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Abstract—In this paper, finite difference schemes for solving
a class of space-time fractional differential equations with the
order of the spatial fractional derivative more than two are
investigated. First the time fractional derivative is approximated
by the L1 interpolation formula, while the spatial fractional
derivative is approximated by the fourth order weighted shifted
Grünwald-Letnikov derivative approximation formula. Then
based on the concepts of the order reduction method and
construction of compact schemes, two compact finite difference
schemes are developed. Theoretical analysis of unique solvabil-
ity, stability and convergence of the present finite difference
schemes are discussed. Numerical experiments are also carried
out, and the numerical results show their good agreement with
the theoretical analysis.
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I. INTRODUCTION

Fractional derivative is the generalization of the derivative
of integer order. Recently, fractional calculus has played an
important role in many researching domains such as physics
[1-4], fluid mechanics [5], bioengineering [6], finance [7-11]
and so on. The most significant advantage of the fractional-
order models in comparison with integer-order models lies
in that fractional derivatives and integrals are more suitable
for the description of the memory and hereditary properties
of different substances.

For the basic theory of fractional differential equations,
readers can refer to the works [12,13]. One of the most
important applications of fractional differential equations is
to model the process of subdiffusion and superdiffusion of
particles in physics, where the fractional diffusion equation
is usually used for modeling this movement [14-16].

In the research of fractional differential equations, seeking
solutions has attracted much attention by a lot of researchers.
Many authors proposed various valid methods for solv-
ing fractional differential equations including the coupled
fractional reduced differential transform method [17], the
Bernstein polynomials method [18], the residual power series
method [19], the Jacobi elliptic function method [20] and so
on Unfortunately, it is usually difficult to obtain exact solu-
tions for fractional differential equations in that the fractional
derivative operators are quasi-differential operators with sin-
gularity. So it becomes important to develop valid numerical
methods with good characters for solving fractional differ-
ential equations. So far many valid numerical methods have
been developed. For example, in [21], Zhou et al. proposed a
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spatial sixth order finite difference scheme for time fractional
sub-diffusion equation with variable coefficient. In [22], Feng
proposed a Crank-Nicolson difference scheme for a class of
space fractional differential equations with high order spatial
fractional derivative. In [23], Feng et al. applied the finite el-
ement method with two different time discretization schemes
for solving two types of space-time fractional diffusion
equations, while in [24], Bu et al. presented a Galerkin finite
element method for two-dimensional Riesz space fractional
diffusion equations. In [25], Liu et al. proposed an implicit
radial basis function meshless approximation method for a
class of time fractional diffusion equations. In [26], Huang
and Liu considered a class of space-time fractional advection-
dispersion equation, and obtained the solution in terms of
Green functions and representations of the Green function
by applying the Fourier-Laplace transforms. In [27], Yuste
established a weighted averaged finite difference scheme for
fractional diffusion equations, while in [28], Meerschaert
and Tadjeran proposed finite difference approximations for
fractional advection-dispersion flow equations, where the
fractional derivatives were both approximated by use of
the Grünwald-Letnikov approximation formula. Afterwards,
many authors applied the finite difference method to solve
various time, space, and space-time fractional differential e-
quations (see [29-35] and the references therein for example).
We notice that in the current research on numerical methods
for solving fractional differential equations, the orders of the
fractional derivative are usually less than two, while little
attention has been paid so far on developing finite difference
schemes for fractional differential equations with the orders
of fractional derivatives more than two.

Motivated by the above works, in this paper, we consider
the following initial boundary value problem for space-time
fractional differential equation as follows:

ut(x, t) +
C
0 Dγ

t u(x, t) = κ(x)(aD
α
xu(x, t)−x Dα

b u(x, t))
+f(x, t), 0 < γ < 1,

u(x, 0) = h(x), x ∈ [a, b],
u(a, t) = u(b, t) = 0, t ∈ [0, T ],

(1)

where α ∈ (2, 3) or α ∈ [3 + η, 4), η is a sufficiently
small fixed positive number, κ(x) > 0 for x ∈ (a, b),
C
0 D

γ
t u(x, t), aD

α
xu(x, t) and xD

α
b u(x, t) denote the Ca-

puto fractional derivative, the left-side Riemann-Liouville
fractional derivative and the right-side Riemann-Liouville
fractional derivative respectively, and

C
0 D

γ
t u(x, t) =

1
Γ(1− γ)

∫ t

0

u′
t(x, s)

(t− s)γ
ds,

aD
α
xu(x, t) =

dn

dxn (
1

Γ(n− α)

∫ x

a
(x− σ)n−1−αu(σ, t)dσ),

xD
α
b u(x, t) =

(−1)n dn

dxn (
1

Γ(n− α)

∫ b

x
(σ − x)n−1−αu(σ, t)dσ),

(2)
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where n− 1 ≤ α < n, n ∈ N. For further use, we extend
the definition domain of the function u(x, t) to R × [0, T ],
and satisfies u(x, t) ≡ 0 for x ∈ (−∞, a]

∪
[b,∞).

For the approximation of the Riemann-Liouville fractional
derivative, the Grünwald-Letnikov approximation formula is
the most popularly used so far. Yet as difference schemes
generated by use of the standard Grünwald-Letnikov ap-
proximation formula is usually unstable, so the shifted or
weighted shifted Grünwald-Letnikov approximation formu-
las are widely used instead [27,28,36]. For the approximation
of the Caputo fractional derivative, various L interpolation
formulas are widely used [37-39].

