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Abstract—This work presents rough sets in approximation
spaces based on overlaps of successor classes with respect
to level in closed unit intervals under serial fuzzy relations
between two universes. Some related properties are verified. In
semigroup structures, the concepts of rough semigroups, rough
ideals and rough completely prime ideals in approximation
spaces under transitive and compatible fuzzy relations are intro-
duced. Next, sufficient conditions of them are provided. Finally,
relationships between rough semigroups (resp. rough ideals and
rough completely prime ideals) and their homomorphic images
are investigated. These relationships are presented in purport
of necessary and sufficient conditions.

Index Terms—rough set, semigroup, rough semigroup, rough
ideal, rough completely prime ideal, serial fuzzy relation,
transitive fuzzy relation, compatible fuzzy relation

I. INTRODUCTION

TO solve problems in uncertain data under information
sciences with computational technologies in terms of

crisp sets, Pawlak’s rough set theory offers an alternative
classical tool for such the problem-solving. This theory was
proposed by Pawlak [1] in 1982 which is an approximation
processing model based on the foundation of an approxima-
tion space induced by an equivalence relation on a universal
set. Given an equivalence relation on a universal set and a
non-empty subset of the universal set, the Pawlak’s rough set
of the given set is defined by a pair of two sets, called the
Pawlak’s upper and Pawlak’s lower approximations where
the difference between the Pawlak’s upper approximation and
the Pawlak’s lower approximation (also called the Pawlak’s
boundary region) is a non-empty set. The Pawlak’s upper
approximation is the union of all the equivalence classes
which have a non-empty intersection with the given set. The
Pawlak’s lower approximation is the union of all the equiv-
alence classes which are subset of the given set. As studied
above, the Pawlak’s rough set model has been being used
in algebraic systems [2]–[15], expert systems with appli-
cations [16], knowledge-based systems [17], computers and
electrical engineerings [18], measurements [19], approximate
reasonings [20] etc. Because of new trend, Pawlaks rough set
theory has been becoming an information management tool
in the area of artificial intelligence.

Based on the Pawlak’s rough set induced by an equivalence
relation, extended notions have been studied with different
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arbitrary binary relations (briefly, binary relations). Espe-
cially, Yao [21] introduced roughness models using successor
neighborhoods induced by binary relations [SNθ(u) :=
{u′ ∈ U : (u, u′) ∈ θ} denotes a successor neighborhood of
u induced by a binary relation θ on a universal set U where
u is an element in U ]. Lately, Mareay [22] introduced rough
sets via cores of successor neighborhoods induced by binary
relations [CSNθ(u) := {u′ ∈ U : SNθ(u) = SNθ(u

′)}
denotes a core of a successor neighborhood of u induced by
a binary relation θ on a universal set U where u is an element
in U ]. If a binary relation on a universal set has a property
that an equivalence relation, then the Yao’s rough set and the
Mareay’s rough set are generalizations of the Pawlak’s rough
set.

In 1965, Zadeh [23] introduced a classical notion of
fuzzy set theory. Based on this point, Zadeh (see [24],
[25]) introduced the concept of fuzzy relations in 1971. This
classical fuzzy set theory has possible uses in various fields,
such as information sciences [26], algebraic systems [27],
computers and engineerings [28] etc.

The semigroup structure (see [29]) is an algebraic system
with respect to extensive applications, such as the semigroup
provide an algebraic framework for modeling and investigat-
ing the key factors in dynamical systems under algebraic
engineerings [30] etc. For combinations of semigroup the-
ory and Pawlak’s rough set theory, Kuroki [4] proposed
the notions of upper and lower approximation semigroups
(resp. ideals) in semigroups induced by congruence rela-
tions, and provided sufficient conditions of upper and lower
approximation semigroups (resp. ideals) in 1997. In 2006,
Xiao and Zhang [7] proposed the notions of upper and
lower approximation completely prime ideals in semigroups
induced by congruence relations, and provided sufficient
conditions of upper and lower approximation completely
prime ideals. Also, they verified the relationship between
upper and lower approximation completely prime ideals
(resp. ideals) and the homomorphic image of upper and lower
approximation completely prime ideals (resp. ideals) under
homomorphism problems. Under combinations of semigroup
theory, Pawlak’s rough set theory and fuzzy set theory,
Wang and Zhan [13] introduced the concepts of upper and
lower approximation semigroups (resp. ideals and completely
prime ideals) induced by special congruence relations in-
duced by fuzzy ideals, and also provided sufficient conditions
of upper and lower approximation semigroups (resp. ideals
and completely prime ideals) in 2016.

The main purpose of this paper is developments of the
rough set theory induced by fuzzy relations on universal sets
and semigroups. After providing some preliminary concepts
of fundamental fuzzy relations and semigroups in Section II,
we introduce a rough set in an approximation space based on
overlaps of successor classes with respect to level in a closed
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unit interval under a fuzzy relation between two universes,
and verify some interesting properties in Section III. In
Section IV, we give concepts of rough semigroups, rough
ideals and rough completely prime ideals in approximation
spaces under transitive and compatible fuzzy relations on
semigroups. Next, we provide sufficient conditions of them.
In Section V, we investigate relationships between rough
semigroups (resp. rough ideals and rough completely prime
ideals) and their homomorphic images. In the end, we give
a conclusion of the research in Section VI.

II. PRELIMINARIES

In this section we review some important definitions which
will be refered in the subsequent sections.

Throughout this work, we suppose that U and V denote
two non-empty universal sets.

Definition 1. [23] A fuzzy set of U is defined as a function
from U to the closed unit interval [0, 1].

Definition 2. [26] Let F(U × V ) be a family of all fuzzy
sets of U × V . An element in F(U × V ) is referred to as
a fuzzy relation from U to V . An element in F(U × V ) is
called a fuzzy relation on U if U = V . For a fuzzy relation
Φ ∈ F(U × V ) and elements u ∈ U , v ∈ V , the value of
Φ(u, v) in [0, 1] representing the membership grade of the
relation between u and v under Φ. If Φ ∈ F(U × V ) where
U := {u1, u2, u3, ..., um} and V := {v1, v2, v3, ..., vn}, then
the fuzzy relation Φ is represented by the matrix as

Φ(u1, v1) Φ(u1, v2) Φ(u1, v3) · · · Φ(u1, vn)
Φ(u2, v1) Φ(u2, v2) Φ(u2, v3) · · · Φ(u2, vn)
Φ(u3, v1) Φ(u3, v2) Φ(u3, v3) · · · Φ(u3, vn)

...
...

... · · ·
...

Φ(um, v1) Φ(um, v2) Φ(um, v3) · · · Φ(um, vn)

 .

Definition 3. [26] Let Φ be a fuzzy relation from U to V .
Φ is called serial if for all u ∈ U , there exists v ∈ V such
that Φ(u, v) = 1.

Definition 4. [26] Let Φ be a fuzzy relation on U .
(1) Φ is called reflexive if for all u ∈ U , Φ(u, u) = 1.
(2) Φ is called symmetric if for all u1, u2 ∈ U ,

Φ(u1, u2) = Φ(u2, u1).

(3) Φ is called transitive if for all u1, u2 ∈ U ,

Φ(u1, u2) ≥ ∨u3∈U (Φ(u1, u3) ∧ Φ(u3, u2)).

(4) Φ is called a similarity fuzzy relation if it is reflexive,
symmetric and transitive.

