
 

 

 
Abstract—On the basis of non-smooth continuous control 

and super-twisting algorithm, an adaptive robust finite-time 

stable guidance law with attack angle constraint is proposed. 

For the nominal closed-loop system, a continuous non-smooth 

guidance law is presented on account of non-smooth control. 

By improving the fractional power function in the feedback 

function to speed up the convergence process, the law has a 

shorter convergence time. Then, super-twisting algorithm is 

applied to reduce the control command chattering. Besides, 

the parameters are adjusted by adaptive law to avoid the  

"excessive estimation" problem of the parameter upper limits. 

Simulation results under disturbance conditions indicate that 

the designed guidance law can effectively overcome influence 

of random disturbances, and obtain higher guidance precision 

than the law with traditional sliding mode. 

Index Terms—guidance law, non-smooth control, 

super-twisting algorithm, parameter adaptation, finite-time 

stability 

I. INTRODUCTION 

OR missiles with short range, the guidance time is 

usually short. To improve guidance precision and 

damage effectiveness, the LOS angle rate and LOS angle 

need to approach the desired values as quickly as possible 

before the seeker enters into dead zone. That is helpful to 

realize trajectory shaping in finite time and reduce the 

terminal aerodynamic drag and overload demand. 

Therefore, it is essential to design a guidance law which 
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can reach the target above. Generally, the finite-time 

convergence can be achieved by discontinuous state 

feedback method. Via designing nonlinear sliding mode 

surface, within a limited time, the guidance law could drive 

system states on sliding mode surface to reach original 

point [1]-[2]. However, due to the requirement of 

anti-interference, the sliding mode control law includes a 

discontinuous switching term. The term brings high speed 

switching to control value, which easily generate chattering 

problem. Usually, continuous processing is applied to 

reduce the chattering, while, it will bring the system 

performance down at the same time. Besides, although the 

smooth state feedback method can obtain smooth response 

of closed-loop system, its performances of anti-interference 

and convergence have been proved to be difficult to meet 

the requirements. An effect way is the continuous 

non-smooth control. Other than common sliding mode 

control, the continuous non-smooth control is continuous 

relative to the state variable [3]-[4]. The continuous 

non-smooth finite time feedback controller can output 

continuous control quantity to realize the finite-time 

convergence of system states and weaken the chattering. 

On the basis of the analysis above, on account of the finite 

time homogeneity theory and Lyapunov stability theory, a 

finite-time convergence guidance law with attack angle 

constraint is proposed by continuous finite-time control 

technique in this paper. 

II. PREPARATIONS 

Consider the system as follow 

( ),   (0) 0 x f x f  (1) 

where nx R , 0(0) x x , : nDf R  is continuous with 

respect to x in an open neighborhood D containing the 

original point 0x . 
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Definition 1[5]: ( )f x =
T

1[ ( ), , ( )]nf fx x : n nR R  

is a continuous vector function. If 0  , there is 

1 2( , , ) n

nr r r R ， 0 ( 1,2, )ir i n   ，so as to 

1 2

1 2( , , ) ( ),  1,2,n ir k rr r

i n if x x x f x i n    
    (2) 

where  min , 1,2,ik r i n    . Then ( )f x is 

considered to possess the homogeneity k with respect to 

the dilation 1 2( , , )nr r r . If the ( )f x  is homogeneous, 

the system in (1) will be a homogeneous system. 

Lemma 1[6]: If the system in (1) with local 

homogeneity 0k   is global asymptotic stable, the 

system will be global finite-time stable.  

III. NON-SMOOTH FINITE-TIME CONVERGENCE 

SLIDING MODE GUIDANCE LAW 

A. Missile-target Relative Motion Model 

The skid-to-turn missile has axially symmetrical shape 

roll stabilized, thus the three channels can be decomposed 

into vertical plane motion and lateral plane motion. In 

flights at little angles of attack and side slip angles, the 

design method of pitch plane motion is similar to the yaw 

plane motion, therefore, this paper takes missile-target 

motion process in pitch plane as an example to analyze, 

which is illustrated in Fig.1. 

mV

tV

m q

ma

taT

M

t

r

tqa

mqa

Fig.1 Missile-target relative motion in pitch plane 

In Fig.1, M is the center of mass in missile and T is 

the target. Respectively, the missile-target relative distance 

and its change rate is represented by r  and r . tV  and 

mV  respect the speeds of target and missile respectively. 

