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Abstract—A delayed biological system with stage structure
and density-dependent juvenile birth rate is revisited in this
paper. By establishing a new lemma and using the comparison
theorem of the differential equation, a new set of sufficient con-
dition which ensure the permanence of the system is obtained.
Our result supplements and complements some known results.

Index Terms—Stage structure, Predator-prey, Permanence

I. I NTRODUCTION

T HE dynamic behaviors of the stage structured ecosys-
tem has recently studied by many scholars, see [1]-

[22] and the references cited therein. The most simple singe
species stage structure model takes the form:

dx1

dt
= αx2 − βx1 − δ1x1,

dx2

dt
= βx1 − γx2

2,

(1.1)

whereα, β, δ1, δ2 andγ are all positive constants,x1(t) and
x2(t) are the densities of the immature and mature species at
time t. The per capita birth rate of the immature population is
α > 0; The per capita death rate of the immature population
is δ1 > 0; β > 0 denotes the surviving rate of immaturity to
reach maturity; The mature species is density dependent with
the parameterγ > 0. Cui, Chen and Wang[31] had showed
that above system admits a unique positive equilibrium,
which is globally asymptotically stable, which means that
the dynamic behaviors of the system (1.1) is similarly to the
traditional Logistic model.

Xiao and Lei[21] argued that a suitable model should
considered the influence of the harvesting, and they proposed
the following single species stage structure system incorpo-
rating partial closure for the populations and non-selective
harvesting:

dx1

dt
= αx2 − βx1 − δ1x1 − q1Emx1,

dx2

dt
= βx1 − δ2x2 − γx2

2 − q2Emx2,

(1.2)

where all the other coefficients has the same meaning as the
system, andδ2 represents the per capita death rate of the
mature population,E is the combined fishing effort used to
harvest andm(0 < m < 1) is the fraction of the stock
available for harvesting. They showed that the birth rate of
the immature species and the fraction of the stocks for the
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harvesting plays crucial role on the dynamic behaviors of the
system.

In some stage-structured populations, the intraspecific and
interspecific competitions occur within each stage struc-
ture. In two-stage single-species population, Abrams and
Quince[33] have demonstrated that adult population com-
petition makes a low birth rate of juvenile population. They
proposed the following single species stage structured model:

dN1

dt
= B2(1 − α2N2)N2 − d1N1 −G(1− α1N1)N1,

dN2

dt
= G(1 − α1N1)N1 − d2N2.

(1.3)
For a range of parameter values, the authors declared that the
model (1.3) possesses two locally stable equilibria. Hence,
compared with system (1.1), by introducing the nonlinear
birth rate term, the system admits the quite different dynam-
ics behaviors. Obviously, in this case, it is impossible for
the system to admits a unique globally asymptotically stable
positive equilibrium.

Based on model (1.1), many scholars invested the dynamic
behaviors of the stage structured predator prey model. For ex-
ample, Yang, Li and Bai[20] proposed the following model:

dx1

dt
= a(t)x2(t)− b(t)x1(t)

−d1(t)(x1(t))
2 −

c1(t)x1(t)y(t)

m(t) + x2
1(t)

,

dx2

dt
= b(t)x1(t)− d2(t)x

2
2(t),

dy

dt
= y(t)

(

− d3(t) +
c2(t)x1(t− τ)

m(t) + x2
1(t− τ)

−q(t)y(t)
)

.

(1.4)

Sufficient and necessary conditions are obtained for the
permanence of the system.

We mention here that in the study of biomathematics,
such topics as the extinction, persistent and stability of the
ecosystem are the most important study area, and they were
extensively studied by many scholars, see [1]-[40] and the
references cited therein.