A semigroup [29] (S,>) is defined as an algebraic system
where S is a non-empty set and > is an associative binary
operation on S. Throughout this paper, S denotes a semi-
group. A non-empty subset X of S is called a subsemigroup
[31] of S if X2 ⊆ X . A non-empty subset X of S is called
a left (right) ideal [31] of S if SX ⊆ X (XS ⊆ X), and
if it is both a left ideal and a right ideal of S, then it is
called an ideal [31]. An ideal X of S is called a completely
prime ideal [31] of S if for all s1, s2 ∈ S, s1s2 ∈ X implies
s1 ∈ X or s2 ∈ X .

Definition 5. [31] Let Φ be a fuzzy relation on S. Φ is called
compatible if for all s1, s2, s3 ∈ S,

Φ(s1s3, s2s3) ≥ Φ(s1, s2) and Φ(s3s1, s3s2) ≥ Φ(s1, s2).

III. ROUGH SET MODELS INDUCED BY SERIAL FUZZY
RELATIONS

In this section we introduce a novel rough set induced by a
serial fuzzy relation between two universes. Then we give a
real-world example and verify to some interesting properties.

In the initial point, we construct new classes in Definitions
6 and 7, and examine to some related properties as the
following.

Definition 6. Let ι ∈ [0, 1] and let Φ be a fuzzy relation
from U to V . For an element u ∈ U ,

SΦ(u; ι) := {v ∈ V : Φ(u, v) ≥ ι}

is called a successor class of u with respect to ι-level under
Φ.

Remark 1. Let ι ∈ [0, 1]. If Φ is a serial fuzzy relation from
U to V , then SΦ(u; ι) ̸= ∅ for all u ∈ U .

Definition 7. Let ι ∈ [0, 1] and let Φ be a serial fuzzy relation
from U to V . For an element u1 ∈ U ,

OSΦ(u1; ι) := {u2 ∈ U : SΦ(u1; ι) ∩ SΦ(u2; ι) ̸= ∅}

is called an overlap of the successor class of u1 with respect
to ι-level under Φ.

We denote by OSΦ(U ; ι) the collection of OSΦ(u; ι) for
all u ∈ U .

From Definition 7, the following proposition can be easily
obtained.

Proposition 1. Let ι ∈ [0, 1] and let Φ be a serial fuzzy
relation from U to V . Then, u ∈ OSΦ(u; ι) for all u ∈ U .

Proposition 2. Let ι ∈ [0, 1] and let Φ be a serial fuzzy
relation on U . Then we have the following statements.
(1) If Φ is reflexive, then we have SΦ(u; ι) ⊆ OSΦ(u; ι) for

all u ∈ U .
(2) If Φ is a similarity fuzzy relation, then SΦ(u; ι) and

OSΦ(u; ι) are identical classes for all u ∈ U .

Proof: The proof is straightforward, so we omit it.
In the following, we give a new rough set induced by a

serial fuzzy relation.

Definition 8. Let ι ∈ [0, 1] and let Φ be a serial fuzzy
relation from U to V . The triple (U, V,OSΦ(U ; ι)) is referred
to as an approximation space based on OSΦ(U ; ι) (briefly,
OSΦ(U ; ι)-approximation space). If U = V , then the triple
(U, V,OSΦ(U ; ι)) is substituted by a pair (U,OSΦ(U ; ι)).

Definition 9. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space. For a non-empty subset X of U , we
define three sets as follows:
Φ(X; ι) := {u ∈ U : OSΦ(u; ι) ∩X is a non-empty set},
Φ(X; ι) := {u ∈ U : OSΦ(u; ι) ⊆ X} and
Φbnd(X; ι) := Φ(X; ι)− Φ(X; ι).

Then
(1) Φ(X; ι) is referred to as an upper approximation of X

in (U, V,OSΦ(U ; ι)) (briefly, OSΦ(U ; ι)-upper approx-
imation of X).

Engineering Letters, 27:1, EL_27_1_24

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



(2) Φ(X; ι) is referred to as a lower approximation of X
in (U, V,OSΦ(U ; ι)) (briefly, OSΦ(U ; ι)-lower approx-
imation of X).

(3) Φbnd(X; ι) is referred to as a boundary region of X in
(U, V,OSΦ(U ; ι)) (briefly, OSΦ(U ; ι)-boundary region
of X).

(4) If Φbnd(X; ι) ̸= ∅, then Φ(X; ι) := (Φ(X; ι), Φ(X; ι))
is referred to as a rough set of X in (U, V,OSΦ(U ; ι))
(briefly, OSΦ(U ; ι)-rough set of X).

(5) If Φbnd(X; ι) = ∅, then X is referred to as a definable
set in (U, V,OSΦ(U ; ι)) (briefly, OSΦ(U ; ι)-definable
set).

Here we present an example as the following.

Example 1. Let U := {u1, u2, u3, u4, u5, u6} be a set of
electrical discharge machines (EDM) in an aerospace indus-
try of a leading company, and let V := {v1, v2, v3, v4, v5}
be a set of components of each elements in U . For a fuzzy
relation Φ ∈ F(U × V ) and elements u ∈ U , v ∈ V , the
number Φ(u, v) in the closed unit interval [0, 1] is defined
as a damage value of u with respect to v under Φ. The
damage values of all electrical discharge machines in U
with respect to components in V under Φ are given as the
following matrix.

0.9 0.8 0.9 0.9 0.8
0.8 0.8 0.9 0.8 0.8
0.9 0.8 0.8 0.8 0.8
0.7 0.9 0.8 0.8 0.8
0.8 0.9 0.8 0.7 0.8
0.7 0.8 0.8 0.8 0.9


Let ι = 0.9 be a maximum damage value of the usable

level. Suppose that a measurement expert committee assign
X := {u1, u3, u5} which is a non-empty set of electri-
cal discharge machines for the discharge under the global
evaluation. Then the assessment of X in an approximation
space (U, V,OSΦ(U ; 0.9)) is derived by the process as the
following. According to Definition 6, it follows that
SΦ(u1; 0.9) := {v1, v3, v4},
SΦ(u2; 0.9) := {v3},
SΦ(u3; 0.9) := {v1},
SΦ(u4; 0.9) := {v2},
SΦ(u5; 0.9) := {v2} and
SΦ(u6; 0.9) := {v5}.

According to Definition 7, it follows that
OSΦ(u1; 0.9) := {u1, u2, u3},
OSΦ(u2; 0.9) := {u1, u2},
OSΦ(u3; 0.9) := {u1, u3},
OSΦ(u4; 0.9) := {u4, u5},
OSΦ(u5; 0.9) := {u4, u5} and
OSΦ(u6; 0.9) := {u6}.

According to Definition 9, it follows that
Φ(X; 0.9) := {u1, u2, u3, u4, u5},
Φ(X; 0.9) := {u3} and
Φbnd(X; 0.9) := {u1, u2, u4, u5}.

Thus we get Φ(X; 0.9) := ({u1, u2, u3, u4, u5}, {u3}) is a
OSΦ(U ; 0.9)-rough set of X . As a consequence,
(1) u1, u2, u3, u4 and u5 are possibly electrical discharge

machines for the discharge,
(2) u3 is certainly electrical discharge machine for the

discharge,

(3) u1, u2, u4 and u5 cannot be determined whether four
students are electrical discharge machines for the dis-
charge or not.

In what follows, Example 1 leads to Definition 10 as the
following.