The LOS angle is represented as q , and its derivative is 

LOS angle rate q . The flight-path angles of target and 

missile are written by m and t  respectively. 

mqa and tqa are respectively used to represent the 

acceleration components in normal direction with respect to 

LOS of missile and target. The missile-target relative 

motion equation is given by 

            m t

2 1 1rq
q a a

r r r
   


  (3) 

Neglecting the missile autopilot dynamics and regarding 

the missile body as an ideal link, the overload instruction to 

be designed can be set as c ma a . Assume the desired 

attack angle constraint is dq , define 1 dx q q  and 

2x q   as the state variables, a variable coefficient 

nonhomogeneous differential equation set is obtained as 

follow 

             

1 2

2 2 c t

2 1 1

x x

r
x x a a

r r r





   







 (4) 

Considering the uncertainties caused by random factors, 

such as the measurement error of the LOS angle rate, 

parameter perturbation and other factors, the formula (4) is 

further expressed as 

             
1 2

2 c( ) ( )

x x

x f b a




   



  
 (5) 

where 2( ) 2f x r r   and ( ) 1 0b r    are known 

terms, c( ) ( )f b a     is the total uncertainty in 

system, ( )f   is the complex uncertainty caused by 

target maneuvering acceleration ta , disturbance, parameter 

measurement error and other factors, besides, ( )b   is the 

coefficient perturbation. 

The control target is to give out the control quantity ca  

to make 1( )fx t  and 2 ( )fx t  to be zero in a finite time of 

ft . In other words, it means that, before the seeker enters 

into dead zone and the flight control ends, the control 

quantity ca  designed by finite-time control technology 

can enforce q  to be fully close to zero and q  to be fully 

close to the desired angle dq . During the above process, 

the terminal trajectory should be straight to reduce the 

overload demand and attack angle[7]. 

B. Continuous Finite-time Guidance Law Design 

Considering the system in (5), the control command ca  

is given in the form 

            c 2 n d2 ( )a rx r u u     (6) 

where nu  is non-smooth nominal control law of double 

integral system, and du  is the compensation control law 

for restraining the uncertain term. Substitute (6) into (5), 

we can get 
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1 2

2 n d

x x

x u u




   




 (7) 

a. Non-smooth Nominal Control Law Design 

Neglecting du  and uncertainty , the formula (7) can 

be converted to nominal double integral system as follow 

               
1 2

2 n

x x

x u









 (8) 

By improving nonlinear feedback function, a continuous 

non-smooth control law nu is given by 

    n 1 1 1 1 1 2 2 2 2 2( , , , ) ( , , , )u k S x k S x         (9) 

where ( , , , )i i i iS x    is expressed as 

   
 

 

s g n
, , ,   

s g n

i

ii i

i i

i i i i

i i i

x x
S x

x x



 
  

 




 


i i

i i

x

x








 (10) 

in which 20 1  , 1 2 2(2 )    , 1i  ， 0ik  , 

0i  , 1,2i  . 

( , , , )S x   is composed by nonlinear functions 

sgn( )x x
    and sgn( )x x


, which can switchover 

at x  . When system states are away from the balance 

point,   can be adjusted to adapt to different situations 

and quicken the approaching speed. When x  , the 

nonlinear function sgn( )x x
    is adopted to speed 

up the velocity approaching to the balance point. When 

x  , for the sake of achieving finite-time convergence, 

the nonlinear function sgn( )x x


 is used to make the 

system homogeneity to be negative. The contrast between 

( , , , )S x    and sgn( )x x


 can be seen in Fig.2. 
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Fig.2 Comparison between ( , , , )S x    and sgn( )x x


 

For solving the finite-time stabilization problem of 

system in (8), a control law was proposed in [8] as follow 

     1 2

n 1 1 2 2 2sgn( ) sgn( )iu k x x k x x
 

    (11) 

Compared with the control law in (11), the improved 

control law in (9) allows system states to rapidly converge 

far from the balance point, and overcome the defect of slow 

convergence in homogeneous system. 