II. M ODEL

Recently, stimulated by the work of Yang, Li and Bai[20]
and Abrams and Quince[33], Zhang and Zhang[22] proposed
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the following delayed biological system with stage structure
and density-dependent juvenile birth rate

dx1

dt
= a(t)

(

1− β(t)x2(t)
)

x2(t)− b(t)x1(t)

−d1(t)(x1(t))
2 −

c1(t)x1(t)y(t)

m(t) + x2
1(t)

,

dx2

dt
= b(t)x1(t)− d2(t)x

2
2(t),

dy

dt
= y(t)

(

− d3(t) +
c2(t)x1(t− τ)

m(t) + x2
1(t− τ)

−q(t)y(t)
)

,

(2.1)

wherex1(t), x2(t) andy(t) represent the density of immature
prey, mature prey and predator species, respectively. The
coefficients in system (2.1) are all continuous positiveT

periodic functions. The parameterβ(t) is the proportional
rate of decrease in per capita births with increased mature
prey density and takes a value between0 and 1. For more
background of system (2.1), one could refer to [22].

Concerned with the persistent property of the system (2.1),
the authors obtained the following result.

Theorem A.System (2.1) is uniformly persistent and has at
least oneT periodic solution provided that

AT

(

− d3(t) +
c2(t)x

∗

1(t− τ)

m(t) + (x∗

1(t− τ))2

)

> 0, (2.2)

where(x∗

1(t), x
∗

2(t)) is the unique positive periodic solution
of the following system

dx1

dt
= a(t)x2(t)− b(t)x1(t)− d1(t)(x1(t))

2,

dx2

dt
= b(t)x1(t)− d2(t)x

2
2(t).

(2.3)

Now let’s consider the following example.

Example 2.1.Consider the following system

dx1

dt
= (1− 0.6x2(t))x2(t)− x1(t)

−(x1(t))
2 −

2x1(t)y(t)

1 + x2
1(t)

,

dx2

dt
= x1(t)−

1

4
x2
2(t),

dy

dt
= y(t)

(

−
1

3
+

1

10
cos(t)

+
x1(t)

1 + x2
1(t)

− y(t)
)

.

(2.4)

Here, we assume thata(t) = b(t) = d1(t) = m(t) = c2(t) =
1, c1(t) = 2, d3(t) =

1
3 , β(t) = 0.6, d2(t) =

1
4 . Then

dx1

dt
= x2(t)− x1(t)− (x1(t))

2,

dx2

dt
= x1(t)−

1

4
x2
2(t)

(2.5)

has a unique positive equilibriumE(1, 2), which is globally
asymptotically stable, and

A2π

(

− d3(t) +
c2(t)x

∗

1(t− τ)

m(t) + (x∗

1(t− τ))2

)

= −
1

3
+

1

1 + 1
=

1

6
> 0.

(2.6)

That is, the condition of Theorem A holds, however, numeric
simulation (Fig. 1) shows that in this case, the predator
species will be driven to extinction.

Above example shows that although the conditions of

Fig. 1. Dynamics behaviors of the third com-
ponent of system (2.4), the initial condition-
s (x1(0), x2(0), y(0))= (1, 2, 0.7),(2, 1, 0.3) and
(0.5, 0.2, 0.1), t ∈ [0, 20], respectively.

Theorem A holds, the result of Theorem A may still not
hold, Hence, the conclusion of Theorem A may not be hold,
indeed, by carefully checking the proof of Theorem A in
[22], we found that the authors directly applying Lemma
2.2 to the system (2.9) and (2.14) in [22], however, this is
incorrect. That is to say, the persistent property of the system
(2.1) need to be revisited.

The aim of this paper is to revisit the persistent property
of system (2.1).

III. M AIN RESULT

We adopt the following notations through this paper:

AT (g) =
1

T

∫ T

0

gdt,

gM = sup
t∈[0,T ]

g(t),

gL = inf
t∈[0,T ]

g(t),

(3.1)

whereg(t) is a continuousT -periodic function.

We first introduce several Lemmas.

Lemma 3.1. (see[30])If a(t) and b(t) are all continuousT
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periodic functions for allt ∈ R, andAT (a(t)) > 0, b(t) > 0,
then the system

ẋ(t) = x(t)(a(t) − b(t)x(t)) (3.2)

has a uniqueT periodic solution which is globally asymp-
totically stable.