Definition 10. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space and let X be a non-empty subset of
U . Φ(X; ι) is called a non-empty OSΦ(U ; ι)-upper approxi-
mation of X in (U, V,OSΦ(U ; ι)) if Φ(X; ι) is a non-empty
subset of U . Similarly, we can define non-empty OSΦ(U ; ι)-
lower approximations. Φ(X; ι) is referred to as a non-empty
OSΦ(U ; ι)-rough set if Φ(X; ι) is a non-empty OSΦ(U ; ι)-
upper approximation and Φ(X; ι) is a non-empty OSΦ(U ; ι)-
lower approximation.

Proposition 3. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space. If X and Y are non-empty subsets of
U , then we have the following statements.
(1) Φ(U ; ι) = U and

Φ(U ; ι) = U .
(2) Φ(∅; ι) = ∅ and

Φ(∅; ι) = ∅.
(3) X ⊆ Φ(X; ι) and

Φ(X; ι) ⊆ X .
(4) Φ(X ∪ Y ; ι) = Φ(X; ι) ∪ Φ(Y ; ι) and

Φ(X ∩ Y ; ι) = Φ(X; ι) ∩ Φ(Y ; ι).
(5) Φ(X ∩ Y ; ι) ⊆ Φ(X; ι) ∩ Φ(Y ; ι) and

Φ(X ∪ Y ; ι) ⊇ Φ(X; ι) ∪ Φ(Y ; ι).
(6) If X ⊆ Y , then Φ(X; ι) ⊆ Φ(Y ; ι) and

Φ(X; ι) ⊆ Φ(Y ; ι).

Proof: The proof is straightforward, so we omit it.

Definition 11. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space and let X be a non-empty subset of U .
If Φ(X; ι) is a non-empty OSΦ(U ; ι)-lower approximation
of X in (U, V,OSΦ(U ; ι)) and Φ(X; ι) is a proper subset of
X , then X is called a set over non-empty interior set.

Proposition 4. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space and let X be a non-empty subset of U .
If X is a set over non-empty interior set, then Φ(X; ι) is a
non-empty OSΦ(U ; ι)-rough set of X in (U, V,OSΦ(U ; ι)).

Proof: Suppose that X is a set over non-empty interior
set. Then we have that Φ(X; ι) is a non-empty OSΦ(U ; ι)-
lower approximation and Φ(X; ι) ⊂ X . By Proposition 3 (3),
we obtain that ∅ ̸= X ⊆ Φ(X; ι). Thus we get Φ(X; ι) is a
non-empty OSΦ(U ; ι)-upper approximation. We shall verify
that Φbnd(X; ι) ̸= ∅. Suppose that Φbnd(X; ι) = ∅. Then,
Φ(X; ι) = Φ(X; ι). From Proposition 3 (3), once again,
it follows that Φ(X; ι) = X , a contradiction. Therefore,
Φbnd(X; ι) ̸= ∅. Consequently, Φ(X; ι) is a non-empty
OSΦ(U ; ι)-rough set of X .

Proposition 5. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space and let (U, V,OSΩ(U ;κ)) be an
OSΩ(U ;κ)-approximation space. If ι ≥ κ and Φ ⊆ Ω, then
Φ(X; ι) ⊆ Ω(X;κ) for every non-empty subset X of U .

Proof: Let X be a non-empty subset of U and let u1

be an element in Φ(X; ι). Then, OSΦ(u1; ι) ∩ X ̸= ∅.
Thus there exists u2 ∈ OSΦ(u1; ι) ∩ X . Hence we get
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SΦ(u1; ι) ∩ SΦ(u2; ι) ̸= ∅. Thus there exists u3 ∈ U such
that u3 ∈ SΦ(u1; ι) and u3 ∈ SΦ(u2; ι). Then, Φ(u1, u3) ≥ ι
and Φ(u2, u3) ≥ ι. By the assumption, we obtain that

Ω(u1, u3) ≥ Φ(u1, u3) ≥ ι ≥ κ

and

Ω(u2, u3) ≥ Φ(u2, u3) ≥ ι ≥ κ.

Hence we have u3 ∈ SΩ(u1;κ) ∩ SΩ(u2;κ), and so
SΩ(u1;κ) ∩ SΩ(u2;κ) ̸= ∅. Thus, u2 ∈ OSΩ(u1;κ) ∩ X .
Whence OSΩ(u1;κ) ∩ X ̸= ∅. Hence u1 ∈ Ω(X;κ).
Therefore, Φ(X; ι) ⊆ Ω(X;κ).

Proposition 6. Let (U, V,OSΦ(U ; ι)) be an OSΦ(U ; ι)-
approximation space and let (U, V,OSΩ(U ;κ)) be an
OSΩ(U ;κ)-approximation space. If ι ≥ κ and Φ ⊆ Ω, then
Ω(X;κ) ⊆ Φ(X; ι) for every non-empty subset X of U .

Proof: Let X be a non-empty subset of U . Then we
prove that Ω(X;κ) ⊆ Φ(X; ι). Indeed, let u1 be an element
in Ω(X;κ). Then, OSΩ(u1; ι) ⊆ X . We shall show that
OSΦ(u1; ι) ⊆ OSΩ(u1;κ). Let u2 ∈ OSΦ(u1; ι). Then we
have SΦ(u1; ι) ∩ SΦ(u2; ι) ̸= ∅. Thus there exists u3 ∈ U
such that u3 ∈ SΦ(u1; ι) ∩ SΦ(u2; ι). Hence Φ(u1, u3) ≥ ι
and Φ(u2, u3) ≥ ι. By the assumption, we obtain that

Ω(u1, u3) ≥ Φ(u1, u3) ≥ ι ≥ κ

and

Ω(u2, u3) ≥ Φ(u2, u3) ≥ ι ≥ κ.

Thus we get that u3 ∈ SΩ(u1;κ) ∩ SΩ(u2;κ), and so
SΩ(u1;κ) ∩ SΩ(u2;κ) ̸= ∅. Thus, u2 ∈ OSΩ(u1;κ),
which yields OSΦ(u1; ι) ⊆ OSΩ(u1;κ) ⊆ X . Therefore,
u1 ∈ Φ(X; ι). This means that Ω(X;κ) ⊆ Φ(X; ι).

IV. ROUGHNESS IN SEMIGROUPS

In this section we propose rough set models in semigroups
induced by transitive and compatible fuzzy relations, which
mainly include rough semigroups, rough ideals and rough
completely prime ideals. Then we provide to sufficient
conditions of them and give some intriguing properties and
examples.

Definition 12. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space. (S,OSΦ(S; ι)) is called an OSΦ(S; ι)-
approximation space type TCF if Φ is a transitive and
compatible fuzzy relation.

Proposition 7. If (S,OSΦ(S; ι)) is an OSΦ(S; ι)-
approximation space type TCF, then

(OSΦ(s1; ι))(OSΦ(s2; ι)) ⊆ OSΦ(s1s2; ι)

for all s1, s2 ∈ S.
Proof: Let s1 and s2 be two elements in S. Suppose

that s3 ∈ (OSΦ(s1; ι))(OSΦ(s2; ι)). Then there exists s4 ∈
OSΦ(s1; ι) and exists s5 ∈ OSΦ(s2; ι) such that s3 = s4s5.
Thus SΦ(s1; ι)∩SΦ(s4; ι) ̸= ∅ and SΦ(s2; ι)∩SΦ(s5; ι) ̸= ∅.
Let s6 ∈ SΦ(s1; ι)∩SΦ(s4; ι) and s7 ∈ SΦ(s2; ι)∩SΦ(s5; ι).
Then we have Φ(s1, s6) ≥ ι, Φ(s4, s6) ≥ ι, Φ(s2, s7) ≥ ι

and Φ(s5, s7) ≥ ι. Since Φ is transitive and compatible, we
have

Φ(s1s2, s6s7) ≥ ∨s8∈S (Φ(s1s2, s8) ∧ Φ(s8, s6s7))

≥ Φ(s1s2, s1s7) ∧ Φ(s1s7, s6s7)

≥ Φ(s2, s7) ∧ Φ(s1, s6)

≥ ι ∧ ι

= ι.