We organize the rest of this paper as follows. In Section
2, we propose two compact finite difference schemes for the
problem (1) with α ∈ (2, 3) and [3+η, 4) respectively. After-
wards, in Section 3, theoretical analysis of unique solvability,
stability and convergence for the present two difference
schemes are discussed. In Section 4, numerical experiments
are carried out for testifying the present difference schemes.
Some conclusions are proposed at the end of this paper.

II. CONSTRUCTION OF THE FINITE DIFFERENCE SCHEMES

Let M, N be two positive integers, and
h = b− a

M , τ = T
N denote the spatial and temporal step size

respectively. Define xi = a+i∗h(0 ≤ i ≤ M), tn = nτ(0 ≤
n ≤ N), Ωh = {xi|0 ≤ i ≤ M}, Ωτ = {tn|0 ≤ n ≤ N},
(i, n) = (xi, t

n), and then the domain [a, b]×[0, T ] is covered
by Ωh × Ωτ . Let Vh = {un

i |0 ≤ i ≤ M, 0 ≤ n ≤ N}
be the grid function on the mesh Ωh × Ωτ .
Un
i = u(xi, t

n) and un
i denote the exact solution

and numerical solution at the point (i, n) respectively.
Un = (Un

1 , Un
2 , ..., Un

M )T , un = (un
1 , un

2 , ..., un
M )T . For

further use, Denote

δtu
n
i =

un
i − un−1

i
τ , δxu

n
i− 1

2

=
un
i − un−1

i
h

,

δ2xu
n
i =

un
i+1 − 2un

i + un
i−1

h2 .

Property 1. For the left-side Riemann-Liouville derivative
and the right-side Riemann-Liouville derivative, it holds
that for some k ∈ N

aD
α+k
x u(x, t) = dk

dxk (aD
α
xu(x, t)),

xD
α+k
b u(x, t) = (−1)k dk

dxk (xD
α
b u(x, t)). (3)

Property 2. The first order shifted Grünwald-Letnikov
approximation formulas approximating the Riemann-
Liouville derivatives can be denoted as follows

1
hα

∞∑
k=0

g
(α)
k u(x− (k − p)h) =−∞ Dα

xu(x) +O(h),

1
hα

∞∑
k=0

g
(α)
k u(x+ (k − p)h) =x Dα

∞u(x) +O(h),

where p is an integer, and g
(α)
0 = 1, g

(α)
k =

(1− α+ 1
k

)g
(α)
k−1, k = 1, 2, ....

Especially, when u ∈ C(R), and u(x) ≡ 0, x ∈

(−∞, a]
∪
[b,∞), it holds that

1
hα

[(x−a)/h]+p∑
k=0

g
(α)
k u(x− (k − p)h) =a Dα

xu(x) +O(h),

1
hα

[(b−x)/h]+p∑
k=0

g
(α)
k u(x+ (k − p)h) =x Dα

b u(x) +O(h),

(4)

Lemma 1 [40]. Suppose α ∈ (1, 2). Define the averaging
difference operator A1v(x) = (1 + cα2h

2δ2x)v(x), where

cα2 = −α2 + α+ 4
24 . Suppose u ∈ C(R) and u ∈ ℘4+α(R),

where ℘n+α(R) = {f |
∫∞
−∞(1 + |ω|)n+αf̂(ω)dω

< ∞}, and f̂(ω) is the Fourier transformation of f(x). Then
for u(x) ≡ 0, x ∈ (−∞, a]

∪
[b,∞), the following fourth

order weighted shifted Grünwald-Letnikov approximation
formulas hold



A1(aD
α
xu(x)) = A1(−∞Dα

xu(x))

= 1
hα

∞∑
k=0

w
(α)
k u(x− (k − 1)h) +O(h4)

= 1
hα

[(x−a)/h]+1∑
k=0

w
(α)
k u(x− (k − 1)h) +O(h4),

A1(xD
α
b u(x)) = A1(xD

α
∞u(x))

= 1
hα

∞∑
k=0

w
(α)
k u(x+ (k − 1)h) +O(h4)

= 1
hα

[(b−x)/h]+1∑
k=0

w
(α)
k u(x+ (k − 1)h) +O(h4),

(5)

where
w

(α)
0 = α2 + 3α+ 2

12 g
(α)
0 = α2 + 3α+ 2

12 ,

w
(α)
1 = α2 + 3α+ 2

12 g
(α)
1 + 4− α2

6 g
(α)
0 ,

w
(α)
k = α2 + 3α+ 2

12 g
(α)
k + 4− α2

6 g
(α)
k−1

+α2 − 3α+ 2
12 g

(α)
k−2, k = 2, 3, ...,

(6)

and g
(α)
k , k = 0, 1, 2, ... are defined as in Property

2.

Remark 1. The shifted or weighted shifted Grünwald-
Letnikov approximation formulas listed above are widely
used to approximate spatial Riemann-Liouville fractional
derivative, and furthermore are applied to construct
unconditionally stable difference schemes for spatial
fractional differential equations with the spatial fractional
order α < 2. However, for those difference schemes
constructed by direct use of the shifted or weighted shifted
Grünwald-Letnikov approximation formulas with α > 2, the
analysis of stability and convergence is difficult to fulfil.