Lemma 3.2. (see [31])If a(t), b(t), d1(t) and d2(t) are all
positive and continuousT periodic functions for allt ∈ R,
then the system

dx1

dt
= a(t)x2(t)− b(t)x1(t)− d1(t)(x1(t))

2,

dx2

dt
= b(t)x1(t)− d2(t)x

2
2(t).

(3.3)

has aT periodic solution(x∗

1(t), x
∗

2(t)), which is globally
asymptotically stable with respect toR2

+ = {(x, y)|x >

0, y > 0}.

Lemma 3.3.The system

dx1

dt
= ax2(t)− bx2

2(t)− cx1(t)

−d(x1(t))
2 def
= P1(x1, x2),

dx2

dt
= ex1(t)− fx2

2(t)
def
= P2(x1, x2)

(3.4)

admits a unique positive equilibriumE(x∗

1, x
∗

2), which is
globally asymptotically stable, wherea, b, c, d, e, f are all
positive constants.

Proof. Since
dx1

dt
≤ ax2(t)− cx1(t)− d(x1(t))

2,

dx2

dt
= ex1(t)− fx2

2(t),

(3.5)

while from Lemma 2.2 the system

du1

dt
= au2(t)− cu1(t)− d(u1(t))

2,

du2

dt
= eu1(t)− fu2

2(t)

(3.6)

has an positive equilibriumE(x∗∗

1 , x∗∗

2 ), which is globally
asymptotically stable, it then follows from the comparison
theorem of the differential equation that the solution of (3.4)
are all uniformly bounded.

The equilibrium of system (3.4) is determined by

x2 − bx2
2 − cx1 − dx2

1 = 0,

ex1 − fx2
2 = 0.

(3.7)

From the second equation of (3.7), one has

x1 =
fx2

2

e
, (3.8)

Substituting (3.8) into the first equation of (3.7) leads to

H(x2) = df2x3
2 + be2x2 + cefx2 − ae2 = 0. (3.9)

SinceH(0) = −ae2 < 0, andH
′

(x2) = 3df2x2
2 + be2 +

cef > 0, it follows that H(x2) is a strictly increasing
function for allx2 > 0 and so, there exists a unique positive
solution x∗

2, consequently, from (3.8), we can obtain the

uniquex∗

1. That is, the system (3.4) admits a unique positive
equilibriumE(x∗

1, x
∗

2).
The Jacobian matrix atE(x∗

1, x
∗

2) is

J(x∗

1, x
∗

2) =

(

−2dx∗

1 − c −2bx∗

2 + a

e −2fx∗

2

)

. (3.10)

From the factx∗

2 satisfies (2.9), it immediately follows that

tr(J(x∗

1 , x
∗

2))

= −2dx∗

1 − c− 2fx∗

2 < 0.
(3.11)

det(J(x∗

1, x
∗

2))

=
1

e

(

4df2(x∗

2)
3 + 2cefx∗

2 + 2be2x∗

2 − ea2
)

=
1

e

(

3df2(x∗

2)
3 + cefx∗

2 + be2x∗

2

)

> 0.

(3.12)

Hence,J(x∗

1, x
∗

2) has two negative characteristic root, and
E(x∗

1, x
∗

2) is locally asymptotically stable.
Now, to ensureE(x∗

1, x
∗

2) is globally asymptotically
stable, it is enough to show that system (3.4) has no limit
cycle. We consider the Dulac functionu(x1, x2) = 1, then

∂(uP1)

∂x1
+

∂(uP2)

∂x2
= −2dx1 − 2fx2 − c < 0.

By Bendixson-Dulac principle, there is no closed orbit in
areaR+

2 . SoE(x∗

1, x
∗

2) is globally asymptotically stable. This
completes the proof of Lemma 3.3.

