝑘), and is mapped with the 

autocorrelation values, 𝑎 from k = 1 until k = n+1. With the 

summation of the modelling error, 𝜉𝑛+1, the value of hLDR(0, 

y) is given by in (16).  

hLDR(0, 𝑦)  =  𝑣1𝑎𝑛+1 + 𝑣2𝑎𝑛+1  +  𝑣3𝑎𝑛+1 + · · ·
+𝑣𝑛+1𝑎𝑛+1 + 𝜉𝑛+1 , (16) 

 

hLDR(0, 𝑦)  = ∑ 𝑣𝑘𝑎𝑛+1 + 𝜉𝑛+1
(𝑛+1)
𝑘=1  ,   (17) 

 

With these parameters, the SNR is given by 

 

𝑆𝑁𝑅 =
ℎ𝐿𝐷𝑅(0,𝑦)−𝜇2

ℎ(0,𝑦)−ℎ𝐿𝐷𝑅(0,𝑦)
 . (18) 

 

F. Adaptive slope nearest-neighbourhood model 

The sixth method is the adaptive slope nearest-

neighbourhood (ASNN) model [10], based on observing the 

relation of the noise free peak and the noisy peak using the 

nearest-neighbourhood method. The y-axis intercept and 

slope of the linear trend line change according to the noise 

variance (NV) which varies from 0.001 to 0.01. If the slope 

of the trend line is G the y-axis intercept is C. The SNR can 

be obtained from (19). 

 

SNRpredict=(G)*(SNRactual)–C                                    (19) 

 

The value of SNRactual can be determined by using equation 

(2). Hence, the SNR can be predicted using (19). 

V. NEW METHOD AND MATERIALS 

A. Cubic spline interpolation with linear least square 

regression  

 

Cubic spline interpolation with linear least square 

regression (CSILLSR) can smoothen the polynomial 

interpolation and has less error. The method is presented in 

(20).  

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2  + 𝑑𝑖(𝑥 − 𝑥𝑖)

3 

 (20) 

 

Among the data points, each interval would have a discrete 

cubic function. Thus, the spline S(x) is the function when data 

points,  i=1 

𝑆1(x)   

= 𝑎1  +  𝑏1(𝑥 − 𝑥1)  + 𝑐1(𝑥 − 𝑥1)
2   +  𝑑1(𝑥 − 𝑥1)

3,  for   

𝑥1 ≤ 𝑥 ≤ 𝑥2  

Similar, it applies to i=2 and so on. 

𝑆2(x) 

= 𝑎2  +  𝑏2(𝑥 − 𝑥2)  +  𝑐2(𝑥 − 𝑥2)
2   +  𝑑2(𝑥 − 𝑥2)

3,  for   

𝑥2 ≤ 𝑥 ≤ 𝑥3  

𝑆𝑖(x)  

= 𝑎𝑖  +  𝑏𝑖(𝑥 − 𝑥𝑖)  + 𝑐𝑖(𝑥 − 𝑥𝑖)
2   +  𝑑𝑖(𝑥 − 𝑥𝑖)

3,      for       

𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1  

 

where i = 1, 2, 3, …, 𝑎𝑖 is the value of noise free at 𝑥𝑖 and 

Si(x) is the cubic function. Equation (20) indicates that 4 

coefficients are to be determined. The spline ensures that the 

exactly data points occur as in (21) and (22). 

  𝑆𝑖(𝑥𝑖)=𝑎𝑖                                                                        (21) 

𝑆𝑖(𝑥𝑖+1)=𝑆𝑖+1(𝑥𝑖+1)=𝑎𝑖+1                                                (22) 

 

To ensure the S(x) to be smooth, (23) and (24) are required 

to be. 
𝑑𝑆𝑖

𝑑𝑥𝑖+1
 = 

𝑑𝑆𝑖+1

𝑑𝑥𝑖+1
                                                                     (23) 

𝑑2𝑆𝑖

𝑑𝑥𝑖+1
2  = 

𝑑2𝑆𝑖+1

𝑑𝑥𝑖+1
2                                                                     (24) 

 

From (24), we have [14] 
𝑑𝑆𝑖

𝑑𝑥𝑖+1
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=𝑏𝑖 + 2𝑐𝑖𝑥𝑖+1 - 2𝑐𝑖𝑥𝑖+1𝑥𝑖+ 3𝑑𝑖𝑥𝑖+1
2-6𝑑𝑖𝑥𝑖+1𝑥𝑖+3𝑑𝑖𝑥𝑖

2 
𝑑𝑆𝑖+1

𝑑𝑥𝑖+1
  =  0 

𝑑𝑆𝑖

𝑑𝑥𝑖+1
 = 

𝑑𝑆𝑖+1

𝑑𝑥𝑖+1
 

And, it yields equation (25), 

𝑏𝑖 + 2𝑐𝑖𝑥𝑖+1 - 2𝑐𝑖𝑥𝑖+1𝑥𝑖+ 3𝑑𝑖𝑥𝑖+1
2-6𝑑𝑖𝑥𝑖+1𝑥𝑖+3𝑑𝑖𝑥𝑖

2 = 0                         

 (25) 

 

From (24), we have [14] 
𝑑2𝑆𝑖

𝑑𝑥𝑖+1
2  =  2𝑐𝑖  - 2𝑐𝑖𝑥𝑖  + 6𝑑𝑖𝑥𝑖+1 - 6𝑑𝑖𝑥𝑖  

𝑑2𝑆𝑖+1

𝑑𝑥𝑖+1
2   =  0 

  
𝑑2𝑆𝑖

𝑑𝑥𝑖+1
2  = 

𝑑2𝑆𝑖+1

𝑑𝑥𝑖+1
2  

 And, it yields equation (26), 

2𝑐𝑖-2𝑐𝑖𝑥𝑖+6𝑑𝑖𝑥𝑖+1-6𝑑𝑖𝑥𝑖=0                                           (26) 

 

To determine the three coefficients (b, c and d), (25), (26) 

, and (27) are required. 

