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The Influence of Density Dependent Birth Rate to
a Canmensal Symbiosis Model with Holling Type
Functional Response

Baoguo Cheh

Abstract—A two species commensal symbiosis model with the multispecies system, they also obtained the conditions
Holling type functional response and density dependent birth which ensure the permanence of the system.
rate takes the form Commensalism is a long-term biological interaction (sym-
do _ x( YL s — b+ c1y” ) biosis) in which members of one species gain benefits while
dt ai2 + az L+yr)’ those of the other species neither benefit nor are harmed. As
dy was pointed out by Georgescu, D. Maxin and H. Zhang[15],
dt commensalism can be thought as mutualism in which one of
is proposed and studied in this paper. For autonomous case, i.e., the two interspecies interaction terms is zero, so at a glance
aij,bi,i=1,2,7=1,2,3,4 p and ¢, are all positive constants, everything should be simpler. However, this is not actually
bl e e o o0 the case. Recently, many scholas ([15}{29) paid their aten-
are ob%/ained, respective);y; (lq:or non-autonopmous casqe, i.€j, b; tion to the dynam_lc behaviors of the commen;sallsm ”.“Ode'*
and ¢, are all continuous functions bounded above and below @nd some essential progress had made on this direction.
by positive constans,p > 1 is a positive constant, sufficient Han and Chen[21] incorporated the feedback control

conditions which ensure the permanence and partial survival variables to the commensal symbiosis model, and proposed
of the system are obtained, respectively. Sufficient conditions -p the following model:
which ensure the existence of at least one positivE-periodic

= y(a2 — bay)

solution is obtained. Our study shows that the birth rate of T = m(bl —a11T + a2y — alul),

species and the commensal intensity between the species play .

important role on the dynamic behaviors of the system. y = y(bz — a2y — Oézuz), (1.1)
Index Terms—commensalism system, density dependent birth U] = —mu + a1, '

rate, global asymptotic stability. . n
U2 = —TUu2 + azy.
They showed that system (1.1) admits a unique globally

stable positive equilibrium.

M TU.AL.ISM’ Whi.Ch de_sgribes_that two -diffgr-ent species Xie et al. [22] proposed the following discrete commensal
exist in a relationship in which each individual f|tnes§

mbiosis model
benefits from the activity of the other, has recently beerY

|. INTRODUCTION

studied by many shcolars([1]-[17]). Xie, Chen, Yang etal[1], zi1(k+1) = zi(k)exp {ai(k) —bi(k)z1(k)
Yang, Xie and Chen[2], Xie, Chen et al [3], Lei[4] and

Chen, Wu and Xie[5] focus on the stability property of +ei(k)z2(k)},

the mutualism model, by using the iterative method, they

obtained some sufficient conditions to ensure the global wa(k+1) = aa(k)exp {az(k) — ba(k)a2(k)}.

attractivity of the positive equilibrium of the system they = | . i . (1.2)
considered. Some scholars([6]-[10]) argued that the systéHﬁ'C'em conditions which ensure the existence of at least

maybe disturbed by some unpredictable factors, and offe® Positivew-periodic solution of the system (1.2) is

should introduce the feedback control variables to descrifBtained. _

such kind of phenomenon, Chen and Xie[7] showed thatXU€ et al[23] further incorporated the delay to

feedback control variables have no influence to the peYStem (1.2), and they proposed the following discrete
sistent property of the system, Yang and Miao[8] showdgPmmensalism system

that a system with single feedback control variables may z(n —71)

have complex dynamic behaviors, Han et al[10] investigated *(n+1) = x(n)exp [7“1 (n)(l TR

the stability property of the May cooperation system with !

feedback controls; Some scholars([11]-[12]) considered the Jra(n)y(” — 72))}

influence of the stage structure to the mutualism model, for Ki(n)

example, Chen, Xie et al [11] showed that the stage structure y(n —73)

of the species plays important role on the persistent or extinct ¥(n+1) = y(n)exp [7"2(”) (1 = T(n)”
property of the system. Some scholars[13]-[14] considered (1.3)

. o _ _They investigated the almost periodic solution of the system
*Corresponding author. B. Chen is with the Research Institute of Scien

