

Abstract—For the networked system composed of many

embedded devices, the design of agent based control system may
implement “Control on Demand”. The existing modeling
approach using formal languages has two shortcomings. Firstly
it is difficult to get perfect formal model of agent based control.
Secondly it is difficult to get real software agents. So we
combine the advantages of UML and hierarchical coloured
Petri Nets, and present a modeling methodology of agent based
control for embedded networked system. After modeling static
structure and dynamic behaviour of the system, we set up the
mapping relation from UML model to Petri Nets model based
on UML class diagram, collaboration diagram and state
diagram, and get the corresponding Petri Nets model. The
dynamic characteristic of the model is verified, the validated
UML model is gotten, so as to get correct software code
framework.

Index Terms—agent based control；networked system；

embedded system；UML language；hierarchical colored Petri
Nets

I. INTRODUCTION

N recent years with the popularity of embedded processors
and network technology, more and more devices embed

processors and network chips. It can be predicted that in the
near future most embedded devices will process the network
function no mater whether the network function is needed.

In the networked system, a control algorithm is normally
designed as part of the control system, and it is only valid in
the system. Once it leaves the system, the control algorithm
loses the effect and signification. With higher requirements
of performance, the complexity of control algorithm and the
cost of device will increase. For example, in order to make
traffic control more intelligent, we must design the intelligent
traffic intersection controllers and vehicular controller with
higher cost. In addition, most embedded devices only have
limited ability of computation and memory, and it is difficult
for these devices to implement complex control algorithm, so
traditional control theory including classical and modern
control theory has great deficiencies. So some researchers
introduce the agent technology into the network system, and

Manuscript received August 1, 2018; revised 12, 16, 2018. This work was

supported in part by the key scientific research project of universities and
colleges of Henan Province under Grant 15A413003.

Haitao Zhang is with the School of Information Engineering, Henan
University of Science and Technology, Luoyang, CO 471023 China
(corresponding author: e-mail: zhang_haitao@163.com).

Guifang Wu is with the School of Information Engineering, Henan
University of Science and Technology, Luoyang, CO 471023 China.

Wenshao Bu is with Electrical Engineering College, Henan University of
Science and Technology, Luoyang, CO 471023 China.

put forward agent based control method [1-2]. The method
transforms the design of control algorithm into the design of
control agents, and different control algorithms are
assembled by different control agents. Each networked
device doesn’t hold all control agents, but “control on
demands”, and only possesses the control agents which are
currently needed. It can clearly be seen that the control
method needs less memory and less computation ability, and
embedded devices can attain higher performance and
intelligence based on the principle of “local simplicity and
remote complexity”. The control method is fit for the running
and management of the systems which are composed of
numerous sensors and actuators that are distributed in
different geography location, especially the systems such as
traffic systems and vehicle systems.

The first step of designing agent based control system is to
design system model so as to analyze and verify whether the
system is correct, then we can get the source code framework
of software agent from the model. The core of agent based
control system modeling is the modeling of agents. Many
researchers use different formal languages to model agents
and get some achievements. There are the following methods
of modeling multi-agents systems (MAS). (1) Luck and
D'Inverno use Z language to describe the structure of agents
in the abstract of different levels [3]. Although Z is precise
formal language, it isn’t fit to describe the complex
conversation and interaction among agents, and is difficult to
describe the dynamic property of agents; (2) Desire and
Metatem use temporal logic to model agent based system [4].
However, the temporal logic utilizes complex logic including
many math symbols to describe the application of MAS. It is
very complex, and is difficult for the designer of MAS to
develop systems; (3) Pi calculus is used to model MAS. Pi
calculus can’t express the information of physical structure of
system, and concurrent behavior of system [5]; (4) All kinds
of extended Petri Nets are used to model MAS [6-9].