𝑆𝑖(𝑥𝑖+1)  

= 𝑎𝑖 + 𝑏𝑖(𝑥𝑖+1 − 𝑥𝑖) + 𝑐𝑖(𝑥𝑖+1 − 𝑥𝑖)
2  + 𝑑𝑖(𝑥𝑖+1 − 𝑥𝑖)

3  (27)                                                 
 

Since the values of x are known and we assume 𝑥𝑖 = 𝑥1 and 

𝑥𝑖+1 = 𝑥2, we can then obtain the value of 𝑆1(𝑥1) according 

to (22) which equals to 𝑎1. From (22), the value of 𝑆1(𝑥2) can 

be obtained since 𝑎2 is known. According to (27), 𝑆1(𝑥2) is 

𝑎1  +  𝑏1(𝑥2 − 𝑥1)  +  𝑐1(𝑥2 − 𝑥1)
2   +  𝑑1(𝑥2 − 𝑥1)

3.  

Since the values of 𝑥1, 𝑥2, 𝑆1(𝑥2) and 𝑦1 are known, then 

by solving (25), (26) and (27) simultaneously, the coefficient 

𝑏1, 𝑐1and 𝑑1can be determined where i = 1 and i+1 = 2.  

From (25),we have 

𝑏1 + 2𝑐1𝑥2 - 2𝑐1𝑥2𝑥1+ 3𝑑1𝑥2
2-6𝑑1𝑥2𝑥1+3𝑑1𝑥1

2 = 0 

From (26), we obtain 

2𝑐1  - 2𝑐1𝑥1 + 6𝑑1𝑥2 - 6𝑑1𝑥1 = 0 

From (27), 

𝑆1(𝑥2) = 𝑎1  +  𝑏1(𝑥2 − 𝑥1)  +  𝑐1(𝑥2 − 𝑥1)
2   +  𝑑1(𝑥2 −

𝑥1)
3 

 

For our proposed method, we assume 𝑥1 = M/2 and 𝑥2 = 

M/2+1 since the size of SEM images are M x M pixels. After 

determining all the coefficients, we can then estimate 𝑆1(𝑥) 

value when x = (M+1)/2 by referring to (22). The estimated 

noise free value which is 𝑆𝑖 can be predicted. Equation (28) 

is employed to estimate the SNR. In this case, the value of 

𝑆𝑖(0, 𝑦) is the estimated noise free when x = (M+1)/2. 

𝑆𝑁𝑅 =
𝑆𝑖(0,𝑦)−𝜇2

ℎ(0,𝑦)−𝑆𝑖(0,𝑦)
 ,                                                       (28) 

 

In (28), ℎ(0, 𝑦) indicates the peak of noise, 𝜇2 indicates the 

mean. It is followed with linear least square regression as 

formulated in (24). 

 

𝑅𝑖 = 𝛼𝑟𝑖
2 + 𝛽𝑟𝑖 + γ𝑖 + 𝜀i   ,                                           (29) 

 

where 𝑅𝑖 is the estimated SNR, 𝑟𝑖 is the original SNR,  𝛼, 𝛽 

and γ are the constant coefficients and 𝜀 is the unknown error. 

Equation (28) and (29) can be combined to generate (30). 
𝑆𝑖(0,𝑦)−𝜇2

ℎ(0,𝑦)−𝑆𝑖(0,𝑦)
= 𝛼𝑟𝑖

2 + 𝛽𝑟𝑖 + γ𝑖 + 𝜀𝑖   ,  (30) 

The values of 𝛼, 𝛽 and γ can then be computed using (31).  

  

[
 
 
 
 
 
𝑅1
𝑅2
.
.
.

𝑅𝑛]
 
 
 
 
 

= [
𝑟1

2 𝑟1
. .  

𝑟𝑛
2 𝑟𝑛

   1
   1
   1

] [
𝛼
𝛽
γ
] +

[
 
 
 
 
 
𝜀1
𝜀2
.
.
.

𝜀𝑛]
 
 
 
 
 

                                     (31) 

The unknown error (𝜀) needs to be reduced using in (32). 

[min
𝛽

∑ 𝜀𝑘
2 = min

𝛽
𝜀𝑇𝜀] = [

𝑑

𝑑𝐵
 ∑ 𝜀𝑘

2 = 
𝑑

𝑑𝐵
𝜀𝑇𝜀] = 0𝑁

𝑘=1
𝑁
𝑘=1 ,  (32) 

 

Equation (33) represents equation (29) 

𝑻 =  𝑿𝑩 +  𝜺   ,  (33)   

where  

X =  [
𝑟1

2 𝑟1
. .  

𝑟𝑛
2 𝑟𝑛

   1
   1
   1

] ,     𝜺 =

[
 
 
 
 
 
𝜀1
𝜀2
.
.
.