Hence Φ(s1s2, s6s7) ≥ ι, and so s6s7 ∈ SΦ(s1s2; ι). Since
Φ is transitive and compatible, once again, we have

Φ(s4s5, s6s7) ≥ ∨s9∈S (Φ(s4s5, s9) ∧ Φ(s9, s6s7))

≥ Φ(s4s5, s6s5) ∧ Φ(s6s5, s6s7)

≥ Φ(s4, s6) ∧ Φ(s5, s7)

≥ ι ∧ ι

= ι.

Hence Φ(s4s5, s6s7) ≥ ι, and so s6s7 ∈ SΦ(s4s5; ι). Thus
SΦ(s1s2; ι)∩SΦ(s4s5; ι) ̸= ∅. Therefore, s3 ∈ OSΦ(s1s2; ι).
Consequently, (OSΦ(s1; ι))(OSΦ(s2; ι)) ⊆ OSΦ(s1s2; ι).

In what follows, we give an example to illustrate that the
property in Proposition 7 is essential.

Example 2. Let S := {s1, s2, s3, s4, s5, s6} be the semi-
group with multiplication rules defined by the TABLE I.

TABLE I
THE MULTIPLICATION TABLE ON S

· s1 s2 s3 s4 s5 s6
s1 s1 s2 s3 s3 s5 s6
s2 s2 s2 s2 s2 s2 s6
s3 s3 s2 s3 s3 s5 s6
s4 s3 s2 s3 s3 s5 s6
s5 s5 s2 s5 s5 s5 s6
s6 s6 s6 s6 s6 s6 s6

Define the membership grades of relationship between any
two elements in S under the fuzzy relation Φ on S as the
following: 

1 0 0 0 0 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 .

Then it is easy to check that Φ is transitive and compatible.
For ι = 0.9, the successor classes of each elements in S with
respect to 0.9-level under Φ are as follows:
SΦ(s1; 0.9) := {s1},
SΦ(s2; 0.9) := {s3, s5},
SΦ(s3; 0.9) := {s3, s5},
SΦ(s4; 0.9) := {s4},
SΦ(s5; 0.9) := {s3, s5} and
SΦ(s6; 0.9) := {s6}.

Hence the overlaps of successor classes of each elements in
S with respect to 0.9-level under Φ are as follows:
OSΦ(s1; 0.9) := {s1},
OSΦ(s2; 0.9) := {s2, s3, s5},
OSΦ(s3; 0.9) := {s2, s3, s5},
OSΦ(s4; 0.9) := {s4},
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OSΦ(s5; 0.9) := {s2, s3, s5} and
OSΦ(s6; 0.9) := {s6}.

Here it is straightforward to check that for all s, s′ ∈ S,

(OSΦ(s; 0.9))(OSΦ(s
′; 0.9)) ⊆ OSΦ(ss

′; 0.9).

The next example show that

(OSΦ(s; ι))(OSΦ(s
′; ι)) = OSΦ(ss

′; ι)

for ι ∈ [0, 1].

Example 3. Let S := {s1, s2, s3, s4, s5, s6} be the semi-
group with multiplication rules defined by the TABLE II.

TABLE II
THE MULTIPLICATION TABLE ON S

· s1 s2 s3 s4 s5 s6
s1 s1 s1 s1 s1 s1 s6
s2 s1 s2 s2 s2 s5 s6
s3 s1 s2 s3 s2 s5 s6
s4 s1 s2 s2 s4 s5 s6
s5 s1 s5 s5 s5 s5 s6
s6 s6 s6 s6 s6 s6 s6

Define the membership grades of relationship between any
two elements in S under the fuzzy relation Φ on S as the
following. 

0 0 0 0 1 0
0 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Then it is easy to verify that Φ is transitive and compatible.
For ι = 0.9, the successor classes of each elements in S with
respect to 0.9-level under Φ are as follows:
SΦ(s1; 0.9) := {s5},
SΦ(s2; 0.9) := {s2, s3, s4},
SΦ(s3; 0.9) := {s2, s3, s4},
SΦ(s4; 0.9) := {s2, s3, s4},
SΦ(s5; 0.9) := {s5} and
SΦ(s6; 0.9) := {s6}.

Hence overlaps of successor classes of each elements in S
with respect to 0.9-level under Φ are as follows:
OSΦ(s1; 0.9) := {s1, s5},
OSΦ(s2; 0.9) := {s2, s3, s4},
OSΦ(s3; 0.9) := {s2, s3, s4},
OSΦ(s4; 0.9) := {s2, s3, s4},
OSΦ(s5; 0.9) := {s1, s5} and
OSΦ(s6; 0.9) := {s6}.

Here it is straightforward to check that for all s, s′ ∈ S,

(OSΦ(s; 0.9))(OSΦ(s
′; 0.9)) = OSΦ(ss

′; 0.9).

Based on this point, the property can be considered as a
special case of Proposition 7. This example leads to the
following definition.

Definition 13. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type TCF. The collection OSΦ(S; ι) is
called complete induced by Φ (briefly, Φ-complete) if for all
s1, s2 ∈ S,

(OSΦ(s1; ι))(OSΦ(s2; ι)) = OSΦ(s1s2; ι).

Definition 14. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type TCF. If OSΦ(S; ι) is complete
induced by Φ, then Φ is called a complete fuzzy relation.
(S,OSΦ(S; ι)) is called an OSΦ(S; ι)-approximation space
type CPF if Φ is complete.

Proposition 8. If (S,OSΦ(S; ι)) is an OSΦ(S; ι)-
approximation space type TCF, then

(Φ(X; ι))(Φ(Y ; ι)) ⊆ Φ(XY ; ι),

for every non-empty subsets X,Y of S.

Proof: Let X and Y be two non-empty subsets of S.
Suppose that s1 ∈ (Φ(X; ι))(Φ(Y ; ι)). Then there exists s2 ∈
Φ(X; ι) and exists s3 ∈ Φ(Y ; ι) such that s1 = s2s3. Thus
we have OSΦ(s2; ι) ∩ X ̸= ∅ and OSΦ(s3; ι) ∩ Y ̸= ∅.
Then there exist s4, s5 ∈ S such that s4 ∈ OSΦ(s2; ι) ∩X
and s5 ∈ OSΦ(s3; ι) ∩ Y . From Proposition 7, it follows
that s4s5 ∈ (OSΦ(s2; ι))(OSΦ(s3; ι)) ⊆ OSΦ(s2s3; ι) and
s4s5 ∈ XY . Thus OSΦ(s2s3; ι) ∩ XY ̸= ∅, which yields
s1 = s2s3 ∈ Φ(XY ; ι). Therefore, (Φ(X; ι))(Φ(Y ; ι)) ⊆
Φ(XY ; ι).