Lemma 2 [37, Lem. 2.1](The L1 formula). Suppose
0 < γ < 1, and u(t) ∈ C2[0, tn]. Then it holds that

|C0 D
γ
t u(t)− τ−γ

Γ(2− γ)
[a

(γ)
0 u(tn)

−
n−1∑
k=1

(a
(γ)
n−k−1 − a

(γ)
n−k)u(tk)− a

(γ)
n−1u(t0)]|

≤ 1
Γ(2− γ)

[
1− γ
12 + 22−γ

2− γ − (1 + 2−γ)]

max
t0≤t≤tn

|u′′
(t)|τ2−γ , (7)

where a
(γ)
k = (k + 1)1−γ − k1−γ , k ≥ 0, and satisfies

(1− γ)(k + 1)−γ < a
(γ)
k < (1− γ)k−γ .
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In order to derive difference schemes for Eqs. (1)
by use of the weighted shifted Grünwald-Letnikov
approximation formulas, it is feasible to use the order
reduction method. Next we will construct difference
schemes in two subsections. Define the operators A1, A2

by{
A1v(x) = (1 + cβ2h

2δ2x)v(x),

A2v(x) = (1 + 1
12h

2δ2x)v(x),

where cβ2 =
−β2 + β + 4

24 , β ∈ (1, 2).

A. Finite difference scheme with α ∈ [3 + η, 4)

Set β = α− 2. Then β ∈ [1 + η, 2) for α ∈ [3 + η, 4). By
use of Lemma 1 one can obtain the following approximation
at the grid point (i, n)

A1[aD
β
xu(x, t)−x Dβ

b u(x, t)](i,n)

= 1
hβ

i+1∑
k=0

w
(β)
k Un

i−k+1 − 1
hβ

M−i+1∑
k=0

w
(β)
k Un

i+k−1 +O(h4)

= 1
hβ

i∑
k=−M+i

r
(β)
k Un

i−k +O(h4), 1 ≤ i ≤ M − 1, (8)

where w
(β)
k , k = 0, 1, ... are defined as in (6), and

r
(β)
0 = w

(β)
1 − w

(β)
1 = 0,

r
(β)
1 = w

(β)
2 − w

(β)
0 ,

r
(β)
k = w

(β)
k+1, k = 2, 3, ...,

r
(β)
−k = −r

(β)
k , k = 1, 2, ....

Define m(x, t) =a Dβ
xu(x, t)−xD

β
b u(x, t). Then it holds

that m′′
x(x, t) =a Dα

xu(x, t) −x Dα
b u(x, t), and the first

equation of (1) can be rewritten as follows

1
κ(x)

[ut(x, t)+
C
0 D

γ
t u(x, t)] = m′′

x(x, t)+
1

κ(x)
f(x, t).(9)

On the other hand, the following approximation formula
holds provided that m(x, t) ∈ C(6,1)(R× [0, T ]):

mn
i+1 − 2mn

i +mn
i−1

h2

= m′′
x(xi, t

n) + h2

12m
(4)
x (xi, t

n) +O(h4)

= m′′
x(xi, t

n) + 1
12 [m

′′
x(xi+1, t

n)− 2m′′
x(xi, t

n)

+m′′
x(xi−1, t

n)] +O(h4)

= (A2m
′′
x)(i,n) +O(h4)

= A2[aD
α
xu(x, t)−xD

α
b u(x, t)](i,n)+O(h4). (10)

Applying the operator A1 on both sides of (10), and
by use of (8) one can obtain that
A1A2[aD

α
xu(x, t)−x Dα

b u(x, t)](i,n)

= A1(
mn

i+1 − 2mn
i +mn

i−1

h2 ) +O(h4)

= 1
h2 [

1
hβ

i+1∑
k=−M+i+1

r
(β)
k Un

i+1−k − 2
hβ

i∑
k=−M+i

r
(β)
k Un

i−k

+ 1
hβ

i−1∑
k=−M+i−1

r
(β)
k Un

i−1−k] +O(h2)

= 1
hα

M∑
k=0

λ
(α)
i−kU

n
k +O(h2), 1 ≤ i ≤ M − 1. (11)

where


λ
(α)
0 = r

(β)
1 − 2r

(β)
0 + r

(β)
−1 = 0,

λ
(α)
k = r

(β)
k+1 − 2r

(β)
k + r

(β)
k−1, k = 1, 2, ...,

λ
(α)
−k = −λ

(α)
k , k = 1, 2, ....

So if we put the operators A2 and A1 on both sides
of (9) at the point (i, n), then together with the use of
Lemma 2 and the backward difference formula one can
deduce that

A1A2(
δtU

n
i + δ

(γ)
t Un

i
κi

) = 1
hα

M∑
k=0

r̂
(α)
i−kU

n
k +A1A2(

fn
i
κi

)

+O(τ+τ2−γ+h2), 1 ≤ i ≤ M−1. (12)

where δ
(γ)
t Un

i = τ−γ

Γ(2− γ)
[a

(γ)
0 Un

i −
n−1∑
k=1

(a
(γ)
n−k−1 −

a
(γ)
n−k)U

k
i − a

(γ)
n−1U

0
i ]. Then the compact finite difference

scheme approximating the Eqs. (1) can be denoted as
follows:


A1A2(

δtu
n
i + δ

(γ)
t un

i
κi

) = 1
hα

M∑
k=0

r̂
(α)
i−ku

n
k +A1A2(

fn
i
κi

),

1 ≤ n ≤ N, i = 1, 2, ...,M − 1,
u0
i = h(xi), i = 1, 2, ...,M − 1.