𝜀𝑛]
 
 
 
 
 

 ,   T =

[
 
 
 
 
 
𝑅1
𝑅2
.
.
.

𝑅𝑛]
 
 
 
 
 

,   𝑩 = [
𝛼
𝛽
γ
] 

The derivation to minimize the error (ε) is shown in (34) 

[4]. 

 

𝑙𝑒𝑡 𝜺 = 𝑻 − 𝑿𝑩    
 

Then 

𝜀𝑇𝜀 = (𝑇 − 𝑋𝐵)𝑇(𝑇 − 𝑋𝐵)  

= [𝑇𝑇𝑇 − 𝑇𝑇𝑋𝐵 + (𝑋𝐵)𝑇(𝑋𝐵) − (𝑋𝐵)𝑇𝑇]  
= 𝑇𝑇𝑇 − 𝑇𝑇𝑋𝐵 + 𝐵𝑇𝑋𝑇𝑋𝐵 − 𝐵𝑇𝑋𝑇𝑇  

 

Therefore 
𝑑

𝑑𝑩
(𝜺𝑻𝜺) = 0  

− 𝑻𝑻𝑿 + 2𝑩𝑻𝑿𝑻𝑿 − 𝑿𝑻𝑻 = 0  

 

Solving for B gives 

 

                           𝑩 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝑻                                   (34)  

 

                                                 

Then, (35) is then used to predict the SNR. 

𝑅𝑖 = 𝛼𝑟𝑖
2 + 𝛽𝑟𝑖 + γ𝑖                                                      (35) 

where Ri is the predicted SNR and 𝑟𝑖  is the original SNR. 

 

The algorithm of the proposed method is shown as 

Algorithm 1. 

Algorithm 1 Cubic spline interpolation with linear least square 

regression (CSILLSR) 

1: ASET [y,x] to obtain the size of the input image. 

2: Display the input image.  

3: SET fn_d1 with imnoise function to corrupt the input image 

with noise.  

4: Display the corrupted image.  

5: SET j6 to obtain the input image after fast Fourier transform.  

6: SET j8 to obtain the corrupted image after fast Fourier 

transform.  

7: Plot the ACF curve of j6. 

8: Plot the ACF curve of j8. 

9: SET actual_SNR_dB to calculate the actual SNR value.  

10:  SET INT_SNR_dB to calculate the SNR value using first order 

interpolation method. 

11: SET NBH_SNR_dB to calculate the SNR value using nearest 

neighbourhood method. 

12: SET INTNN_SNR_dB to calculate the SNR value using the 

combination of first order interpolation and nearest 

neighbourhood method.  
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13: SET CSISGWLSE_SNR_dB to calculate the SNR value using 

cubic method.  

14: SET CSILSRSNR_dB to calculate the SNR value using 

CSILSRSNR method.  

15: SET noisefree_peak as the noise free peak value. 

16: END 

VI.RESULTS AND DISCUSSION 

A. Performance of CSILLSR method versus other existing 

methods 

Six types of noiseless SEM images of size 256 x 256 pixels 

resolution are used, as shown in Fig. (4). The six existing 

methods are nearest, linear interpolation, the combination of 

linear interpolation and nearest method, NLLSR, 

autocorrelation LDR, and ASNN. They are compared with 

the CSILLSR. 

First, the original SEM image (without noise) is degraded 

or corrupted with additional white noise. The noise variance 

was varied from the ranges of 0.001 to 0.010. The comparison 

between the original and the estimated SNR values over this 

noise variance range is shown in Tables 1 to 6. The first 

column in the tables was represented by the value of the noise 

variance and the second column refers to the SNR value. The 

rest of the columns clearly indicate the SNR values using the 

other methods.  

In order to validate the performance of presented technique, 

250 noise free images are employed for the SNR estimation. 

Henceforth, only 6 samples out of 250 SEM images are 

presented in this paper as shown in Fig. 4. The experimental 

results are tabulated and plotted in graph. The performance of 

the SNR estimation is measured by the application of absolute 

error. 

 
Fig. 4. (a) IC compound at horizontal field-width = 50𝜇𝑚, (b) IC 

compound at horizontal field-width = 25𝜇𝑚, (c)222nm aperture size IC 

compound image, (d) 89nm aperture size IC compound image, (e) The 
material image A and (f) The material image B. 

 

Referring to the results obtained from six figures, when the 

noise variance is 0.001, most methods are more liable to 

overestimate or underestimate the SNR. The characteristics 

of the image may lead to the overestimation or 

underestimation issues. The characteristic of image includes 

aperture size, magnification ratio and so on. The results for 6 

figures are tabulated in Tables I to VI.   

 
(a) 

 
(b) 

Fig. 5. IC compound at horizontal field-width= 50𝜇𝑚 in Fig. 4(a). (a) SNR 

versus noise variance. (b) Absolute error versus noise variance. 

 

From the tables, nearest method appears to underestimate 

the SNR value, because the method takes the nearest point 

from the ACF peak as the noiseless peak. Fig. 5(b) to Fig. 

10(b) show that this method gives the greatest relative error 

compared to others. The stability and accuracy are poor, and 

it is highly dependent on image properties. 