All kinds of formal languages have its deficiencies.
However, Petri Nets have strong dynamic analysis
capabilities of the concurrency, asynchronization and
uncertainty of the system. It is easily not only extended to
satisfy different modeling requirements, but also has perfect
math theory and simulation tool. Aiming the deficiency of
classical Petri Nets, the hierarchical colored Petri Nets are
applied to satisfy the requirements of agent based control
system.

However, formal method is mainly used in analysis stage
of agents, and cares for the conversation and intersection of
agents. The formal method isn’t fit to be applied to whole
design and implementation stage of the system. In order to
make up the deficiency of formal language, we introduce

Research of Agent Based Control Model for
Embedded Networked System

Haitao Zhang, Guiafng Wu, and Wenshao Bu

I

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

UML language into the whole modeling of agent based
control system so as to get perfect system model.

UML is very good at describing the static structure of the
system, but it isn’t fit to describe the dynamic behavior.
However, Petri Nets have the stronger capability to describe
dynamic behavior than static structure. UML model is lack of
strict and effective verification and analysis method, but Petri
Nets have perfect verification and analysis method, and is
easy to simulate the dynamic behavior of systems. In addition,
UML model is closely linked with program implementation
[10]; According to their advantages and disadvantages, we
combine the two modeling tools are to model the agent based
control systems.

The rest of the paper is organized as follows. In Section 2,
we introduce the whole modeling framework, and Section 3
presents detailed modeling method. Finally, a brief summary
are discussed in Section 4.

II. MODELING METHODOLOGY

In the following, we first present the modeling framework
combining the merits of UML and Petri Nets.

A. UML

UML is a graphical modeling language, and uses diagrams
to describe static structures as well as dynamic behavior of
systems. UML has becomes the standard in software
engineering, and is growing in modeling of other domains.

The basic building block of UML is diagrams. UML uses a
set of diagrams to reflect all aspects of a system, and each
diagram shows a specific characteristic of the system. Each
diagram is composed of a set of figures that include the
important information on one aspect of the system. UML
describes the static structure of the system by class diagrams
and object diagrams, and describes the dynamic behaviors by
state diagrams, collaboration diagrams, sequence diagrams
and activity diagrams.

Of course, when we model a system, we don’t need design
all diagrams, but design the necessary diagrams according to
real requirements.

Once UML model is designed by the software “rational
rose”, the source code framework is easy to be gotten from
the software. The following UML diagrams are all designed
in the software.

B. HCPN

As a modeling and analysis tool, Petri Nets are convenient
to describe the concurrent and distributed system. If we only
use classical Petri Nets to model and analyze the complicated
systems, the model is very complicated and is difficult to be
understood. So some extended Petri Nets appear including
Stochastic Petri Nets (SPN), Colored Petri Nets (CPN),
Object-oriented Petri Nets (OPN) and Hybrid Petri Nets
(HPN). In multi-agent based systems, CPN is a valid analysis
method. However, CPN model will become more
complicated with more complicate model. So we use
Hierarchical Colored Petri Nets (HCPN) to model agent
based control systems. In the following, we first present the
definition of HCPN.

Definition 1: Hierarchical Colored Petri nets are a 10-tuple
HCPN=(S，SN，SA，PN，PT，PA，FS，FT，PP) where

S is a finite set of pages. , s S , s is a non-hierarchical
CPN. If 1 2,s s S and 1 2s s , then they don’t include

common elements [11];
SN T is a set of substitution nodes;
 SA is a page assignment function. It maps each

substitution node to a page.
PN P is a set of port nodes.

PT is a function of port type. PT: PN{in, out, i/o,
general}.

 PA is a function of port allocation that makes Socket
nodes associate with port nodes.

 FS PS is a limited set of fusion sets. For fs FS ,

1p fs and 2p fs , it satisfies C (p1) =C (p2) and I (p1) =I

(p2).
 FT is a function of fusion type. FT:FS{global, page,

instance}；
PP SMS is a set of prime page.

C. Modeling Methodology

In the following, we first present modeling framework
combining the merits of UML and HCPN.