Proposition 9. If (S,OSΦ(S; ι)) is an OSΦ(S; ι)-
approximation space type CPF, then

(Φ(X; ι))(Φ(Y ; ι)) ⊆ Φ(XY ; ι),

for every non-empty subsets X,Y of S.

Proof: Let X and Y be two non-empty subsets of
S. Suppose that s1 ∈ (Φ(X; ι))(Φ(Y ; ι)). Then there exist
s2 ∈ Φ(X; ι) and s3 ∈ Φ(Y ; ι) such that s1 = s2s3, and so
OSΦ(s2; ι) ⊆ X and OSΦ(s3; ι) ⊆ Y . Since Φ is complete,
we get OSΦ(s2s3; ι) = OSΦ(s2; ι)OSΦ(s3; ι) ⊆ XY . Thus
OSΦ(s2s3; ι) ⊆ XY . Hence s1 = s2s3 ∈ Φ(XY ; ι).
Therefore, (Φ(X; ι))(Φ(Y ; ι)) ⊆ Φ(XY ; ι).

In the following, a rough set approach to semigroups will
be introduced. Now we consider the following example.

Example 4. According to Example 3, we suppose that
X := {s1, s3, s5, s6} is a subset of S. Then we have that
Φ(X; ι) = S and Φ(X; ι) := {s1, s5, s6}. Here it is easy to
verify that Φ(X; ι) and Φ(X; ι) are subsemigroups, ideals
and completely prime ideals of S. Moreover, we also have
Φbnd(X; ι) is a non-empty set. Existences of subsemigroups,
ideals and completely prime ideals of S under transitive and
compatible fuzzy relations in this example lead to Definition
15 as the following .

Definition 15. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type TCF and let X be a non-empty
subset of S. The non-empty OSΦ(S; ι)-upper approximation
Φ(X; ι) of X in (S,OSΦ(S; ι)) is called an OSΦ(S; ι)-
upper approximation semigroup if it is a subsemigroup of
S. The non-empty OSΦ(S; ι)-lower approximation Φ(X; ι)
of X in (S,OSΦ(S; ι)) is called a OSΦ(S; ι)-lower approx-
imation semigroup if it is a subsemigroup of S. The non-
empty OSΦ(S; ι)-rough set Φ(X; ι) of X in (S,OSΦ(S; ι))
is called a OSΦ(S; ι)-rough semigroup if Φ(X; ι) is an
OSΦ(S; ι)-upper approximation semigroup and Φ(X; ι) is
a OSΦ(S; ι)-lower approximation semigroup. Similarly, we
can define OSΦ(S; ι)-rough (completely prime) ideals.
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Theorem 1. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type TCF. If X is a subsemigroup
of S, then Φ(X; ι) is an OSΦ(S; ι)-upper approximation
semigroup.

Proof: Suppose that X is a subsemigroup of S. Then,
XX ⊆ X . By Proposition 3 (3), we obtain that

∅ ̸= X ⊆ Φ(X; ι).

Hence we get that Φ(X; ι) is a non-empty OSΦ(S; ι)-
upper approximation. From Proposition 3 (6), it follows that
Φ(XX; ι) ⊆ Φ(X; ι). By Proposition 8, we obtain that

(Φ(X; ι))(Φ(X; ι)) ⊆ Φ(XX; ι) ⊆ Φ(X; ι).

Thus Φ(X; ι) is a subsemigroup of S. Therefore, Φ(X; ι) is
an OSΦ(S; ι)-upper approximation semigroup.

Theorem 2. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is a subsemigroup of
S with Φ(X; ι) ̸= ∅, then Φ(X; ι) is a OSΦ(S; ι)-lower
approximation semigroup.

Proof: Suppose that X is a subsemigroup of S. Then,
XX ⊆ X . Obviously, Φ(X; ι) is a non-empty OSΦ(S; ι)-
lower approximation. From Proposition 3 (6), it follows that
Φ(XX; ι) ⊆ Φ(X; ι). By Proposition 9, we get that

(Φ(X; ι))(Φ(X; ι)) ⊆ Φ(XX; ι) ⊆ Φ(X; ι).

Thus Φ(X; ι) is a subsemigroup of S. Therefore, Φ(X; ι) is
a OSΦ(S; ι)-lower approximation semigroup.

The following corollary is immediate consequences of
Proposition 4, Theorem 1 and Theorem 2.

Corollary 1. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is a subsemigroup of
S over non-empty interior set, then Φ(X; ι) is a OSΦ(S; ι)-
rough semigroup.

Observe that, in Corollary 1, the converse is not true in
general. We present an example as the following.

Example 5. According to Example 3, suppose that X :=
{s1, s3, s4, s5} is a subset of S, then we have Φ(X; 0.9) :=
{s1, s2, s3, s4, s5} and Φ(X; 0.9) := {s1, s5}. Thus we see
that Φbnd(X; 0.9) ̸= ∅. Hence it is straightforward to check
that Φ(X; 0.9) is an OSΦ(S; 0.9)-upper approximation semi-
group and Φ(X; 0.9) is a OSΦ(S; 0.9)-lower approximation
semigroup. However, X is not a subsemigroup of S. Con-
sequently, Φ(X; 0.9) is a OSΦ(S; 0.9)-rough semigroup, but
X is not a subsemigroup of S.

Theorem 3. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type TCF. If X is an ideal of S, then
Φ(X; ι) is an OSΦ(S; ι)-upper approximation ideal.

Proof: Suppose that X is an ideal of S. Then we have
SX ⊆ X . From Proposition 3 (6), it follows that Φ(SX; ι) ⊆
Φ(X; ι). By Proposition 3 (1), we obtain that Φ(S; ι) = S.
From Proposition 8, it follows that

S(Φ(X; ι)) = (Φ(S; ι))(Φ(X; ι)) ⊆ Φ(SX; ι) ⊆ Φ(X; ι).

Hence Φ(X; ι) is a left ideal of S.
Similarly, we can prove that Φ(X; ι) is a right ideal

of S. Therefore we have Φ(X; ι) is an OSΦ(S; ι)-upper
approximation ideal.

Theorem 4. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is an ideal of S with
Φ(X; ι) ̸= ∅, then Φ(X; ι) is a OSΦ(S; ι)-lower approxima-
tion ideal.

Proof: Suppose that X is an ideal of S. Then we have
SX ⊆ X . From Proposition 3 (6), it follows that Φ(SX; ι) ⊆
Φ(X; ι). By Proposition 3 (1), we obtain that Φ(S; ι) = S.
From Proposition 9, it follows that

S(Φ(X; ι)) = (Φ(S; ι))(Φ(X; ι)) ⊆ Φ(SX; ι) ⊆ Φ(X; ι).

Thus Φ(X; ι) is a left ideal of S.
Similarly, we can prove that Φ(X; ι) is a right ideal of S.

Thus Φ(X; ι) is a OSΦ(S; ι)-lower approximation ideal.
The following corollary is immediate consequences of

Proposition 4, Theorem 3 and Theorem 4.

Corollary 2. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is an ideal of S over
non-empty interior set, then Φ(X; ι) is a OSΦ(S; ι)-rough
ideal.

Observe that, in Corollary 2, the converse is not true in
general. We present an example as the following.