For the linear interpolation method, according to Tables 1 

to 6, it tends to overestimate the SNR value. As shown in (b) 

of Fig. 5 to Fig. 10 at the noise variance of 0.001. The 

accuracy of linear interpolation method is low when the noise 

variance is lesser than 0.002 and it might upwardly concave 

to indicate overestimation. This problem arises because of the 

properties of the images and the values of the unpredicted 

errors which refer to the existence of the white Gaussian 

noise. However, the linear interpolation method is more 

accurate than the nearest method. The SEM image textures, 

contrasts, magnification ratio, and aperture size are referred 

to as the nature or the properties of the image in this context. 

The combination of these two methods by taking the 

average of both techniques is shown in (b) of Fig. 5 to Fig. 

10. But this method also shows poor accuracy compared to 

linear interpolation, as seen in Tables I to VI. 

The NLLSR method shows poor estimation of the SNR 

results in Tables III to VI, which might be due to the relative 

growth or decay of the ACF pattern. In (b) of Fig. 7 to Fig. 

10, it has slightly higher difference in error as compared to 

the other methods.  

Although the LDR has better SNR estimation than nearest 

method, linear interpolation, the combination of nearest 

method and linear interpolation as well as the NLLSR, it still 

carries certain absolute error varying from 1dB to 1.14dB. 

For ASNN, it shows poor estimation of the SNR results in 

Tables I-VI. It may due to the relative growth or decay of the 
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ACF pattern that cater around the noiseless peak. In (b) of 

Fig. 5 to Fig. 10, it has slightly high error difference which 

varies from 1 to 11.5 dB.  

The absolute error in there is obtained from Tables I to VI. 

From Fig. 5(b) and Fig. 6(b) of IC compound at horizontal 

field-width = 50μm and IC compound at horizontal field-

width = 25μm images, it can be seen that with the noise 

variance range, the error difference of CSILLSR varies from 

0.04 to 0.4 dB for IC compound A image and 0.05 to 0.5 dB 

for the IC compound B image.  

In Fig. 7(b) and Fig. 8(b) of the IC compound image 

captured by 222 nm of aperture size and the IC compound 

image with 89 nm of aperture size, as the noise variance was 

being altered from 0.001 to 0.010. The error difference of 

CSILLSR method varies from 0.013 to 0.33 dB for the IC 

compound image captured by 222 nm of aperture size and 

0.06 to 0.48 dB for the IC compound image captured by 89 

nm of aperture size. 

                                                                                    

 Furthermore, in Fig. 9(b) and Fig. 10(b), at the same noise 

variance range, the error difference of CSILLSR varies from 

0.07dB to 0.3 dB for material image A and 0.05 dB to 0.52 

dB for material image B.  

From the results of the absolute error from (b) of Fig. 5 to 

Fig. 10 of CSILLSR, clearly the absolute error is less than 1 

dB, implying better stability and compared to the other six 

methods. 

The accuracy of CSILLSR relies on the N points selections. 

In addition, the second order method needs calculations of 

optimal α, β, and 𝛾 coefficients. (See equation (38)). These 

coefficients are able to provide better fitting to estimate the 

SNR values.  
 

 
(a) 

 

 

 
(b) 

Fig. 6. Graphs for IC compound at horizontal field-width = 25μm mages in 

Fig. 4.(b) (a) SNR estimation against noise variance, and (b) Absolute error 
against noise variance. 

 The performance of presented work, CSILLSR is bench 

marked with state-of the art methods. Estimation error 

measurement metric is applied. Tabulated results show that 

CSILLSR outperformed other state of the art methods by 

having nearest SNR estimation to the actual SNR of the SEM 

images. 

The estimation ratio is suggested by researcher to determine 

the performance of the image noise estimation techniques 

[16], as shown in (36).  

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =  
𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝜎𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑁𝑅
, (36) 

 

Where 𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  defines estimated SNR and 𝜎𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑁𝑅 is 

the actual SNR of the SEM images. 
  

If estimation ratio is equal to 1, it indicates the estimated 

noise variance,  σestimated  is the identical to actual SNR of the 

image. The closer the estimation ratio equal to 1, the higher 

the accuracy of the SNR estimation method.  

 

For the results in Fig. 5 to 10, the nearest method seems to 

give the most absolute error. The linear interpolation has less 

accuracy, although it has better results than the nearest 

method. However, the combination of linear interpolation and 

nearest method produces lesser SNR accuracy, which may be 

due to the reliance on the properties and the nature of image. 

For better accuracy, the cubic spline interpolation cascaded 

with the linear least square regression is best. Overall, 

CSILLSR method provides better accuracy and stability. Fig. 

11 shows the designed application based on presented 

CSILLSR. 

 

B. Accelerating voltage 

Fig. 12 shows 3 material SEM images captured from 10 – 

30 keV. By increasing the voltage, the image contrast 

increases too. When the accelerating voltage is reduced, the 

image contrast is also reduced. The ACF curve is shown in 

Figure 13. The results obtained from various accelerating 

voltages are also tabulated in Table VII.  

 
Fig. 12. Material image at (a) 10keV, (b) 20keV and (c) 30keV 
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(a) 

 
(b) 

Fig. 7. Graphs for 222nm aperture size IC compound image in Fig. 4 (c). 

(a) SNR estimation   versus noise variance, and (b) The absolute error 

versus noise variance. 