Theorem: For the system in (8), the control law in (9) 

can ensure that the control commands are continuous and 

non-smooth, and the closed-loop system can globally reach 

the origin within a limited time. 

Proof: Constructing positive definite and continuous 

differentiable Lyapunov function in the form as bellow 

      
1

2

2
1 2 1 1 1 1

0
( , ) ( , , , )

2

xx
V x x k S d        (12) 

Calculating the time derivation of 1 2( , )V x x  along the 

system in (8), and considering nu  simultaneously, we get 

       
1 2 2 2 1 1 1 1 1 2

2 2 2 2 2

( , ) ( , , , )

( , , , )

V x x x x k S x x

k S x

  

  

 

 

 
 (13) 

By the LaSalle invariant set principle[9], the set 

1 2 1 2{( , ) : ( , ) 0}x x V x x  contains the coordinate 

axis 2 0x  , but the unique invariant set on 

2 0x  is 1 2 0x x  . Therefore, 1x and 2x  could 

converge into  1 2 1 1 2 2( , )x x x x       within a 

finite time. When the system states 1 2( , )x x  , there is 

      
1 2

1 2

2 1 1 1 2 2 2sgn( ) sgn( )

x x

x k x x k x x
 




  




 (14) 

The vector field of closed-loop system is 

 
1 2

1 1 2 2

2 1 2 1 1 1 2 2 2

( , )

( , ) sgn( ) sgn( )

f x x x

f x x k x x k x x
 




  

 (15) 

Let homogeneous expansion operator to be 

1 2

1 2 1 2( , ) ( , )
r rr

k x x x x  , where 1 11/r   and 2 21/r  , 

we can get 

 

1 2 2 1 2 1

1 2 2 2

( )

1 1 2 1 1 2 1 1 2

(1 )

2 1 2 2 1 2 2 1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

r r r r r r

r r r r

f k x k x k f x x k f x x

f k x k x kf x x k f x x

 

 

 

 

 (16) 

In combination of 1 2 2(2 )    , there is 

1 2 2 2 2( 1) / 1r r r      . Hence, the closed-loop 

system is homogeneous. Moreover, due to 20 1  , the 

system degree of homogeneity is 2 2( 1) / 0m     . 

From the lemma 1, it is known that the system is global 

finite time stable.  
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b. Uncertainty Compensation Control Law  

Considering du and uncertainty  , so as to ensure 

system states to be finite-time convergent, the control 

objective is to design a suitable du  to restrain the 

influence of uncertainty  . 

Let 2 ne x u  , to avoid the higher order derivative 

with respect to the variable 2x , an auxiliary sliding mode 

surface s  is proposed as follow 

               
2

n

s edt x y

y u

    


  
 (17) 

The control target is to design the du  to overcome the 

uncertainty   and yield 0s  . The derivative of s  is 

ds u   , and its partial derivative with respect to du  

is 1 0ds u    . According to the definition of relative 

order, we can see that the relative order of system in (17) 

with respect to s  is one. Adopting first-order sliding 

mode control will bring in discontinuous switching item 

and high frequency chattering, while, in second-order 

sliding mode control, symbol function of discontinuous 

switching term can be included in an integral link so that 

the control chattering can be effectively weakened. 

The super-twisting algorithm is suitable for second-order 

system with relative order of one. It only needs the 

information of sliding surface s  with no need for s , 

which simplifies the guidance law design. In view of above 

advantages, the robust control law is designed with 

super-twisting algorithm [10]. 

Taking second-order derivative of s  with respect to 

time, there is ds u    . On account of the physical limit 

of energy and response speed in terminal guidance process, 

we can assume the uncertainty term   is globally 

boundary and differentiable, namely, there is an unknown 

normal number L  satisfying L  . 

Improving the super-twisting algorithm with a parameter 

adaptive law as follow 

          

1/2

d d1

d1

sgn( )

sgn( )

u s s u

u w s

   


  
 (18) 

   
1

2

sgn( )
,  (0) 0

s s

s


  

 
 

 
 



  (19) 

                 0.2w   (20) 

where 0  , 1 0  , 2 0  , 0  , 0   and 

0 1  . 