(13)
Remark 2. The reason for α ∈ [3 + η, 4) instead of
(3, 4) lies in that the unconditional stability of the difference
scheme established can be ensured.

B. Finite difference scheme with α ∈ (2, 3)

Set β = α − 1. Then β ∈ (1, 2) for α ∈ (2, 3), and
similarly from Lemma 1 we have

A1[aD
β
xu(x, t) +x Dβ

b u(x, t)](i,n)

= 1
hβ

i+1∑
k=0

w
(β)
k Un

i−k+1 +
1
hβ

M−i+1∑
k=0

w
(β)
k Un

i+k−1 +O(h4)

= 1
hβ

i∑
k=−M+i

r̂
(β)
k Un

i−k+O(h4), 1 ≤ i ≤ M −1, (14)

where w
(β)
k , k = 0, 1, ... are defined as in (6), and

r̂
(β)
0 = 2w

(β)
1 ,

r̂
(β)
1 = w

(β)
2 + w

(β)
0 ,

r̂
(β)
k = w

(β)
k+1, k = 2, 3, ...,

r̂
(β)
−k = r

(β)
k , k = 1, 2, ....

Let p(x, t) =a Dβ
xu(x, t) +x Dβ

b u(x, t). Then p′x(x, t) =

aD
α
xu(x, t) −x Dα

b u(x, t), and the first equation of (1) can
be rewritten as follows

1
κ(x)

[ut(x, t)+
C
0 D

γ
t u(x, t)] = p′x(x, t)+

1
κ(x)

f(x, t).(15)

As the following center difference formula holds provided
that p ∈ C(5,1)(R× [0, T ])

pni+1 − pni−1

2h
= p′x(xi, t

n)+O(h2). (16)

Applying the operator A1 on both sides of (16), and
by use of (14) one can obtain that

A1[aD
α
xu(x, t)−x Dα

b u(x, t)](i,n)

= A1(
mn

i+1 −mn
i−1

2h
) +O(h2)
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= 1
2h

[ 1
hβ

i+1∑
k=−M+i+1

r̂
(β)
k Un

i+1−k

− 1
hβ

i−1∑
k=−M+i−1

r̂
(β)
k Un

i−1−k] +O(h2)

= 1
2hα

M∑
k=0

λ̂
(α)
i−kU

n
k +O(h2), 1 ≤ i ≤ M − 1. (17)

where
λ̂
(α)
0 = r̂

(β)
1 − r̂

(β)
−1 = 0,

λ̂
(α)
k = r̂

(β)
k+1 − r̂

(β)
k−1, k = 1, 2, ...,

λ̂
(α)
−k = −λ̂

(α)
k , k = 1, 2, ....

So applying the operator A1 on both sides of (15) at
the point (i, n), together with the use of Lemma 2 and the
backward difference formula one can get that

A1(
δtU

n
i + δ

(γ)
t Un

i
κi

) = 1
2hα

M∑
k=0

λ̂
(α)
i−kU

n
k + A1(

fn
i
κi

) +

O(τ+τ2−γ+h2), 1 ≤ i ≤ M−1. (18)

where δ
(γ)
t Un

i is defined as in (12). Then the compact
finite difference scheme approximating the Eqs. (1) can be
denoted as follows:


A1(

δtu
n
i + δ

(γ)
t un

i
κi

) = 1
2hα

M∑
k=0

λ̂
(α)
i−ku

n
k +A1(

fn
i
κi

),

1 ≤ n ≤ N, i = 1, 2, ...,M − 1,
u0
i = h(xi), i = 1, 2, ...,M − 1.

(19)

Remark 3. The construction of the difference scheme
(19) is different from that of (13) in that only one compact
operator A1 is applied in the derivation of (19), while two
compact operators A1 and A2 are applied in the derivation
of (13). We note that if two operators are applied in the
derivation of the latter, then the obtained difference scheme
may be unstable.

III. THEORETICAL ANALYSIS OF THE DIFFERENCE
SCHEME

In this section, we discuss the unique solvability, sta-
bility and convergence for the finite difference schemes
(13) and (19). Define the grid functions spaces Uh =
{u|u = (..., u−2, u−1, u0, u1, u2, ...)} and U0

h = {u|u ∈
Vh, lim

|i|→∞
ui = 0, lim

|i|→∞
δxui− 1

2
= 0}. For u, v ∈ U0

h ,

define two discrete inner products as (u, v) = h
∞∑

i=−∞
uivi

and (u, v)
κ̂
= h

∞∑
i=−∞

κ̂iuivi, while the discrete L2 norms

are defined by ∥u∥ =
√
(u, u) = (

∞∑
i=−∞

h|ui|2)
1
2 and

∥u∥
κ̂
=

√
(u, u) = (

∞∑
i=−∞

κ̂i|ui|2)
1
2 respectively.