Example 6. According to Example 3, we suppose that
X := {s1, s4, s5, s6} is a subset of S, then we have
Φ(X; 0.9) = S and Φ(X; 0.9) := {s1, s5, s6}. Thus we
see that Φbnd(X; 0.9) ̸= ∅. Obviously, Φ(X; 0.9) is an
OSΦ(S; 0.9)-upper approximation ideal, and it is straight-
forward to check that Φ(X; 0.9) is a OSΦ(S; 0.9)-lower
approximation ideal. However, X is not an ideal of S.
Consequently, Φ(X; 0.9) is a OSΦ(S; 0.9)-rough ideal, but
X is not an ideal of S.

Theorem 5. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is a completely prime
ideal of S, then Φ(X; ι) is an OSΦ(S; ι)-upper approxima-
tion completely prime ideal.

Proof: We prove that Φ(X; ι) is an OSΦ(S; ι)-upper
approximation completely prime ideal. In fact, since X is
an ideal of S, by Theorem 3, we have that Φ(X; ι) is an
OSΦ(S; ι)-upper approximation ideal. Let s1, s2 ∈ S such
that s1s2 ∈ Φ(X; ι). Then, by the Φ-complete property of
OSΦ(S; ι), we get that

(OSΦ(s1; ι))(OSΦ(s2; ι)) ∩X = OSΦ(s1s2; ι) ∩X ̸= ∅.

Thus there exist s3 ∈ OSΦ(s1; ι) and s4 ∈ OSΦ(s2; ι)
such that s3s4 ∈ X . Since X is a completely prime
ideal, we have s3 ∈ X or s4 ∈ X . Hence we have
OSΦ(s1; ι) ∩ X ̸= ∅ or OSΦ(s2; ι) ∩ X ̸= ∅, and so
s1 ∈ Φ(X; ι) or s2 ∈ Φ(X; ι). Therefore, Φ(X; ι) is a
completely prime ideal of S. As a consequence, Φ(X; ι) is
an OSΦ(S; ι)-upper approximation completely prime ideal.

Theorem 6. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is a completely prime
ideal of S with Φ(X; ι) ̸= ∅, then Φ(X; ι) is a OSΦ(S; ι)-
lower approximation completely prime ideal.

Proof: Since X is an ideal of S, by Theorem 4, Φ(X; ι)
is a OSΦ(S; ι)-lower approximation ideal. Let s1, s2 ∈ S
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such that s1s2 ∈ Φ(X; ι). Since Φ is complete, we have

(OSΦ(s1; ι))(OSΦ(s2; ι)) = OSΦ(s1s2; ι) ⊆ X.

Suppose that s1 /∈ Φ(X; ι). Then, OSΦ(s1; ι) is not a subset
of X . Thus there exists s3 ∈ S such that s3 ∈ OSΦ(s1; ι)
but s3 /∈ X . For each s4 ∈ OSΦ(s2; ι),

s3s4 ∈ (OSΦ(s1; ι))(OSΦ(s2; ι)) ⊆ X.

Whence s3s4 ∈ X . Since X is a completely prime ideal and
s3 /∈ X , we have s4 ∈ X . Thus OSΦ(s2; ι) ⊆ X , which
yields s2 ∈ Φ(X; ι). Hence we get Φ(X; ι) is a completely
prime ideal of S. Therefore, Φ(X; ι) is a OSΦ(S; ι)-lower
approximation completely prime ideal.

The following corollary is immediate consequences of
Proposition 4, Theorem 5 and Theorem 6.

Corollary 3. Let (S,OSΦ(S; ι)) be an OSΦ(S; ι)-
approximation space type CPF. If X is a completely prime
ideal of S over non-empty interior set, then Φ(X; ι) is a
OSΦ(S; ι)-rough completely prime.

Observe that, in Corollary 3, the converse is not true in
general. We present an example as the following.

Example 7. According to Example 3, we suppose that
X := {s1, s2, s5, s6} is a subset of S, then we have
Φ(X; 0.9) = S and Φ(X; 0.9) := {s1, s5, s6}. Thus we
see that Φbnd(X; 0.9) ̸= ∅. Obviously, Φ(X; 0.9) is an
OSΦ(S; 0.9)-upper approximation completely prime ideal,
and it is straightforward to check that Φ(X; 0.9) is a
OSΦ(S; 0.9)-lower approximation completely prime ideal.
Here we can verify that X is an ideal of S, but it is not
a completely prime ideal of S since s3s4 = s2 ∈ X but
s3 /∈ X and s4 /∈ X . As a consequence, Φ(X; 0.9) is a
OSΦ(S; 0.9)-rough completely prime ideal, but X is not a
completely prime ideal of S.

V. HOMOMORPHIC IMAGES OF ROUGHNESS IN
SEMIGROUPS

In this section we investigate relationships between
rough semigroups (resp. rough ideals, rough completely
prime ideals) and their homomorphic images. Throughout
this section, T denotes a semigroup.

Proposition 10. Let f be an epimorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)), where Φ is defined
by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). Then the
following statements hold.
(1) For all s1, s2 ∈ S, s1 ∈ OSΦ(s2; ι) if and only if

f(s1) ∈ OSΩ(f(s2); ι).
(2) f(Φ(X; ι)) = Ω(f(X); ι) for every non-empty subset

X of S.
(3) f(Φ(X; ι)) ⊆ Ω(f(X); ι) for every non-empty subset

X of S.
(4) If f is injective, then f(Φ(X; ι)) = Ω(f(X); ι) for every

non-empty subset X of S.
(5) If Ω is transitive and compatible, then Φ is transitive

and compatible.

Proof: (1) Let s1, s2 ∈ S be two elements in S. Suppose
that s1 ∈ OSΦ(s2; ι). Then we have f(s1), f(s2) ∈ T and
SΦ(s1; ι) ∩ SΦ(s2; ι) ̸= ∅. Thus there exists s3 ∈ S such

that s3 ∈ SΦ(s1; ι) ∩ SΦ(s2; ι). Hence Φ(s1, s3) ≥ ι and
Φ(s2, s3) ≥ ι. By the assumption, we obtain that

Ω(f(s1), f(s3)) = Φ(s1, s3) ≥ ι

and

Ω(f(s2), f(s3)) = Φ(s2, s3) ≥ ι.

Thus we get f(s3) ∈ SΩ(f(s1); ι) ∩ SΩ(f(s2); ι). Hence
we have SΩ(f(s1); ι) ∩ SΩ(f(s2); ι) ̸= ∅. Therefore we get
f(s1) ∈ OSΩ(f(s2); ι).

Conversely, it is easy to verify that s1 ∈ OSΦ(s2; ι)
whenever f(s1) ∈ OSΩ(f(s2); ι) for all s1, s2 ∈ S.

(2) Let X be a non-empty subset of S. We verify
firstly that f(Φ(X; ι)) = Ω(f(X); ι). Suppose that t1 ∈
f(Φ(X; ι)). Then there exists s1 ∈ Φ(X; ι) such that
f(s1) = t1. Therefore we have OSΦ(s1; ι) ∩ X ̸= ∅. Thus
there exists s2 ∈ S such that s2 ∈ OSΦ(s1; ι) and s2 ∈ X .
By the argument (1), we obtain that f(s2) ∈ OSΩ(f(s1); ι)
and f(s2) ∈ f(X). Then, OSΩ(f(s1); ι)∩f(X) ̸= ∅, and so
t1 = f(s1) ∈ Ω(f(X); ι). Thus f(Φ(X; ι)) ⊆ Ω(f(X); ι).