 

TABLE II 

SNR estimation comparison of IC compound image at horizontal field-width = 25𝜇𝑚  in decibel (dB) 

Noise 

Variance 

Actual 

SNR 

Nearest Linear  

Interpolation 

CLIN NLLSR LDR ASNN CSILSR Estimation 

Error 

0.001 34.518 25.068 32.789 27.967 33.525 33.721 31.179 35.021 1.0146 

0.002 28.010 21.984 26.269 23.919 26.835 27.531 26.422 28.327 1.0113 

0.003 24.860 19.808 23.202 20.877 23.173 24.343 24.282 25.102 1.0097 

0.004 21.642 17.780 20.425 19.004 20.557 21.921 21.291 21.818 1.0081 

0.005 19.847 16.292 18.248 17.204 18.507 20.190 19.239 19.990 1.0072 

0.006 18.176 14.935 16.771 16.090 16.969 18.981 17.369 18.292 1.0064 

0.007 16.936 13.996 15.457 14.528 15.583 17.322 16.162 17.034 1.0058 

0.008 15.672 12.620 14.016 13.557 14.411 15.383 15.195 15.753 1.0052 

0.009 14.530 12.009 13.312 12.446 13.264 14.379 14.197 14.596 1.0045 

0.01 13.567 10.978 12.373 11.814 12.446 13.785 13.241 13.622 1.0041 

 
TABLE III 

SNR ESTIMATION COMPARISON OF IC COMPOUND IMAGE WITH 222NM OF APERTURE SIZE 

Noise 

Variance 

Actual 

SNR 

Nearest Linear  

Interpolation 

CLIN NLLSR LDR ASNN CSILSR Estimation 

Error 

0.001 28.624 19.024 22.206 20.500 21.648 28.212 21.909 28.956 1.0116 

0.002 22.461 16.379 18.626 17.499 18.261 22.145 16.396 22.653 1.0085 

0.003 19.068 14.303 16.113 15.273 15.941 18.855 14.048 19.198 1.0068 

0.004 16.581 12.793 14.364 13.435 14.006 16.318 12.742 16.673 1.0055 

0.005 14.503 11.426 12.656 11.988 12.463 14.832 11.449 14.569 1.0046 

0.006 12.955 10.147 11.311 10.757 11.248 12.626 9.989 13.003 1.0037 

0.007 11.711 9.197 10.149 9.643 10.092 11.477 8.984 11.748 1.0032 

0.008 10.523 8.166 9.202 8.734 9.053 10.369 8.027 10.550 1.0026 

0.009 9.544 7.358 8.179 7.878 8.175 9.319 6.914 9.563 1.0020 

0.01 8.620 6.662 7.453 7.053 7.374 8.483 6.524 8.633 1.0015 

 

TABLE I 

SNR ESTIMATION COMPARISON OF IC COMPOUND IMAGE AT HORIZONTAL FIELD-WIDTH = 50𝜇𝑚  IN DECIBEL (DB) 

Noise 

Variance 

Actual 

SNR 

Nearest Linear  

Interpolation 

CLIN NLLSR LDR ASNN CSILLSR Estimation 

Error 

0.001 32.477 22.837 38.445 27.656 35.534 31.851 28.380 32.917 1.0135 

0.002 25.825 20.139 28.321 23.573 27.875 24.851 23.869 26.088 1.0102 

0.003 22.758 17.998 24.049 20.529 23.506 21.616 21.083 22.956 1.0087 

0.004 19.992 16.445 21.139 18.596 20.760 18.902 18.567 20.138 1.0073 

0.005 17.898 15.205 19.097 16.983 18.773 17.189 16.857 18.010 1.0063 

0.006 16.691 13.788 17.305 15.581 17.026 15.469 15.326 16.786 1.0057 

0.007 15.236 13.056 15.973 14.354 15.690 14.119 14.090 15.311 1.0049 

0.008 14.241 11.742 14.840 13.331 14.545 13.179 13.073 14.304 1.0044 

0.009 13.090 11.045 13.532 12.341 13.334 12.128 11.989 13.141 1.0039 

0.01 12.255 10.421 12.591 11.358 12.389 11.540 11.497 12.297 1.0034 
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(a) 

 
(b) 

Fig. 8. Graphs for 89nm aperture size IC compound image in Fig. 4 (d).  (a) 

The SNR estimation versus noise variance, and (b) The absolute error 
versus noise variance.  

 
(a) 

 
(b) 

Fig. 9. Graphs for material image A in Fig. 4 (e).  (a)The SNR estimation   

versus noise variance, and (b)The absolute error versus noise variance. 

 

 
(a) 

 
(b) 

Fig. 10. Graphs for material image B in Fig. 4 (f).  (a) The SNR 

estimation using various methods versus noise variance, and (b) The 

absolute error versus noise variance. 
 