If we set µ =
τΓ(2− γ)

2hα ,{
κ̂(x) = κ(x), x ∈ (a, b),
κ̂(x) = 0, x ∈ (−∞, a]

∪
[b,∞),

{
û(x, t) =

u(x, t)
κ(x)

, x ∈ (a, b),

û(x) = 0, x ∈ (−∞, a]
∪
[b,∞), f̂(x, t) =

f(x, t)
κ(x)

, x ∈ [a, b],

f̂(x) = 0, x ∈ (−∞, a]
∪
[b,∞),

then the first equation of (13) can be rewritten as

A1A2[(Γ(2− γ) + τ1−γa
(γ)
0 )ûn

i − Γ(2− γ)ûn−1
i

−
n−1∑
k=1

τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)û

k
i − τ1−γa

(γ)
n−1û

0
i ]

= µ
∞∑

k=−∞
λ
(α)
i−kκ̂kû

n
k + τΓ(2− γ)A1A2f̂

n
i ,

1 ≤ n ≤ N, i = 0,±1,±2, ..., (20)

Similarly, the first equation of (19) can also be rewritten as

A1[(Γ(2− γ) + τ1−γa
(γ)
0 )ûn

i − Γ(2− γ)ûn−1
i

−
n−1∑
k=1

τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)û

k
i − τ1−γa

(γ)
n−1û

0
i ]

= µ
∞∑

k=−∞
λ̂
(α)
i−kκ̂kû

n
k + τγΓ(2− γ)A1f̂

n
i ,

1 ≤ n ≤ N, i = 0,±1,±2, ..., (21)

For the solutions of the difference schemes (13) and (19),
as the function u is defined on the whole R, and u(x, t) ≡ 0
for x ∈ (−∞, a]

∪
[b,∞), then ∥û∥ and ∥û∥

κ̂
exist, and

furthermore we have the following lemmas.

Lemma 3 [41, Lemma 2.1.1]. For the solutions of
the difference schemes (20) and (21), it holds that

√
6

(b− a)
∥ûn∥ ≤ ∥δxûn∥ ≤ 2

h
∥ûn∥,

6
(b− a)2

∥ûn∥ ≤
√
6

(b− a)
∥δxûn∥ ≤ ∥δ2xûn∥

= ∥δxδxûn∥ ≤ 2
h
∥δxûn∥ ≤ 4

h2 ∥ûn∥,

Lemma 4. Let the operators A1, A2 are defined as
above, then for the solutions of the difference schemes (20)
and (21), we have

[
(1 + η)η

6 +
36cβ2h

4

12(b− a)4
]∥ûn∥2

≤ (A1A2û
n, ûn) ≤ (1 +

4cβ2
3 )∥ûn∥2,

1
3∥û

n∥2 ≤ η2 + η + 2
6 ∥ûn∥2 ≤ (1− 4cβ2 )∥ûn∥2

≤ (A1û
n, ûn) ≤ ∥ûn∥2.

(22)

Proof . Since A1A2 = (1 + cβ2h
2δ2x)(1 + 1

12h
2δ2x) =

1 + cβ2h
2δ2x + 1

12h
2δ2x +

cβ2h
4

12 δ2xδ
2
x, by use of the discrete

Green formula one can obtain that

(A1A2û
n, ûn) = (ûn, ûn) + cβ2h

2(δ2xû
n, ûn)

+ 1
12h

2(δ2xû
n, ûn) +

cβ2h
4

12 (δ2xδ
2
xû

n, ûn)

= ∥ûn∥2−(cβ2 +
1
12)h

2(δxû
n, δxû

n)+
cβ2h

4

12 (δ2xû
n, δ2xû

n)

= ∥ûn∥2 − (cβ2 + 1
12)h

2∥δxûn∥2 + cβ2h
4

12 ∥δ2xûn∥2

and
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(A1û
n, ûn) = (ûn, ûn) + cβ2h

2(δ2xû
n, ûn)

= ∥ûn∥2 − cβ2h
2(δxû

n, δxû
n)

= ∥ûn∥2 − cβ2h
2∥δxûn∥2.

Considering cβ2 ∈ ( 1
12 ,

−(1 + η)2 + (1 + η) + 4
24 ], by

use of Lemma 3 we can obtain the desired results.

Remark 4. According to Lemma 4, for
u, v ∈ U0

h , we can define another two discrete inner

products as (u, v)A1A2 = h
∞∑

i=−∞
(A1A2ui)vi and

(u, v)A1 = h
∞∑

i=−∞
(A1ui)vi, while the discrete norms are

defined by ∥u∥A1A2 = (A1A2u, u) and ∥u∥A1 = (A1u, u)
respectively. Furthermore, ∥u∥A1A2 and ∥u∥A1 are all
equivalent to ∥u∥.

Lemma 5. If u ∈ U0
h , then for any integer k, it

holds that

∞∑
i=−∞

ui−kui =
∞∑

i=−∞
ui+kui.

Proof . Setting j = i − k, we have
∞∑

i=−∞
vni−kv

n
i =

∞∑
j=−∞

vnj v
n
j+k =

∞∑
i=−∞

vni+kv
n
i , and the proof is complete.

Lemma 6. For the solutions difference schemes (20)

and (21), it holds that
∞∑

i=−∞
[

∞∑
k=−∞

λ
(α)
i−kκ̂kû

n
k û

n
i ] = 0 and

∞∑
i=−∞

[
∞∑

k=−∞
λ̂
(α)
i−kκ̂kû

n
k û

n
i ] = 0.