On the other hand, let t2 ∈ Ω(f(X); ι). Then there exists
s3 ∈ S such that f(s3) = t2, and so OSΩ(f(s3); ι)∩f(X) ̸=
∅. Thus there exists s4 ∈ X such that f(s4) ∈ f(X) and
f(s4) ∈ OSΩ(f(s3); ι). By the argument (1), we get that
s4 ∈ OSΦ(s3; ι), and so we have OSΦ(s3; ι)∩X ̸= ∅. Hence
s3 ∈ Φ(X; ι), and so t2 = f(s3) ∈ f(Φ(X; ι)). Thus we get
Ω(f(X); ι) ⊆ f(Φ(X; ι)). This implies that f(Φ(X; ι)) =
Ω(f(X); ι).

(3) Let X be a non-empty subset of S. Let t1 ∈
f(Φ(X; ι)). Then there exists s1 ∈ Φ(X; ι) such that
f(s1) = t1. Thus OSΦ(s1; ι) ⊆ X . We shall prove that
OSΩ(t1; ι) ⊆ f(X). Let t2 ∈ OSΩ(t1; ι). Then there
exists s2 ∈ S such that f(s2) = t2. Thus we have
f(s2) ∈ OSΩ(f(s1); ι). By the argument (1), we obtain
that s2 ∈ OSΦ(s1; ι), and so s2 ∈ X . Hence we have
t2 = f(s2) ∈ f(X), and thus, OSΩ(t1; ι) ⊆ f(X).
Therefore we have t1 ∈ Ω(f(X); ι). As a consequence,
f(Φ(X; ι)) ⊆ Ω(f(X); ι).

(4) Let X be a non-empty subset of S. We only need to
prove that Ω(f(X); ι) ⊆ f(Φ(X; ι)). Let t1 ∈ Ω(f(X); ι).
Then there exists s1 ∈ S such that f(s1) = t1. Thus we have
OSΩ(f(s1); ι) ⊆ f(X). We shall show that OSΦ(s1; ι) ⊆
X . Let s2 ∈ OSΦ(s1; ι). Then, by the argument (1), we
have f(s2) ∈ OSΩ(f(s1); ι). Hence f(s2) ∈ f(X). Thus
there exists s3 ∈ X such that f(s3) = f(s2). By the
assumption, we have s2 ∈ X , and so OSΦ(s1; ι) ⊆ X .
Hence s1 ∈ Φ(X; ι), and so t1 = f(s1) ∈ f(Φ(X; ι)). Thus
Ω(f(X); ι) ⊆ f(Φ(X; ι)).

By the argument (3), we get f(Φ(X; ι)) ⊆ Ω(f(X); ι).
Consequently, f(Φ(X; ι)) = Ω(f(X); ι).

(5) The proof is straightforward, so we omit it.

Proposition 11. Let f be an epimorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)), where Φ is defined
by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If Ω is
complete, then Φ is complete.

Proof: Let s1, s2 be two elements in S. Suppose that
s3 ∈ OSΦ(s1s2; ι). Then, by Proposition 10 (1), we get that
f(s3) ∈ OSΩ(f(s1s2); ι). Since f is a homomorphism and
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Ω is complete, we have

f(s3) ∈OSΩ(f(s1s2); ι)

=OSΩ(f(s1)f(s2); ι)

=(OSΩ(f(s1); ι))(OSΩ(f(s2); ι)).

Thus there exists t1 ∈ OSΩ(f(s1); ι) and exists t2 ∈
OSΩ(f(s2); ι) such that f(s3) = t1t2. Since f is surjective,
there exist s4, s5 ∈ S such that f(s4) = t1 and f(s5) = t2.
From

f(s4)f(s5) = f(s3) ∈ (OSΩ(f(s1); ι))(OSΩ(f(s2); ι)),

it follows that f(s4) ∈ OSΩ(f(s1); ι) and f(s5) ∈
OSΩ(f(s2); ι). By Proposition 10 (1), we obtain that s4 ∈
OSΦ(s1; ι) and s5 ∈ OSΦ(s2; ι). Since f is a homo-
morphism, we have f(s3) = f(s4)f(s5) = f(s4s5).
Since f is injective, we get s3 = s4s5. Thus we
get s3 ∈ OSΦ(s1; ι)OSΦ(s2; ι). Therefore we get that
OSΦ(s1s2; ι) ⊆ OSΦ(s1; ι)OSΦ(s2; ι).

On the other hand, by Proposition 7 and Proposition 10 (5),
we obtain that OSΦ(s1; ι)OSΦ(s2; ι) ⊆ OSΦ(s1s2; ι). Thus
OSΦ(s1; ι)OSΦ(s2; ι) = OSΦ(s1s2; ι). Hence OSΦ(S; ι) is
Φ-complete. Therefore, Φ is complete.

Theorem 7. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type TCF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is an OSΦ(S; ι)-
upper approximation semigroup if and only if Ω(f(X); ι) is
an OSΩ(T ; ι)-upper approximation semigroup.

Proof: Suppose that Φ(X; ι) is an OSΦ(S; ι)-upper
approximation semigroup. Then, by Proposition 10 (2), we
obtain that

(Ω(f(X); ι))(Ω(f(X); ι)) =(f(Φ(X; ι)))(f(Φ(X; ι)))

=f((Φ(X; ι))(Φ(X; ι)))

⊆f(Φ(X; ι))

=Ω(f(X); ι).

Hence we get Ω(f(X); ι) is a subsemigroup of T . Thus
Ω(f(X); ι) is an OSΩ(T ; ι)-upper approximation semi-
group.

Conversely, we suppose that s1 ∈ (Φ(X; ι))(Φ(X; ι)).
From Proposition 10 (2), it follows that

f(s1) ∈f((Φ(X; ι))(Φ(X; ι)))

=(f(Φ(X; ι)))(f(Φ(X; ι)))

=(Ω(f(X); ι))(Ω(f(X); ι))

⊆Ω(f(X); ι)

=f(Φ(X; ι)).

Thus there exists s2 ∈ Φ(X; ι) such that f(s1) = f(s2).
Hence we have OSΦ(s2; ι) ∩ X ̸= ∅. Since f is injective,
we have s1 = s2. Thus we get OSΦ(s1; ι) ∩X ̸= ∅, and so
s1 ∈ Φ(X; ι). Hence (Φ(X; ι))(Φ(X; ι)) ⊆ Φ(X; ι). Thus
Φ(X; ι) is a subsemigroup of S. Therefore, Φ(X; ι) is an
OSΦ(S; ι)-upper approximation semigroup.

Theorem 8. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type TCF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If

X is a non-empty subset of S, then Φ(X; ι) is a OSΦ(S; ι)-
lower approximation semigroup if and only if Ω(f(X); ι) is
a OSΩ(T ; ι)-lower approximation semigroup.

Proof: By Proposition 10 (4) and using the similar
method in the proof of Theorem 7, we can prove that the
statement holds.

The following corollary is immediate consequences of
Theorems 7 and 8.

Corollary 4. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type TCF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is a OSΦ(S; ι)-
rough semigroup if and only if Ω(f(X); ι) is a OSΩ(T ; ι)-
rough semigroup.

Theorem 9. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type TCF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is an OSΦ(S; ι)-
upper approximation ideal if and only if Ω(f(X); ι) is an
OSΩ(T ; ι)-upper approximation ideal.