Shown as Fig.1, we first set up the system specification
according the requirements of the system. Then the use case
diagram of UML model is designed to capture the system
requirements corresponding to system specification, and the
class diagram is designed according to the existing objects
and their functions. After that the collaboration diagram and
state diagram are designed on the basis of class diagram.

Fig.1. Modeling framework

After the collaboration diagram and state diagram are
gotten, we map the two diagrams to HCPN model. Using the
simulation tool and math theory we may get some
characteristics of the model so as to decide whether the model
satisfy the system requirements, such as deadlock,
reachability, boundedness. According to the simulation result
of HCPN model we may improve the corresponding UML

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

model. Then we repeat the process of “map, verification and
improve” until the verification results satisfy the system
requirements.

This method integrates the merits of UML and Petri Nets.
Petri Nets are used to do quantitative and qualitative analysis,
then software code framework can be gotten from UML
model.

III. SYSTEM MODELING

The core of agent based control method is the dynamic
distribution of the algorithm. The control algorithm is not
only changed at any time according to the requirement of the
user, but also the device needn’t change its hardware circuit.
So the method increases the repeated utilization of source
code, and implements the control on demand. The agent
based control system has the following key parts: algorithm
request, algorithm decomposition, control agent dispatch,
and algorithm assembly. After the algorithm decomposition
agent receives the request of a control algorithm form an
embedded device, it decomposes the control algorithm into
many basic control agents, and copy and dispatch these
control agents utilizing the agent warehouse and other
embedded devices. Then the algorithm assembling agent
assembles all control agents, and implements the device
control.

A. Use Case Diagram

It is necessary to construct the use case diagram to analyze
and divide the system function when modeling systems using
UML.

Fig.2 is the use case diagram of agent based control system.
In Fig.2, the system user first releases the algorithm update
command, and then the embedded device requests the design
and decomposition to the algorithm decomposer, and
requests the control agents to the region and center agent
warehouse. Once the embedded device receives all control
agents, it assembles them into the control algorithm.

B. Static Structure Diagrams

 The allocation model of agent based algorithm mainly
researches the allocation mechanism between the algorithm
decomposing agent and assembling agent. In order to
implement overall distribution in network, the system sets up
the agent warehouse which is composed of large amount of
basic control agents, and all control algorithms can be gotten
by assembling these basic control agents. The agent
warehouse copies and dispatches basic control agents
according the request of embedded devices. Of course, if the
nearby embedded devices possess the requested basic control
agents, they can execute the task of agent warehouse.

The static structure mainly describes the relation among
the embedded devices, the algorithm decomposer, the agent
warehouse and control algorithm, and its UML class diagram
is shown as Fig.3.

The algorithm decomposer and region agent warehouse is
one-to-one relationship. The algorithm decomposer sends ID
of agents which are dispatched by region agent warehouse
and other embedded devices according to the agent
information table. The region agent warehouse, the center
agent warehouse, and embedded devices copy and dispatch

basic control agents to the embedded device of requesting the
algorithm. The dispatcher unit transmits the destination
address and routing method to basic control agents by the
function ControlAgentDispatch, and moves the basic control
agents to the destination address.

In order to make agents move freely, the system must
install the aglet platform, and uses the agent communication
language ACL. In order to make the basic control agents
reach the correct destination and are assembled into the
requested control algorithm, the basic control agent need
store routing line, algorithm number and assembling number.
Its basic composition is shown as Fig.4 [12].

Fig.4 The basic composition of an agent

The migration of agents is implemented by the function
ControlAgentDispatch which gives the next migrating
decision according to the destination. After all basic control
agents reach the embedded device, the device assembles all
basic control agents and gets intelligent control algorithm
agent. At this time the basic control agent has two roles which
are basic control agent and intelligent control algorithm. In
embedded network system, the basic control agent can copy
and dispatch itself to other embedded devices according to
the command of the algorithm decomposer; on the other hand,
it is one part of intelligent control algorithm agent, and
implements intelligent control of the embedded device.