Proof . By use of lemma 5 one can deduce that
∞∑

i=−∞
[

∞∑
k=−∞

λ
(α)
i−kκ̂kû

n
k û

n
i ] =

∞∑
k=−∞

[
∞∑

i=−∞
λ
(α)
k κ̂n

i−kû
n
i−kû

n
i ]

=
−1∑

k=−∞
[

∞∑
i=−∞

λ
(α)
k κ̂n

i−kû
n
i−kû

n
i ]

+
∞∑
k=1

[
∞∑

i=−∞
λ
(α)
k κ̂n

i−kû
n
i−kû

n
i ] +

∞∑
i=−∞

λ
(α)
0 κ̂n

i û
n
i û

n
i

=
−1∑

k=−∞
[

∞∑
i=−∞

λ
(α)
k κ̂n

i+kû
n
i+kû

n
i ]

+
∞∑
k=1

[
∞∑

i=−∞
λ
(α)
k κ̂n

i−kû
n
i−kû

n
i ]

=
∞∑
k=1

[
∞∑

i=−∞
λ
(α)
−k κ̂

n
i−kû

n
i−kû

n
i ]

+
∞∑
k=1

[
∞∑

i=−∞
λ
(α)
k κ̂n

i−kû
n
i−kû

n
i ]

= 0.

Similarly we also have
∞∑

i=−∞
[

∞∑
k=−∞

λ̂
(α)
i−kκ̂kû

n
k û

n
i ] = 0. The

proof is complete.

A. Unique solvability

First we analyze the unique solvability of the difference
scheme (13). For the sake of proving the unique solvability,
we only need to prove that there is only zero solution for
the corresponding homogeneous difference equation of (20),

which is denoted as follows due to aγ0 = 0

A1A2[(Γ(2−γ)+τ1−γ)ûn
i ] = µ

∞∑
k=−∞

λ
(α)
i−kκ̂kû

n
k . (23)

Theorem 1. The difference scheme denoted by (13)
is uniquely solvable.

proof . Multiplying hûn
i on both sides of Eq. (23)

and a summation with respect to i from −∞ to ∞ yields
that

(Γ(2− γ) + τ1−γ)∥ûn∥2A1A2
=

µ
∞∑

i=−∞
[

∞∑
k=−∞

λ
(α)
i−kκ̂kû

n
k û

n
i ] = 0,

where Lemma 6 is used in the deduction above. Therefore,
∥ûn∥A1A2 = 0, and according to Lemma 4 and Remark 4
one has ∥ûn∥ = 0. So ûn

i = 0, i = 1, 2, ...,M − 1, which
implies that un

i = 0, i = 1, 2, ...,M − 1. Then there is
only zero solution for (23), which implies (13) is uniquely
solvable. The proof is complete.

Following in a similar proof process one can obtain the
following theorem:

Theorem 2. The difference scheme denoted by (19)
is also uniquely solvable.

B. Stability

Theorem 3. The difference scheme denoted by (13)
is unconditionally stable on the initial value and the the
right term f .

Proof . Multiplying hûn
i on both sides (20) and a

summation with respect to i from −∞ to ∞, together with
use of Lemma 6 one can deduce that

h
∞∑

i=−∞
{A1A2[(Γ(2− γ) + τ1−γa

(γ)
0 )ûn

i −Γ(2− γ)ûn−1
i

−
n−1∑
k=1

τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)û

k
i − τ1−γa

(γ)
n−1û

0
i ]û

n
i }

= τΓ(2− γ)h
∞∑

i=−∞
(A1A2f̂

n
i )û

n
i ,

which implies that

(Γ(2− γ) + τ1−γ)∥ûn∥2A1A2

=
n−1∑
k=1

[τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)(A1A2û

k, ûn)]

+τ1−γa
(γ)
n−1(A1A2û

0, ûn
i )

+Γ(2−γ)(A1A2û
n−1, ûn

i )+ τΓ(2−γ)(A1A2f̂
n, ûn)

≤ 1
2

n−1∑
k=1

[τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)(∥ûk∥2A1A2

+ ∥ûn∥2A1A2
)]

+1
2τ

1−γa
(γ)
n−1(∥û0∥2A1A2

+ ∥ûn∥2A1A2
)

Engineering Letters, 27:2, EL_27_2_02

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



+
Γ(2− γ)

2 (∥ûn−1∥2A1A2
+ ∥ûn∥2A1A2

)

+τΓ(2− γ)[
τ(1 + τ1−γ)

2τΓ(2− γ)(1 + τ)
∥ûn∥2A1A2

+
2τΓ(2− γ)(1 + τ)

4τ(1 + τ1−γ)
∥f̂n∥2A1A2

].

Furthermore, one can deduce that from above
(Γ(2− γ) + τ1−γ)∥ûn∥2A1A2

≤
n−1∑
k=1

τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)∥ûk∥2A1A2

+τ1−γa
(γ)
n−1∥û0∥2A1A2

+ Γ(2− γ)∥ûn−1∥2A1A2

+2τΓ(2− γ)[
τ(Γ(2− γ) + τ1−γ)
2τΓ(2− γ)(1 + τ)

∥ûn∥2A1A2

+
2τΓ(2− γ)(1 + τ)

4τ(Γ(2− γ) + τ1−γ)
∥f̂n∥2A1A2

],

and

(Γ(2− γ) + τ1−γ)∥ûn∥2A1A2

≤
n−1∑
k=1

τ1−γ(1 + τ)(a
(γ)
n−k−1 − a

(γ)
n−k)∥ûk∥2A1A2

+τ1−γ(1+τ)a
(γ)
n−1∥û0∥2A1A2

+(1+τ)Γ(2−γ)∥ûn−1∥2A1A2

+
[Γ(2− γ)]2

(Γ(2− γ) + τ1−γ)
τ(1 + τ)2∥f̂n∥2A1A2

],

≤
n−1∑
k=1

τ1−γ(1 + τ)(a
(γ)
n−k−1 − a

(γ)
n−k)∥ûk∥2A1A2

+(1 + τ)Γ(2− γ)∥ûn−1∥2A1A2
+ τ1−γ(1 + τ)a

(γ)
n−1

{∥û0∥2A1A2
+

Γ(2− γ)

a
(γ)
n−1

τγ(1 + τ)∥f̂n∥2A1A2
]}.