TABLE VII 

RESULTS  FOR MATERIAL IMAGE CAPTURED AT THREE ACCELERATING 

VOLTAGES 

 
Voltage 

(keV) 

Noise ACF 

at 

 zero offset 

point 

CSILLSR 

noise-free 

ACF at 

 zero offset 

point 

Mean Signal Signal 

(dB) 

10 4442.797 4436.443 3850.460 585.983 39.297 

20 18150.156 18124.201 15160.070 2964.131 41.154 

30 23206.060 23172.875 19148.496 4024.379 41.675 

 
Fig. 13.  The ACF curve of sample images captured at three accelerating 

voltages from 10 keV to 30 keV 
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TABLE V 
SNR ESTIMATION COMPARISON OF MATERIAL IMAGE A 

Noise 

Variance 

Actual 

SNR 

Nearest Linear  

Interpolation 

CLIN NLLSR LDR ASNN CSILSR Estimation 

Error 

0.001 27.168 21.542 30.336 27.771 32.494 26.579 24.912 27.464 1.0109 

0.002 20.987 17.666 27.272 21.226 25.530 20.378 20.571 21.151 1.0078 

0.003 17.556 14.964 20.662 17.589 20.189 17.149 16.883 17.662 1.0060 

0.004 15.172 13.133 17.736 14.703 16.889 14.771 14.525 15.246 1.0049 

0.005 13.248 11.309 15.224 12.990 14.572 12.852 12.768 13.300 1.0039 

0.006 11.528 9.799 13.108 11.541 12.691 11.448 10.726 11.563 1.0030 

0.007 10.384 8.809 11.699 10.034 11.139 9.908 9.440 10.410 1.0025 

0.008 9.059 7.783 10.195 8.687 9.862 8.853 8.855 9.075 1.0018 

0.009 8.085 6.871 8.963 7.828 8.678 8.249 7.346 8.096 1.0014 

0.01 7.240 5.872 8.050 6.959 7.799 7.103 6.937 7.247 1.0010 

 

TABLE IV 
SNR ESTIMATION COMPARISON OF IC COMPOUND IMAGE WITH 89NM OF APERTURE SIZE 

Noise 

Variance 

Actual 

SNR 

Nearest Linear  

Interpolation 

CLIN NLLSR LDR ASNN CSILSR Estimation 

Error 

0.001 33.705 20.871 24.674 22.618 23.350 34.303 25.858 34.182 1.0142 

0.002 27.848 18.977 21.820 20.263 20.912 27.318 18.977 28.161 1.0112 

0.003 24.339 17.320 19.722 18.439 18.977 23.497 17.767 24.569 1.0094 

0.004 21.784 15.999 18.016 17.011 17.374 21.262 16.012 21.963 1.0082 

0.005 19.880 14.870 16.692 15.821 16.012 20.058 14.791 20.024 1.0072 

0.006 18.329 13.906 15.419 14.605 14.944 18.703 14.004 18.448 1.0065 

0.007 17.029 12.915 14.455 13.655 13.921 16.864 12.836 17.128 1.0058 

0.008 15.914 12.152 13.499 12.719 13.060 15.818 11.762 15.998 1.0053 

0.009 14.907 11.311 12.606 11.985 12.196 14.789 11.103 14.978 1.0048 

0.01 13.940 10.676 11.912 11.293 11.490 13.674 10.650 13.999 1.0042 

 

TABLE VI 
SNR COMPARISON OF MATERIAL IMAGE B 

Noise 

Variance 

Actual 

SNR 

Nearest Linear  

Interpolation 

CLIN NLLSR LDR ASNN CSILSR Estimation 

Error 

0.001 35.152 22.359 47.860 29.435 27.246 34.383 23.620 35.674 1.0148 

0.002 28.118 19.516 33.530 24.311 22.871 28.664 20.774 28.438 1.0114 

0.003 24.209 17.278 26.367 21.073 19.978 23.478 18.848 24.437 1.0094 

0.004 21.361 15.671 22.478 18.532 17.767 21.890 16.728 21.532 1.0080 

0.005 19.197 14.204 19.770 16.746 16.001 18.731 15.650 19.329 1.0069 

0.006 17.610 13.005 17.682 15.122 14.653 17.927 14.841 17.718 1.0061 

0.007 16.362 12.008 15.976 13.822 13.328 16.638 13.661 16.452 1.0055 

0.008 14.964 10.955 14.619 12.663 12.194 15.215 12.983 15.035 1.0047 

0.009 14.056 10.095 13.499 11.689 11.285 14.425 11.762 14.117 1.0043 

0.01 13.152 9.302 12.406 10.765 10.458 13.515 10.863 13.203 1.0039 

 

 
Fig. 11. The designed application for CSILLSR. 
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C. Beam diameter 

The beam diameter is also a key factor in affecting the shape 

ACF curve. The spatial resolution of the image increases 

when the probe size decreases. Four samples of IC compound 

images are captured with 60 nm to 18 nm beam diameter and 

shown in Fig. 14. The results in Table VIII shows that as the 

beam diameter increases, the better is the contrast of image. 

Thus, SEM images with finer beam diameter would contain 

more noise signal, which results in worse contrast. The ACF 

curve is shown in Fig. 15. 

 

 
Fig. 14.  IC compound image with various beam diameter (a) 60nm, 

(b)38nm, (c) 25nm and (d) 18nm 

 
TABLE VIII 

RESULTS FOR IC COMPOUND IMAGE CAPTURED AT VARIOUS BEAM 

DIAMETERS 

 
Beam 

Diameter  

(nm) 

Noisy  

ACF 

Noise  

Free 

Mean Signal Signal 

(dB) 

Noise SNR 

60 16247

.854 

16224.

620 

13046.

962 

3177.

657 

42.720 23.23

4 

136.7

65 

38 15029

.429 

15007.

937 

12569.

624 

2438.

313 

41.096 21.49

2 

113.4

52 

25 14815

.807 

14794.

620 

12719.

551 

2075.

069 

39.819 21.18

7 

97.94

3 

18 11842

.271 

11825.

336 

10373.

616 

1451.