C. Behavior Model

In order to research the dynamic behavior of agent based
control system, the collaboration diagram and state machine
diagram are constructed on the basic of UML class diagram.

Fig.5 is the collaboration diagram of an embedded device
requesting new algorithm to the region agent warehouse
through the network.

In order to get the state transformation relation of each
object, in the following we give the state machine diagram of
main objects. Fig.6-Fig.9 gives the state machine diagram of
embedded device 1 requesting new algorithm to the region
agent warehouse by the network.

Fig. 6 is the state machine diagram of embedded device 1,
it uses the event algorithm request，control agent receive，
algorithm confirm to model the algorithm request, receiving
control agent, algorithm confirmation and the transformation
of related states.

waiting for
task request

device algorithm
request

waiting for receving
control agents

received
control agents

assembled
algorithm

working
algorithm

algorithm request

control agent receive

algorithm confirm

Fig.6 The state machine diagram of embedded device 1

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

Fig. 7 is the state machine diagram of the algorithm
decomposer, it uses the event algorithm design, algorithm
decompose and receive region control agents to model the
state transformation relation of the algorithm request, new
algorithm design, and receiving control agents.

waiting for the request
of device algorithm

new task new
algorithm

necessary region
control agents

received region
control agents

task receive

algorithm design

algorithm decompse

receive region control agents

Fig.7 The state machine diagram of algorithm decomposer

Fig. 8 is the state machine diagram of the region agent
warehouse. Once entering into the state region control agent
request，the region agent warehouse respectively sends the
command of requesting agents to itself, other embedded
devices, and center agent warehouse according to the
distribution state of agents.

Fig. 9 is the state machine diagram of the intelligent
control algorithm. It enters into the state new algorithm ready
based on new assembled algorithm and device input.

Fig. 10 is the state machine diagram of embedded device 2,
it uses the event device control agent request，control agent
copy，control agent dispatch to model the request of control
agents, copying control agent, dispatching control agents and
the transformation of related states.

waiting for
agent request

control agent
requested

device control agent request

waiting for the copy of
control agents

waiting for the dispatch
of control agents

control agent
copied

control agent
dispatched

control agent copy

control agent dispatch

Fig.10 The state machine diagram of embedded device 2

In the system, the state machine diagrams of center agent
warehouse are similar with that of embedded device 2, so we
don’t give its state machine diagram.

D. Mapping from UML to HCPN

It is easy to get software code framework from UML
model, but it is difficult to verify whether the UML model is
correct. So it is feasible method to introduce HCPN during

the process of modeling systems using UML. Utilizing
HCPN we may set up the method of verification and
mathematical analysis of agent based control system so as to
verify the validation of UML model, and lay the foundation
for the design and implementation of embedded network
system.

 After designing the UML model, we should research the
mapping method from UML to HCPN model, then verify the
HCPN model using simulation tool “CPN Tools”. The
method avoids the deficiencies for the difficulty of getting
the source code framework when we directly model the
system using formal language.

UML model is based on the object-oriented idea, its class
diagram includes all objects, and the collaboration diagram
includes the action relation among objects. It can be seen that
UML model shows receiving objects, sending message and
internal operation of objects. In HCPN, the sub page reflects
the internal action of the substitution transition, and the top
page reflects the relation among sub pages.

In the following we give the steps by which HCPN model
can be constructed from UML model.

1) Obtain the substitution transitions of the top page of
HCPN model from UML class diagram.

A class represents a group of objects that have common
state and behavior. We may realize the structural design of
systems through the definition of class and descriptions of the
relationships among the classes. Class diagram reflects the
type of various objects type in the system, as well as the static
relationships of the objects, so we may obtain the substitution
transition of the top page of HCPN model from the class
diagram.

The mapping rules from the class diagrams to the
substitution transitions of HCPN are as follows [12]:

(1) In the class diagram the class that contains several
operation functions is mapped to a substitution transition in
HCPN model, and the name of the substitution transition may
be same with the class name. In addition, the class that only
contains one operation function is mapped to an ordinary
transition with same name.