Since (1 − γ)n−γ < a
(γ)
n−1 according to Lemma 2,

then furthermore we have

(Γ(2− γ) + τ1−γ)∥ûn∥2A1A2

≤
n−1∑
k=1

τ1−γ(1 + τ)(a
(γ)
n−k−1 − a

(γ)
n−k)∥ûk∥2A1A2

+(1 + τ)Γ(2− γ)∥ûn−1∥2A1A2
+ τ1−γ(1 + τ)a

(γ)
n−1

{∥û0∥2A1A2
+Γ(1−γ)tγn(1+τ)∥f̂n∥2A1A2

]}. (24)

Now we prove the following inequality by use of the
mathematical induction method

∥ûn∥2A1A2
≤ (1 + τ)n∥û0∥2A1A2

+(1+ τ)n+1Γ(1− γ)tγn max
1≤k≤n

∥f̂k∥2A1A2
, n ≥ 1. (25)

If n = 1, then from (24) one can derive that

(Γ(2− γ) + τ1−γ)∥û1∥2A1A2

≤ (1 + τ)Γ(2− γ)∥û0∥2A1A2
+ τ1−γ(1 + τ)∥û0∥2A1A2

+τ1−γΓ(1− γ)tγ1(1 + τ)2∥f̂n∥2A1A2
,

which implies

∥û1∥2A1A2
≤ (1 + τ)∥û0∥2A1A2

+(1 + τ)2
τ1−γΓ(1− γ)

(Γ(2− γ) + τ1−γ)
tγ1∥f̂1∥2A1A2

,

≤ (1 + τ)∥û0∥2A1A2

+(1 + τ)2Γ(1− γ)tγ1∥f̂1∥2A1A2
,

and then (25) holds for n = 1.
Suppose (25) holds for the levels 1, 2, ..., n − 1, then for

the level n, by (24) one can obtain that

(Γ(2− γ) + τ1−γ)∥ûn∥2A1A2

≤ τ1−γ(1 + τ)
n−1∑
k=1

(a
(γ)
n−k−1 − a

(γ)
n−k){(1 + τ)k∥û0∥2A1A2

+(1 + τ)k+1Γ(1− γ)tγk∥f̂k∥2A1A2
}

+(1 + τ)n−1Γ(2− γ)∥û0∥2A1A2

+(1 + τ)nΓ(2− γ)Γ(1− γ)tγn−1∥f̂n−1∥2A1A2

+τ1−γ(1 + τ)a
(γ)
n−1{∥û0∥2A1A2

+Γ(1− γ)(1 + τ)tγn∥f̂n∥2A1A2
}

≤ (1 + τ)n∥û0∥2A1A2
{τ1−γ [

n−1∑
k=1

(a
(γ)
n−k−1 − a

(γ)
n−k)

+a
(γ)
n−1] + Γ(2− γ)}+ (1 + τ)n+1Γ(1− γ)tγn max

1≤k≤n

∥f̂k∥2A1A2
{τ1−γ [

n−1∑
k=1

(a
(γ)
n−k−1−a

(γ)
n−k)+a

(γ)
n−1]+Γ(2−γ)}

= (Γ(2− γ) + τ1−γ)(1 + τ)n∥û0∥2A1A2

+(Γ(2−γ)+τ1−γ)(1+τ)n+1Γ(1−γ)tγn max
1≤k≤n

∥f̂k∥2A1A2
,

which implies (25) holds. So (25) always holds according
to the the mathematical induction method.

Moreover, from (25) one can deduce that

∥ûn∥2A1A2
≤ expnτ ∥û0∥2A1A2

+exp(n+1)τ Γ(1− γ)tγn max
1≤k≤n

∥f̂k∥2A1A2

≤ expT ∥û0∥2A1A2

+T γ exp2T Γ(1−γ) max
1≤k≤n

∥f̂k∥2A1A2
. (26)

From (26) one can see that the solution ûn of Eq. (20)
depends continuously on the initial value û0 and the right
term f̂ . So the difference scheme (20) is unconditionally
stable, and furthermore, the difference scheme (13) is also
unconditionally stable on the initial value and the right term
f . The proof is complete.

Similarly we have the following theorem:

Theorem 4. The difference scheme denoted by (19)
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is unconditionally stable on the initial value and the right
term f .

C. Convergence

Theorem 5. The difference scheme denoted by (13)
is convergent.

Proof . Let εn = ûn − Un, n = 0, 1, ..., N denotes
the errors between the numerical solutions and the exact
solutions. Then from (12), (13) and (20) we have



A1A2[(Γ(2− γ) + τ1−γa
(γ)
0 )εni − Γ(2− γ)εn−1

i

−
n−1∑
k=1

τ1−γ(a
(γ)
n−k−1 − a

(γ)
n−k)ε

k
i − τ1−γa

(γ)
n−1ε

0
i ] =

µ
∞∑

k=−∞
λ
(α)
i−kκ̂kε

n
k + τγΓ(2− γ)A1A2R(τ, h),

1 ≤ n ≤ N, i = 0,±1,±2, ...,
ε0i = 0, i = 0,±1,±2, ...,

(27)
where A1A2R(τ, h) = O(τ + τ2−γ + h2).