Lemma 3.4. There exists positive constantsMix and My

such that
lim sup
t→+∞

xi(t) < Mix, i = 1, 2;

Also, if

AT

(

− d3(t) +
c2(t)M1x

m(t)

)

> 0, (3.13)

whereM1x is defined in (3.16). Then

lim sup
t→+∞

y(t) < My. (3.14)

Proof. In Proposition 2.1 of Zhang and Zhang[22], the
authors had proved that

xi(t) ≤ x∗

i (t) + ε, i = 1, 2, t ≥ T1, (3.15)

where(x∗

1(t), x
∗

2(t)) is the uniqueT -periodic solution of the

system (3.3). LetMix = max
t∈[0,T ]

{

x∗

i (t) + ε
}

, i = 1, 2, then

lim sup
t→+∞

xi(t) ≤ Mix, i = 1, 2. (3.16)

From the third equation of system (2.1) and (3.16), for all
t ≥ T1, we have

dy

dt
≤ y(t)

(

− d3(t) +
c2(t)M1x

m(t)
− q(t)y(t)

)

, (3.17)

Consider the following auxiliary equation:

dv

dt
= v(t)

(

− d3(t) +
c2(t)M1x

m(t)
− q(t)v(t)

)

. (3.18)

If

AT

(

− d3(t) +
c2(t)M1x

m(t)

)

> 0, (3.19)
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then by Lemma 3.1, we obtain that system (3.17) has
a unique positiveT periodic solutiony∗(t) > 0, which
is globally asymptotically stable. Similarly to the above
analysis, for the aboveε, there exists aT2 > T1, such that

y(t) < y∗(t) + ε t ≥ T2. (3.20)

SetMy = max
t∈[0,T ]

{

y∗(t) + ε
}

, then

lim sup
t→+∞

y(t) ≤ My. (3.21)

Lemma 3.5.There exists positive constantsmix such that

lim inf
t→+∞

xi(t) > xi∗, i = 1, 2. (3.22)

where (x1∗, x2∗) is the unique positive equilibrium of the
system (3.24).

Proof. For t ≥ T2, from Lemma 3.4 and the first two
equation of system (2.1), one has

dx1

dt
≥ aLx2(t)− aUβU (x2(t))

2

−
(

bU +
cU1 My

mL

)

x1(t)− dU1 (x1(t))
2,

dx2

dt
= bLx1(t)− dU2 x

2
2(t).

(3.23)

Consider the following auxiliary equation:

dv1

dt
= aLv2(t)− aUβU (v2(t))

2

−
(

bU +
cU1 My

mL

)

v1(t)− dU1 (v1(t))
2,

dv2

dt
= bLv1(t)− dU2 v

2
2(t).

(3.24)

It follows from Lemma 3.3 that system (3.24) admits a
unique positive equilibriumE(x1∗, x2∗), which is globally
asymptotically stable. By applying the comparison theorem
of differential equation, it immediately follows that

lim inf
t→+∞

xi(t) ≥ xi∗. (3.25)

This ends the proof of Lemma 3.5.

Lemma 3.6.Assume that

AT

(

− d3(t) +
c2(t)x1∗

m(t) + (M1x)2

)

> 0, (3.26)

then there exists positive constantsmy, which is independent
of the solution of system (2.1), such that

lim inf
t→+∞

y(t) > my. (3.27)

Proof. Condition (3.26) implies that for enough small
positive constantε, the inequality

AT

(

− d3(t) +
c2(t)(x1∗ − ε)

m(t) + (M1x + ε)2

)

> 0. (3.28)

It follows from Lemma 3.4 and 3.5 that there exists aT3 >

T2 such that

xi(t) < Mix + ε, xi(t) > xi∗ − ε, i = 1, 2. (3.29)

From the third equation of system (2.1) and (3.29), for all
t ≥ T3, we have

dy

dt
≥ y(t)

(

− d3(t) +
c2(t)(x1∗ − ε)

m(t) + (M1x + ε)2
− q(t)y(t)

)

,

(3.30)
Consider the following auxiliary equation:

dv

dt
= v(t)

(

− d3(t) +
c2(t)(x1∗ − ε)

m(t) + (M1x + ε)2
− q(t)v(t)

)

.