(2) The class that only has the static property in class
diagrams is mapped to the place whose color sets is
corresponding to the color sets of the class.

(3) Each operation in the class that is mapped to a
substitution transition of the HCPN is replaced by a transition
of the sub-page of this substitution transition.

In HCPN the direction of the arc is decided by the
association direction of the class diagram.

2) Map the state diagrams to sub-pages.
State diagram captures the internal state transfer of user

operations. An operation could be as small as a single class or
as large as the entire system. State diagram is commonly used
to model the transfer of an object. UML state diagram shows
the different state of some objects and the state conversion
relationships of the objects, and they describes the flow of the
state of an object in its life cycle, and give the starting point
and finishing point of state. State diagram displays the details
of the dynamic behavior of objects, so it can easily be
mapped to sub-page of HCPN.

According to the characteristics of the state diagram and
the HCPN, a conversion event in UML state machine

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

diagram is mapped to a transition of the Petri Nets, the source
state is mapped into a pre-set place of the transition, the target
state is mapped to a post-set place of the transition, and the
conversion element (arc) is mapped to the two arcs which are
from the pre-set place to the transition and from the transition
to post-set place. The state diagram reflects states of the
objects and external events which make states changed in
UML, in HCPN the place and transition of sub-page reflects
these relationships.

3) Map the collaboration diagram to the top page of HCPN
model.

The collaboration diagram includes the transformation
relation among objects. Utilizing the step 1), the top page is
constructed from the collaboration diagram, and then the
whole HCPN model of the system is gotten by the top page
and the sub-pages.

E. Construction of HCPN Model

In Fig.3, there are five classes; in Fig.5, the class
embedded device has two objects. According to the mapping
rules of the UML to HCPN, HCPN model includes six
substitution transitions: embedded device 1, algorithm
decomposer, region agent warehouse, center agent
warehouse, control algorithm and embedded device 2.

In UML model, the state machine diagram describes the
state transfer of object under the event driving, and reflects
the action during the lifetime period of the object. So the sub
pages of HCPN model can be constructed by getting the
information from the state machine diagram. Fig.11-Fig.16 is
the sub pages of getting from the state machine diagrams of
UML model according to the mapping rules.

In Fig.11, three transitions are respectively corresponding
to three firing events of Fig.6. The place device request tag
and receive tag model the firing sequence of three events.

In Fig.12, the variable ags=[(1,"af"),(2,"be"),(3,"cg")] of
the transition algorithm discompose is to simplify the
decomposition of requested algorithm. In the model the
algorithm is supposed to be decomposed into three basic
control agents that are respectively located in region agent
warehouse, center agent warehouse and other embedded
device.

In Fig.13, the variable dags, ags2 and ags1 of the
transition control agent region request are respectively used
to take out the basic control agents of region agent warehouse,
center agent warehouse and other embedded device.

In Fig.14, the transition algorithm assemble is used to
model the algorithm assembling, the transition in and out is
used to model the device input and output.

Fig.14 The HCPN sub-page of control algorithm

Fig.15 is the HCPN sub-page of embedded device 2.

Fig.15 The HCPN sub-page of embedded device 2

Fig.16 uses the transition center control agent copy and

center control agent dispatch to respectively model the
process of copying and dispatching the agents after the center
agent warehouse receives the request.

Fig.16 The HCPN sub-pages of center agent warehouse

The collaboration diagram reflects the information

interaction, so we take sub page as the substitution transitions,
connect all substitution transitions according to the
collaboration diagram, and get the top page of HCPN model.
Fig.17 is the top page of HCPN model.

F. The Verification of HCPN Model

Various analysis methods of Petri Nets can be used to do
the strict qualitative analysis and validate the Petri Nets
model that we get.