When s  , sgn( )s  is negative so that   is 

negative, which make   and w  reduce gradually until 

  . If   and w  is not enough to restrain the target 

maneuvering, s  will become larger, and then   and 

w  become larger, which will drive s  converge into the 

interval s  . The value   can guarantee that   is 

always positive. The adaptive adjustment function 

sgn( )s   can ensure the global boundness of adaptive 

parameters   and w . By this way, the problem about 

overestimating the upper bound of adaptive parameters, 

which is common for traditional adaptive sliding mode 

control [11] , can be solved well. 

IV. SIMULATION ANALYSIS 

So as to inspect the guidance law designed above, this 

section conducts mathematical simulation for the terminal 

guidance process. The origin values of various parameters 

used in simulation are chosen to be m0X =0, m0Y =200m, 

mV =110m/s, m0 =5°, t0X =1200m, t0Y =0, t0V =2m/s, 

t =0°. dq  is set as -35°. For verifying performance in 

disturbance environment, we add white noise and 

measurement error to the r  and r  with ranges less than 

±5% of their values, namely, there are 5%r r   and 

5%r r   . The design parameters of guidance law are 

carefully selected as 1 7 13  , 2 0.7  , 1 0.2k  , 

2 0.6k  , 1 2 4   , 1 2 0.5   , 1 2  , 2 0.5  , 

0.1  , 0.0001  , 1   and (0) 2  . 

In combination with the requirements of design indexes 

and actual situations on the battlefield, the ground moving 

target cannot make complex motion form because of the 

battlefield environment limitation, so we set up three kinds 

of typical situations suitable in the mathematical simulation: 

(1) The target approaches launch point with an uniform 

speed of -15m/s; (2) The target is accelerated from 2m/s to 

15m/s with a constant acceleration of 4m/s2, and then it 

moves at a constant speed; (3) The target is accelerated 

from 0m/s to 25m/s with a varying acceleration 

t 4 sin( )xa t m/s2, and then it moves at a constant speed. 

Simulation results are given as data in TableⅠ and curves 

from Fig.3 to Fig.8. In TableⅠ, ft  is the end time of 

guidance process. 

TABLEⅠ 

f( )R t  AND 
f( )q t  UNDER THERE TARGET MOTION SITUATIONS 

Motion Situation 
f

( )R t /m 
f

( )q t /   

Situation 1 0.0870 -35.0065 

Situation 2 0.0478 -34.9996 

Situation 3 0.0962 -34.9742 
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As shown in TableⅠ, the guidance law adapts well to 

different target motion situations. In situation 1, because 

the target is approaching launch point, the missile-target 

relative velocity is greater, which bring out greater miss 

distance. In situation 3, terminal LOS angle error and miss 

distance are both maximal due to the varying acceleration 

of the target. Even so, the miss distances in three situations 

are all less than 0.1m. Besides, the LOS angle is very close 

to the desired value of -35º, and the angle deviation is less 

than 0.1º.  
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Fig.3 Curves of missile trajectories 
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Fig.4 Curves of missile-target LOS angle change rates 
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Fig.5 Curves of missile-target LOS angles 
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Fig.6 Curves of missile overloads 
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Fig.7 Curves of sliding mode surfaces 
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Fig.8 Adaptive parameter   

From Fig.3 to Fig.8, we can see that in three situations, 

although the curves of missile trajectories are quite 

different, the other curves of guidance law indexes 

basically coincide, which indicates that missiles with the 

same set of control parameters can attack targets in 

different motion forms. In addition, in order to obtain a 

larger terminal LOS angle, the trajectory height is high. 