Proof: Suppose that Φ(X; ι) is an OSΦ(S; ι)-upper
approximation ideal. Then we have SΦ(X; ι) ⊆ Φ(X; ι).
Whence we have f(SΦ(X; ι)) ⊆ f(Φ(X; ι)). By Proposition
10 (2), we obtain that

TΩ(f(X); ι) = f(SΦ(X; ι)) ⊆ f(Φ(X; ι)) = Ω(f(X); ι).

Hence Ω(f(X); ι) is a left ideal of T . Similarly, we can
prove that Ω(f(X); ι) is a right ideal of T . Thus Ω(f(X); ι)
is an OSΩ(T ; ι)-upper approximation ideal.

Conversely, we suppose that Ω(f(X); ι) is an OSΩ(T ; ι)-
upper approximation ideal. Then we have TΩ(f(X); ι) ⊆
Ω(f(X); ι). Let now s1 ∈ SΦ(X; ι). From Proposition 10
(2), it follows that

f(s1) ∈f(SΦ(X; ι))

=TΩ(f(X); ι)

⊆Ω(f(X); ι)

=f(Φ(X; ι)).

Thus there exists s2 ∈ Φ(X; ι) such that f(s1) = f(s2),
and so OSΦ(s2; ι) ∩ X ̸= ∅. Since f is injective, we have
s1 = s2. Hence OSΦ(s1; ι) ∩X ̸= ∅, and so s1 ∈ Φ(X; ι).
Thus SΦ(X; ι) ⊆ Φ(X; ι). Whence Φ(X; ι) is a left ideal of
S. Similarly, we can prove that Φ(X; ι) is a right ideal of
S. Therefore, Φ(X; ι) is an OSΦ(S; ι)-upper approximation
ideal.

Theorem 10. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type TCF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is a OSΦ(S; ι)-
lower approximation ideal if and only if Ω(f(X); ι) is a
OSΩ(T ; ι)-lower approximation ideal.

Proof: By Proposition 10 (4) and using the similar
method in the proof of Theorem 9, we can prove that the
statement holds.

The following corollary is immediate consequences of
Theorems 9 and 10.
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Corollary 5. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type TCF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is a OSΦ(S; ι)-
rough ideal if and only if Ω(f(X); ι) is a OSΩ(T ; ι)-rough
ideal.

Theorem 11. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type CPF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is an OSΦ(S; ι)-
upper approximation completely prime ideal if and only
if Ω(f(X); ι) is an OSΩ(T ; ι)-upper approximation com-
pletely prime ideal.

Proof: Assume that Φ(X; ι) is an OSΦ(S; ι)-upper
approximation completely prime ideal. Let t1, t2 ∈ T be such
that t1t2 ∈ Ω(f(X); ι). Thus there exist s1, s2 ∈ S such that
f(s1) = t1 and f(s2) = t2. Hence OSΩ(f(s1)f(s2); ι) ∩
f(X) ̸= ∅. Since Ω is complete, we have

(OSΩ(f(s1); ι))(OSΩ(f(s2); ι)) ∩ f(X)

= OSΩ(f(s1)f(s2); ι) ∩ f(X) ̸= ∅.

Then there exist f(s3) ∈ OSΩ(f(s1); ι) and f(s4) ∈
OSΩ(f(s2); ι) such that f(s3)f(s4) ∈ f(X), and so
f(s3s4) ∈ f(X). Then there exists s5 ∈ X such that
f(s3s4) = f(s5). Since f is injective, we have s3s4 = s5.
By Proposition 10 (1), we obtain that s3 ∈ OSΦ(s1; ι) and
s4 ∈ OSΦ(s2; ι). From Proposition 7 and Proposition 10 (5),
we get that s5 = s3s4 ∈ OSΦ(s1s2; ι). Thus we have that
OSΦ(s1s2; ι)∩X ̸= ∅, and so s1s2 ∈ Φ(X; ι). Since Φ(X; ι)
is a completely prime ideal of S, we have s1 ∈ Φ(X; ι)
or s2 ∈ Φ(X; ι). Hence we have f(s1) ∈ f(Φ(X; ι))
or f(s2) ∈ f(Φ(X; ι)). From Proposition 10 (2), we get
f(s1) ∈ Ω(f(X); ι) or f(s2) ∈ Ω(f(X); ι), which yields
t1 ∈ Ω(f(X); ι) or t2 ∈ Ω(f(X); ι). Thus Ω(f(X); ι) is
a completely prime ideal of T . Therefore, Ω(f(X); ι) is an
OSΩ(T ; ι)-upper approximation completely prime ideal.

Conversely, we suppose that Ω(f(X); ι) is an OSΦ(S; ι)-
upper approximation completely prime ideal. Let s6, s7 be
elements in S such that s6s7 ∈ Φ(X; ι). Then, f(s6s7) ∈
f(Φ(X; ι)). By Proposition 10 (2), we obtain that

f(s6)f(s7) = f(s6s7) ∈ f(Φ(X; ι)) = Ω(f(X); ι).

Thus f(s6) ∈ Ω(f(X); ι) or f(s7) ∈ Ω(f(X); ι). Now we
consider the following two cases.

Case 1. If f(s6) ∈ Ω(f(X); ι), then we have f(s6) ∈
f(Φ(X; ι)) since Proposition 10 (2). Thus there exists s8 ∈
Φ(X; ι) such that f(s6) = f(s8). Whence OSΦ(s8; ι)∩X ̸=
∅. Since f is injective, we have s6 = s8. Hence we get
OSΦ(s6; ι) ∩X ̸= ∅, and so s6 ∈ Φ(X; ι).

Case 2. If f(s7) ∈ Ω(f(X); ι), then s7 ∈ Φ(X; ι) since
the proof is similar to that the case above.

As a consequence, Φ(X; ι) is an OSΦ(S; ι)-upper approx-
imation completely prime ideal.

Theorem 12. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type CPF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is a OSΦ(S; ι)-
lower approximation completely prime ideal if and only if

Ω(f(X); ι) is a OSΩ(T ; ι)-lower approximation completely
prime ideal.

Proof: By Proposition 10 (4) and using the similar
method in the proof of Theorem 11, we can prove that the
statement holds.

The following corollary is immediate consequences of
Theorems 11 and 12.

Corollary 6. Let f be an isomorphism from S in
(S, CSΦ(S; ι)) to T in (T, CSΩ(T ; ι)) type CPF, where Φ is
defined by for all s1, s2 ∈ S, Φ(s1, s2) = Ω(f(s1), f(s2)). If
X is a non-empty subset of S, then Φ(X; ι) is a OSΦ(S; ι)-
rough completely prime ideal if and only if Ω(f(X); ι) is a
OSΩ(T ; ι)-rough completely prime ideal.

VI. CONCLUSIONS

Under a serial fuzzy relation between two universes,
we have proposed a novel rough set in an approximation
space based on overlaps of successor classes with respect
to level in a closed unit interval and gave a real-world
example and proved some interesting properties. Based on
this point, we defined a definition of a non-empty rough set
and obtained a sufficient condition of such rough set. We
introduced concepts of rough semigroups, rough ideals and
rough completely prime ideals in approximation spaces under
transitive and compatible fuzzy relations on semigroups
and derived sufficient conditions of them. Also, we proved
relationships between rough semigroups (resp. rough ideals
and rough completely prime ideals) and their homomorphic
images. The novel rough set in Section III can be used in a
semigroup for approximation processings in terms of crisp
sets.

Finally, we hope that new definitions and main results
in this work may provide a powerful tool for assessment
and decision problems in various fields with respect to
information sciences, computer sciences, data minings and
information engineerings.
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