Similar to the proof of Theorem 3 one has that

∥εn∥2A1A2
≤ expT ∥ε0∥2A1A2

+T γ exp2T Γ(1− γ)∥R(τ, h)∥2A1A2

= T γ exp2T Γ(1− γ)∥R(τ, h)∥2A1A2
,

which implies that

∥εn∥A1A2 ≤ T
γ
2 expT

√
Γ(1− γ)∥R(τ, h)∥A1A2 .

Furthermore, according to Lemma 4 and Remark 4, there
exist three positive constants C1, C2, C3 such that

∥εn∥ ≤ C1τ + C2τ
2−γ + C3h

3.

So lim
τ,h→0

∥εn∥ = 0. The proof is complete.

Similarly we have the following theorem:

Theorem 6. The difference scheme denoted by (19)
is also convergent.

IV. NUMERICAL EXPERIMENTS

In this section, we propose one numerical example for the
present difference schemes (13) and (19).

Consider the problem (1) with an exact analytical solution

u(x, t) =

{
(t+ 1)x2(1− x)2, x ∈ (0, 1),
0, x ∈ (−∞, 0]

∪
[1,∞),

and satisfies



κ(x) = x3(1− x)3,

f(x, t) =



x2(1− x)2[1 + t1−β

Γ(2− β)
]−

4∑
m=2

[ cmm!x−α+m

Γ(1− α+m)
− cmm!(1− x)−α+m

Γ(1− α+m)
]

(t+ 1)x3(1− x)3, α ∈ (2, 3),

x2(1− x)2[1 + t1−β

Γ(2− β)
]−

4∑
m=2

[ cmm!x−α+m

Γ(1− α+m)
− cmm!(1− x)−α+m

Γ(1− α+m)
]

(t+ 1)x3(1− x)3, α ∈ (3, 4),
u(x, 0) = h(x) = x2(1− x)2,

where x2(1− x)2 =
4∑

m=2
cmxm.

Let ∥e1∥ =

√
M−1∑
i=1

h|Un
i − un

i |2 and ∥e2∥ =√
M−1∑
i=1

h|U
n
i − un

i
Un
i

× 100|2 denote the absolute error

and the relative error in L2 norm respectively.

In Figs. 1-2 and Tables 1-2, the errors between the
numerical solutions and the exact solutions are shown
under certain conditions, while in Figs. 3-4, comparison
between the exact solutions and the numerical solutions is
demonstrated under certain selected parameters..

Table 1: The absolute errors and relative errors for the
difference scheme (13) at β = 0.5, τ = 10−3, t = 0.05

α = 2.3 α = 2.5
h ∥e1∥ ∥e2∥ ∥e1∥ ∥e2∥
1
6 5.2081 ×10−4 1.1454 7.9389 ×10−4 1.8180
1
8 3.9798 ×10−4 0.9359 5.0502 ×10−4 1.2962
1
10 2.7637 ×10−4 0.8926 2.7637 ×10−4 0.8926
1
12 1.7577 ×10−4 0.5491 1.7236 ×10−4 0.6562
1
14 1.1364 ×10−4 0.4228 1.7069 ×10−4 0.5615

Table 2: The absolute errors and relative errors for (19)
at β = 0.8, h = 1

6 after 50 time steps

α = 3.3 α = 3.5
τ ∥e1∥ ∥e2∥ ∥e1∥ ∥e2∥

1×10−5 7.7863 ×10−5 0.1549 8.4678 ×10−5 0.2775
2×10−5 1.5316 ×10−4 0.3037 1.6571 ×10−4 0.5403
3×10−5 2.2797 ×10−4 0.4505 2.4576 ×10−4 0.7952
4×10−5 3.0282 ×10−4 0.5964 3.2567 ×10−4 1.0431
5×10−5 3.7798 ×10−4 0.7420 4.0595 ×10−4 1.2843

From Figs. 1-2 one can see that the absolute errors and
relative errors can be bounded to a low level, and do not
increase sharply with the time steps increase, which illustrate
the stability of the present difference schemes. The results
of Tables 1-2 show that the absolute and relative errors can
be restricted to a accepted level even with large spatial time
step size. Figs. 3-4 show that the numerical solutions can
approximate the exact solutions satisfactorily.

V. CONCLUSIONS

In this paper, we have proposed two unconditionally stable
compact finite difference schemes by use of a combination
of the order reduction method and the weighted shifted
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Grünwald-Letnikov derivative approximation formulas for
a class f space-time fractional differential equations with
the order of the spatial fractional derivative more than two.
Analysis of unique solvability, stability and convergence
in L2 norm for the two difference schemes are fulfilled.
For testing the validity of the present difference schemes,
numerical experiments are carried out, and the numerical
results show their coincidence with the theoretical analysis.

Finally, further research can be done based on the proposed
method in this paper.

(1) How to improve the accuracy of the difference schemes
in both time and spatial directions.

(2) How to derive stable difference schemes with high
accuracy for other types of fractional differential equa-
tions including multi-term time fractional differential equa-
tions, space-time fractional diffusion equations with time
distributed-order derivative and so on.
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