The missile terminal trajectories are relatively flat after the 

LOS angle rate approaches zero and LOS angle gets close 

to the desired value. Thus, the demands for overload are 

relatively small, which is beneficial to flight stability and 

guidance accuracy of missile. In Fig. 4 and Fig.5, the LOS 

angle rate and LOS angle both achieve the desired effect 

within a finite time. The influence of measurement errors is 

shown in Fig.6, in which, we can find that the 
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super-twisting algorithm suppresses the disturbance to a 

certain extent and guarantees the guidance accuracy. In 

Fig.7, the super-twisting algorithm drives the auxiliary 

sliding surface s  to converge to zero very quickly, which 

ensures the implementation of non-smooth control law. As 

can be seen in Fig.8, with the sliding surface s  undulating 

at initial stage, the adaptive parameter   rapidly 

increases to control s  to be less than  . Then, along 

with the decrease of s ,   decreases and stabilizes at the 

threshold denoted by  , which is able to reduce the 

control quantity. 

Next, a guidance law with non-singular terminal sliding 

mode in [12] is selected to compare with the guidance law 

proposed above. The guidance law in [12] is shown as 

               d( )s q q q     (21) 

         

2

m

m

1
( 2 )

cos( )

sgmf ( )
sgn(cos( ))

r
u q rq

q

M
s

q



 



 





 

 (22) 

where 10  , 5 3   and 80M  . sgmf function 

in (23) is adopted to replace the sgn function 

        

1 1
2

sgmf ( ) 1 2

sgn( )

ass e

s



  
  

  


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where 0.6s   is the boundary layer, 0a   and its 

value is inversely proportional to s . In the simulation, 

a  is set to be 8
s

 . 

For ease of differentiation, the guidance law in [12] is 

denoted as "NTSM", and the guidance law derived in this 

paper is called "NSST". After adding the same disturbance 

signals and carefully adjusting the parameters, simulation 

results under situation 2 can be seen from Fig.9 to Fig.12. 
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Fig.9 Curves of missile trajectories 
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Fig.10 Curves of missile-target LOS angle rates 
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Fig.11 Curves of missile-target LOS angles  
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Fig.12 Curves of missile overloads 

As can be observed from Fig. 9 to Fig.12, the two 

guidance laws differ in the ascent section of trajectory, and 

have similar flight trajectories in the descending section. 

The flight time of the missile using NTSM is 14.17s, 

closely, this time of the missile using NSST is 14.19s. Both 

guidance laws can enforce the LOS angles and LOS angle 

rates to approach zero in finite time to satisfy the attack 

angle constraint. In the meanwhile, the terminal overload 

requirements of these two guidance laws are both small and 

close to zero in the end, which is beneficial to improve the 

target attack accuracy. Clearly, the convergence speeds of 

LOS angle rate, LOS angle, and overload of NSST are all 

slightly slower than NTSM. However, for the process of 

missile attacking target, the miss distance and attack angle 

are the two most critical indicators that directly determine 

the attack effect. The miss distance and terminal LOS angle 

of NTSM are 0.3143m and -34.9967°, respectively, greater 
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than 0.0478m and -39.999° of NSST. The analysis above 

indicates that the performance of designed guidance law 

yields a better attack accuracy, a smaller attack angle error, 

and a smoother overload demand. In addition, the overload 

curves in Fig.12 shows that the chattering of NSST control 

quantity is significantly weaker than that of NTSM, which 

is the main reason why the control effect of NSST is better. 

V. CONCLUSION 

Based on the non-smooth continuous control and 

super-twisting algorithm, considering effects of complex 

uncertain term caused by various random factors, a 

finite-time convergence robust guidance law with attack 

angle constraint is proposed. According to homogeneity 

theory, it is proved that the nominal system states could be 

driven to zero by the non-smooth control within a limited 

time. Simulation results show that, under different target 

motion situations, the guidance law in this paper can 

overcome the influence of disturbances and achieve 

finite-time convergence of LOS angle rate, which ensures 

that the missile could accurately hit the target with a 

desired LOS angle. 

Otherwise, in the simulation, it is found that in order to 

achieve the attack angle constraint within a finite time, the 

missile climbs higher and the trajectory curvature is larger, 

which requires a better performance for the missile power. 

At the same time, a large trajectory curvature may cause the 

seeker to exceed its frame limit and easily lose the target. In 

addition, the complex form of algorithm presented in this 

paper brings out many difficulties in adjusting parameters, 

and improper selection can easily lead to a divergence of 

missile trajectories, so it is necessary to properly set 

guidance parameters.  
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