CPN Tool is the simulation software of HCPN model, and
provides two analysis tools. One is to simulate the running of
the model, and observe the changes of the mark of each place
after a transition is fired. So we may get the properties of the
model by single step or continuous running of transitions.
The other is the State analysis tool which is called
“Statespace”. It can generate all states of HCPN model so that
we can get all the properties by state graph [13]. In the
following, we use the two analysis method to verify the
HCPN model which is gotten from UML model.

Shown as Fig.18, it is the running result after executing 20
steps of transitions continuously. The place algorithm
working gets a token “1” which represents that the vehicle
has selected a route and is running.

Shown as Fig.19, it is the part results after running the
analysis of calculating the state space and SCC graph. It
represents that the state space and SCC graph have both 88
nodes and 178 arcs. The upper boundedness of the place
algorithm working is “1” which represents that the vehicle
has selected a route and is running. The dead and home
marking nodes are both 88. Since the state space has only 88

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

nodes it must be the end node. In addition, the state space has
not dead transition, live transition, and infinite occurrence
sequence.

 Fig.19 The simulation results

Of course, if the simulation result doesn’t satisfy the

requirement, we can further to improve the UML and HCPN
model until we get correct HCPN model.

From Fig.19, we know that the simulation result is correct

by the above analysis. So we think that UML model is also
correct. The correct source code framework may be gotten
from UML model.

IV. CONCLUSION

For agent based control system composed of many
embedded network devices, we have presented a
methodology to support formal validation of UML model.
The main idea is to map a HCPN model from UML diagrams
so as to utilize the analysis techniques of HCPN. We
construct key UML components of embedded network
systems, and discuss the mapping activities: 1) Generation of
sub-page of each class instance, 2) Generation of the top page
of the model, and 3) Combine the top page and sub-pages to
create a system-level model. The proposed methodology
helps us to model and analyze the agent based control
systems for embedded network devices.

REFERENCES
[1] FeiYue Wang and ChengHong Wang. Agent-Based Control Systems

for Operation and Management of Intelligent Network-Enabled Device.
IEEE International Conference on Systems, Man and Cybernetics, US:
IEEE Press, 2003, 5028 – 5033

[2] Kamil Hawdziejuk and Ewa Grabska. Cooperation of Agents in the
Agent System Supporting Smart Home Control. International
Conference on Cooperative Design, Visualization and Engineering,
2017, 57-64

[3] Michael Fisher. Representing and Executing Agent-Based Systems.
Intelligent Agents – Proceedings of the International Workshop on
Agent Theories, Architectures, and Languages. Lecture Notes in
Computer Science, 1995, 890:307-323

[4] Yuanli Cai and Xinman Zhang. Formal Modeling Methodology for
Multi-Agent Systems. Jounal of System Simulation, 2007, 19(14):
3151-3157

[5] Jianfeng Zhan. Research of Software Evolution and Dynamic nature
under Internet Environment. Beijing: Institute of Software, Chinese
Academy of Sciences，2002

[6] Dianxiang. Xu, Richard Volz, Thomas Ioerger, etc. Modeling and
Verifying Multi-Agent Behaviors Using Predicate/Transition Nets.
International Conference on Software Engineering and Knowledge
Engineering 2002, 193-200.

[7] Bo Liu, Wei Li and Junzhou Luo. Semi-Online Scheduling Algorithm
of Multi-Agent in Network Management. Journal of Computer
Research and Development , 2006, 43(4): 571-578.

[8] YT Kotb, SS Beauchemin and JL Barron. Petri Net-Based Cooperation
In Multi-Agent Systems. Fourth Canadian Conference on Computer
and Robot Vision, 2007, 123-130

[9] Haitao Zhang and Shiwei Zhang. A method of algorithm update based
on multi-agent for embedded networked systems. Advances in
Information Sciences and Service Sciences, 2013, 5(9): 11-17

[10] Honghui Li, Aihua Zhao, Dalin Zhang and Junwen Zhang. Research on
building software usage model based on UML model. International
Journal of System Assurance Engineering and Management, 2018, 9(3):
675-683

[11] Bo Liu, Junzhou Luo and Aibo Song. Colored Petri Nets based
Dynamic Multi-agent Scheduling Modeling and Analysis. Journal of
System Simulation, 2007, 19(1): 193-198

[12] Haitao Zhang and Yanyan Li. Modeling and Analysis of Traffic
Guidance Systems Based on Multi-Agent..Internatioanl Journal of
Control and Automation, 2014, 7(2): 21-32.