(3.31)
From (3.26) and Lemma 3.1, we obtain that system (3.31)
has a unique positiveT periodic solutionv∗(t) > 0, which is
globally asymptotically stable. Hence, for the aboveε, there
exists aT4 > T3, such that

y(t) > v∗(t)− ε, t ≥ T4. (3.32)

Setmy = min
t∈[0,T ]

{

v∗(t)− ε
}

, then

lim inf
t→+∞

y(t) ≥ my. (3.33)

This ends the proof of Lemma 3.6.

Noting that under the assumption (3.26) holds, then (3.13)
always holds. As a direct corollary of Lemma 3.4-3.6, we
have

Theorem 3.1.Assume that (3.26) holds, then system (2.1) is
permanent.

IV. N UMERIC SIMULATIONS

Example 4.1. Consider the following stage structure
predator prey system

dx1

dt
= (1− 0.6x2(t))x2(t)− x1(t)− (x1(t))

2

−
(32 + 1

2 cos(t))x1(t)y(t)

1 + x2
1(t)

,

dx2

dt
= x1(t)−

1

4
x2
2(t),

dy

dt
= y(t)

(

−
1

100
+

x1(t)

1 + x2
1(t)

− y(t)
)

.

(4.1)
Here, we assume thata(t) = b(t) = d1(t) = m(t) = c2(t) =
1, c1(t) =

3
2 + 1

2 cos(t), d3(t) =
1

100 , β(t) = 0.6, d2(t) =
1
4 .

Then
dx1

dt
= x2(t)− x1(t)− (x1(t))

2,

dx2

dt
= x1(t)−

1

4
x2
2(t)

(4.2)

has a unique positive equilibriumE(1, 2), which is globally
asymptotically stable. From the third equation of (4.1), we
have

dy

dt
≤ y(t)

(

1− y(t)
)

.

and so,

lim sup
t→+∞

y(t) ≤ 1. (4.3)
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From (4.3) and the first and second equation we have

dx1

dt
≥ (1− 0.6x2(t))x2(t)− x1(t)

−(x1(t))
2 − 2x1(t),

dx2

dt
= x1(t)−

1

4
x2
2(t).

(4.4)

Noting that the system

dv1

dt
= (1− 0.6v2(t))v2(t)− v1(t)

−(v1(t))
2 − 2v1(t),

dv2

dt
= v1(t)−

1

4
v22(t).

(4.5)

admits a unique positive equilibriumE1(0.065, 0.509),
which is globally asymptotically stable. also,

A2π

(

−d3(t)+
c2(t)x1∗

m(t) + (M1x)2

)

= −0.01+
0.065

2
≥ 0.02 > 0.

(4.6)
That is, the condition of Theorem 2.1 holds, consequently,
system (4.1) is permanent. Fig. 2-4 also supports this asser-
tion.

Fig. 2. Dynamics behaviors of the first com-
ponent of system (4.1), the initial condition-
s (x1(0), x2(0), y(0))= (1, 2, 0.1),(0.2, 1, 0.3) and
(0.1, 1, 0.5), t ∈ [0, 20], respectively.

V. CONCLUSION

By numeric simulations, we found that one of the main
results of Zhang and Zhang[22] is incorrect. By introducing
a new lemma (Lemma 2.3) and applying the comparison
theorem of the differential equation, we finally obtain a set
of sufficient conditions which ensure the permanence of the
system. Numeric simulations also support our finding.

Fig. 3. Dynamics behaviors of the second com-
ponent of system (4.1), the initial condition-
s (x1(0), x2(0), y(0))= (1, 2, 0.1),(0.2, 1, 0.3) and
(0.1, 1, 0.5), t ∈ [0, 20], respectively.

Fig. 4. Dynamics behaviors of the third com-
ponent of system (4.1), the initial condition-
s (x1(0), x2(0), y(0))= (1, 2, 0.1),(0.2, 1, 0.3) and
(0.1, 1, 0.5), t ∈ [0, 30], respectively.
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