720 

38.662 16.93

4 

85.72

6 

 

 
Fig. 15. The ACF curve of IC compound images captured at four beam 

diameters from 60nm to 18nm. 

 

D. Surface tilt 

The Fig. 16 is taken when the surface of the SEM images 

are tilted at 0°, 10° and 20°. The images in Fig. 15, show that 

greater tilt angle, will result in higher ACF value. Thus, the 

ACF value is at the highest for the image with tilt angle of 

20°. The ACF curve is illustrated in Fig. 17 and the results 

are tabulated in Table IX. 

 

 
Fig. 16. Power IC package cell image with (a) tilt angle of 0°, (b) tilt 

angle of 10° and (c) tilt angle of 20°. 

 
TABLE IX 

RESULTS FOR POWER IC PACKAGE IMAGES CAPTURED AT VARIOUS TILT 

ANGLES 

 
Tilt Angle 

(°) 

Noisy  

ACF 

Noise  

Free 

Mean Signal Signal (dB) Noise SNR 

0 18487.543 18461.106 18367.324 93.782 10.998 26.437 3.547 

10 18531.158 18504.658 18404.092 100.566 11.584 26.500 3.795 

20 18603.169 18576.567 18451.581 124.986 13.439 26.603 4.698 

 

 
Fig. 17. The ACF curve of cell of power IC package images captured at 

three tilt angles.  
 

E. Contrast in SEM images 

The image contrast can be adjusted by modifying the value 

of the accelerating voltages. Referring to Table X, three 

samples of images from mould compound of power IC 

package are taken at three different contrasts and are shown 

in Fig. 18. From the results, the ACF value is the highest for 

high contrast image, then followed by middle contrast and 

low contrast.  Fig.19 shows the corresponding ACF curve. 
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Fig. 18. Power IC package mould compound image with (a) low contrast, 

(b) middle contrast and (c) high contrast. 

 
TABLE X 

RESULTS FOR POWER IC PACKAGE IMAGES CAPTURED AT VARIOUS 

CONTRASTS 
Contrast Noisy  

ACF 

Noise  

Free 

Mean Signal Signal (dB) Noise SNR 

Low 24520.048 24484.984 19843.827 4641.158 42.435 35.064 132.364 

Middle 30625.369 30581.575 23703.966 6877.609 43.920 43.794 157.044 

High 33491.077 33443.185 25117.771 8325.414 44.803 47.892 173.836 

 

 
Fig. 19.  The ACF curve of power IC package mould compound images 

captured at three contrast values. 

 

VII.PERFORMANCE OF CSILLSR METHOD VERSUS CRAMER –

RAO LOWER BOUND 

 

 In this section, we apply the Cramer-Rao Lower Bound to 

test the performance of CSILLSR with other techniques for 

the six images. The CRLB is an approach to acquire the lower 

bound of the mean squared error (MSE). If the estimator 

performance is equivalent or slightly greater than the CRLB, 

the estimator can be concluded as a good estimator [7] [15]. 

 

 Figs. 20-25 show that the CSILLSR is well performed for 

IC compound at horizontal field-width = 50 μm, IC 

compound at horizontal field-width = 25μm, 222 nm aperture 

size IC compound image, 89 nm aperture size IC compound 

image, The material image A and The material image B are 

better than those from the other methods. The error variances 

of CSILLSR are less than 0.1% different from the CRLB.  

 

 
Fig. 20. Graph of MSE values of various methods against Cramer-Rao 

lower bound for IC compound at 50 μm. 
 

 
Fig. 21. Graph of MSE values of various methods against Cramer-Rao 

lower bound for IC compound at 25 μm. 
 

 
Fig. 22. Graph of MSE values of various methods against Cramer-Rao 

lower bound for 222nm aperture size IC compound image. 
 

 
Fig. 23. Graph of MSE values of various methods against Cramer-Rao 

lower bound for 89nm aperture size IC compound image. 

Low Contrast 

Medium Contrast 
High Contrast 
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Fig. 24. Graph of MSE values of various methods against Cramer-Rao 

lower bound for material image A. 
 

 
Fig. 25. Graph of MSE values of various methods against Cramer-Rao 

lower bound for material image B. 

 

VIII.CUBIC SPLINE INTERPOLATION WITH LINEAR LEAST SQUARE 

REGRESSION WIENER FILTER 

 

In this section, for the purpose of applications, three filters 

namely Cubic Spline Interpolation with Linear Least Square 

Regression Wiener filter, Average filter and Median filter are 

introduced. Mean Square Error (MSE) is then measured for 

three filters to compare its performances. Four SEM images 

with the size of 256 x 256 pixels are applied. The noise 

variances are implemented from the range of 0.001 to 0.003. 

 
                     (a) 

 
                   (b)  

 
                      (c)  

 
                    (d)  

 
                         (e)  

 
                 (f) 

  

(g) (h) 

Fig. 26. (a) Original IC compound A, (b) Corrupted IC compound A with 

noise, (c) Average filtered image,  (d) The SSIM index map of (c), (e) 
Median filtered image, (f) The SSIM index map of (e),   and (g) Wiener 

(CSILLSR) filtered image and (h) The SSIM index map of (g). 