[13] Étienne Andrél, Mohamed Mahdi Benmoussa and Christine Choppy.
Formalising concurrent UML state machines using coloured Petri nets.
Formal Aspects of Computing, 2016, 28(5): 805-845

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

device agent copy

user

intelligent control
algorithm

embedded device2

algorithm assemble

algorithm update
device control

device agent transmission

<<includes>>

embedded device1

algorithm design

algorithm decomposition
<<includes>>

algorithm decomposer

center agent
warehouse

agent copy
region agent transmission

<<includes>>

center agent transmission

region agent
warehouse

center agent copy

<<includes>>

Fig.2 The use case diagram of agent based control system

center agent warehouse

ControlAgentList

CenterControlAgentDispatch()
CenterControlAgentCopy()

region agent warehouse

ControlAgentList

RegionReceiveControlAgents()
RegionControlAgentCopy()
RegionControlAgentMigrate()
RegionControlAgentDispatch()
ControlAgentRegionRequest()

1
1..*
1

1..*

algorithm decomposer

TaskTeceiveTag

TaskReceive()
AlgorithmDesign()
AlgorithmDecompose()
ReceiveRegionControlAgent()

1
1
1
1

control algorithm

Identification

AlgorithmAssemble()
In()
Out()

embedded device

ControlAgentList
RreceiveTag

ControlAgentReceive()
AlgorithmRequest()
Algorithmconfirm()
ControlAgentCopy()
ControlAgentDispatch()
DeviceControlAgentRequest()

1
1..*

1
1..*

1..*

11

1..*

Fig.3 The class diagram of agent based control system

algdis : algorithm
decomposer

regagware : region agent
warehouse

cenagware : center agent
warehouse

user

device1 : embedded
device

device2 : embedded
device

conalg : control
algorithm

2: TaskReceive()
3: AlgorithmDesign()

4: AlgorithmDecompose()

16: ControlAgentReceive()

17: AlgorithmAssemble()
18: Algorithmconfirm() 5: ControlAgentRegionRequest()

6: RegionControlAgentCopy()
7: RegionControlAgentMigrate()

15: ReceiveRegionControlAgent()

10: DeviceControlAgentRequest()
11: ControlAgentCopy()

12: ControlAgentDispatch()
13: RegionReceiveControlAgents()

8: CenterControlAgentCopy()

9: CenterControlAgentDispatch()

14: RegionReceiveControlAgents()

1: AlgorithmRequest()

Fig.5 The collaboration diagram of algorithm requirement of embedded devices

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

region control
agent request

migrated control
agents

center control
agents

reqobj="device"

center control
agent request

reqobj="center"

region

requested
agents

region control
agents

region agent
warehouse

copies
agetns

requested
agents

region control
agents

region control agent dispatch

region agent
warehouse

region receive control agents

copies
agetns

regobj="region"

region control agent copy

region control agent migrate

Fig.8 The state machine diagram of region agent warehouse

all algrorithm
control agents

device
input

integrated
algorithm

algorithm assemble

outreadyinput

device
output

new algorithm
ready

output

Fig.9 The state machine diagram of intelligent control algorithm

Fig.11 The HCPN sub-page of embedded device 1

Fig.12 The HCPN sub-page of algorithm decomposer

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

Fig.13 The HCPN sub-page of region agent warehouse

Fig.17 The HCPN top page of the system

Fig.18 The HCPN top page of the system after running 20 steps

Engineering Letters, 27:2, EL_27_2_03

(Advance online publication: 27 May 2019)

__