 

TABLE XI 

MSE OF IC COMPOUND A IMAGE 

 

 
Fig. 27. Graph of MSE for three types of filters vs Noise Variance for IC 

compound A in Fig. 26 

 
(a) (b)  

Noise  

Variance 

Average  

filter (MSE) 

Median 

 filter (MSE) 
Wiener  

filter (MSE) 

0.001 0.000402 0.000290 0.000229 

0.002 0.000515 0.000470 0.000393 

0.003 0.000625 0.000639 0.000566 
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 (c)  (d)  

 
   (e)  

 
(f)                   

 
(g) 

 
(h) 

 

Fig. 28. (a) Original IC compound B, (b) Corrupted IC compound B with 

noise, (c) Average filtered image,  (d) The SSIM index map of (c), (e) 
Median filtered image, (f) The SSIM index map of (e),   and (g) Wiener 

(CSILLSR) filtered image and (h) The SSIM index map of (g). 

 

 
Fig. 29.  Graph of MSE for three types of filters vs Noise Variance for IC 

compound B in Fig. 28 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 30. (a) Original Material image A, (b) Corrupted Material image A 

with noise, (c) Average filtered image,  (d) The SSIM index map of (c), (e) 

Median filtered image, (f) The SSIM index map of (e),   and (g) Wiener 
(CSILLSR) filtered image and (h) The SSIM index map of (g). 

 

TABLE XIII 

 MSE OF MATERIAL IMAGE A 

 
Fig. 31. Graph of MSE for three types of filters vs Noise Variance for 

Material Image A in Fig. 30 

TABLE XII 

 MSE OF IC COMPOUND B IMAGE 
Noise  

Variance 

Average  

filter (MSE) 

Median 

 filter (MSE) 
Wiener  

filter (MSE) 

0.001 0.000341 0.000258 0.000197 

0.002 0.000454 0.000442 0.000366 

0.003 0.000567 0.000619 0.000548 

Noise  

Variance 

Average  

filter (MSE) 

Median 

 filter (MSE) 
Wiener  

filter (MSE) 

0.001 0.000355 0.000267 0.000205 

0.002 0.000469 0.000445 0.000373 

0.003 0.000574 0.000610 0.000549 
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                     (a) 

 
                   (b)  

 
                      (c)  

 
                    (d)  

 
                         (e)  

 
                  (f) 

 
(g) 

 
(h) 

Fig. 32. (a) Original Material image B, (b) Corrupted Material image B 

with noise, (c) Average filtered image,  (d) The SSIM index map of (c), (e) 

Median filtered image, (f) The SSIM index map of (e),   and (g) Wiener 
(CSILLSR) filtered image and (h) The SSIM index map of (g). 

 

TABLE XIV 

 MSE OF MATERIAL IMAGE B 

 

 

 
 

Fig. 33. Graph of MSE for three types of filters vs Noise Variance for 

Material Image B in Fig. 32. 

 

The performances of Cubic Spline Interpolation with Linear 

Least Square Regression Wiener filter, Average filter and 

Median filter are compared in terms of the Mean Square Error 

(MSE) with four images. The results of the MSE of these four 

images for three types of filters are tabulated in Table XI to 

Table XIV. By referring to Table XI to Table XIV, the value 

of MSE increases as the noise variance increases. The quality 

of image is reduced when the amount of noise is high. Thus, 

lower image quality will result in higher MSE value. 

 

According to the result in Table XI, the MSE for Wiener 

filter of IC compound A is at 0.000566 when the noise 

variance is given by 0.003, which is the lowest MSE value as 

compared with the other two filters. Similarly, the MSE result 

of the Wiener filter remains the lowest for Table XII, Table 

XIII and Table XIV of IC compound B, Material image A and 

Material image B, which are calculated at 0.000549, 

0.000548 and 0.001138 respectively, while the noise variance 

is given by 0.003. Since the CSILLSR method managed to 

provide good accuracy of SNR value estimation for the SEM 

images, this justifies the result of lesser MSE value for 

Wiener filter that combined with CSILLSR method. 

 

According to Figures 27, 29, 31, and 33, the Wiener filter 

has the highest performance compared to Average filter and 

Median filter. It appears that Wiener filter is the best filter to 

reduce and remove the white Gaussian noise from the SEM 

images as compared to the other two filters. Average filter 

gives the worst performance followed by Median filter. 

According to the results, it is clear that Median filter and 

Average filter are not suitable to filter out and reduce the 

white Gaussian noise from the scanning electron microscope 

images. Denoise process is proved to enhance image quality 

and provides more detail information. Several reviewed 

studies enhanced images through state-of-the-art methods 

[16][17][18]. 

IX.CONCLUDING REMARK 

The present work shows that the cubic spline interpolation 

with linear least square regression yields the lowest absolute 

error difference, when compared with those obtained by other 

methods. CSILLSR provides the highest accuracy with 

acceptable stability when performing SNR estimation.  When 

the noise variance rises from 0.001 to 0.010, CSILLSR 

estimation method tends to follow and estimate SNR value 

along the pattern of the ACF curve, thus giving high stability. 

Noise  

Variance 

Average  

filter (MSE) 

Median 

 filter (MSE) 
Wiener  

filter (MSE) 

0.001 0.001355 0.001057 0.000789 

0.002 0.001474 0.001284 0.000967 

0.003 0.001589 0.001482 0.001138 
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The present study also compares that increasing accelerating 

voltages and beam diameter will increase the image contrast. 

Increasing the surface tilt increases the ACF value. The 

combination of Wiener filter and CSILLSR method provides 

relatively low MSE value as compared with both Average and 

Median filters. 
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