Technology and Society, Fuzhou University, Fuzhou, Fujian, 350116, Chi 3) )
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between two species is of Holling type, and they establishdbw, combine with (1.4) and (1.9), we could obtain the
the following two species commensal symbiosis model following two species commensal symbiosis model with
Holling type functional response and density dependent birth

d P
- _ x(al bz 2Y ), rate
dt 14yr 14
dy ( . ) dx ( all b " clyp )
— = x{—————— —a14 — bix
E = y(a2 - b2y)) dt a1z + a13x 14 ! 1+yP ’
where a;,b;,7 = 1,2 p and ¢; are all positive constants, dy - y(a2 ,be)7

p > 1. Their study indicates that the unique positive dt (1.10)

equilibrium of the system is globally stable. wherea,;,bi,i = 1,2,j = 1,2,3,4 p ande; are all positive
Wu and Lin[18] proposed the following commensalisngonstamsp >1

model with rano-depgndent functhnal response and ON€since the environment is vary with seasonal, it is naturally
party can not survive independently: to consider the non-autonomous case of system (1.10), i.e,

dx c1y

— = z(—a—br+ ) dx a11(t)

dt ( + ) - = St S ) S t

ey (1.5) dt ‘""(am(t) o _w®

W yaz — bay) (t)y"

a — VTR bt + T ) (1.11)
For the autonomous case, they obtained sufficient conditions Y
which ensure the existence, local and global stability property dy  _ y(as(t) — ba(t)y),

of the equilibria. t

Recently, several scholars ([19], [25], [29]) also inveStigaWhereaij(t),bi(t),z‘ —1,2,5 = 1,2,3,4 and ¢y (¢) are all

ed the influence of Allee effect to the commensalism modelyiinyous functions bounded above and below by positive

for example, based on the work of Wu and Lin[18], Chen[z%onstantSp > 1 is a positive constant.

investigated the dynamic behaviors of the following WO | the study of the dynamic behaviors of the ecosystem,
species commensal symbiosis model mvolwr]g Allee effegie stability, persistent and extinction are the most important
and one party can not survive independently: topics, see [32]-[42] and the references cited therein. As far

dr c1y as system (1.10) and (1.11) are concerned, it is naturally to
o x( —a1 = b+ T+ y)’ investigate the extinction z_ir_1d stabi_lity_propert_y of the system,
p (1.6) the existence of the positive periodic solution and to find

i SR y(as — be)L7 out the influence of the density dependent birth rate and the
dt uty influence of the commensalism.

whereay, by, ¢1, a2, b, p > 1 andu are all positive constants.  The rest of the paper is arranged as follows. In section 2,
They showed that the unique positive equilibrium is globallye investigate the dynamic behaviors of the system (1.10),
stable ifa; < ¢; holds; and the boundary equilibriuf, Z_j> specially focus on the local and global stability property of
is globally stable ifa; > ¢, holds. Numeric simulations the equilibrium; In section 3, we investigate the dynamic be-
showed that with the increasing of Allee effect, it takeBaviors of the system (1.11), specially focus on the extinction
much more time for the system to reach its stable steadyad persistent property of the system; Section 4 presents
state solution. some numerical simulations to show the feasibility of the
It bring to our attention that all of the modelings of (1.1)main results. We end this paper by a briefly discussion.

(1.6) are based on the traditional Logistic model, for exam-

ple, in system (1.5), if we did not consider the relationship

of the two species, then the first species takes the form Il. AUTONOMOUS CASE
dx A. The existence and local stability of the equilibria
prie x(a1 — blx), (1.7)

The equilibria of system (1.10) is determined by the
wherea; is the intrinsic growth rate, antl, is the density system
dependent coefficients. System (1.7) could be revised as

d w(L—am—bll’-i- v ):0
(T T (18) an + ane Ty (2.1)
y(az — bay) = 0.

whereay; is the birth rate of the species ang, is the death

rate of the species. Already, Brauer and Castillo-Chavez[3B]ence, system (1.10) admits four possible equilibria,
Tang and Chen[31], Berezansky, Braverman and Idels[32],(0,0), A;(z1,0), A2(0’Z_§) and As(z*,y*), where

had showed that in some cases, the density dependent birth

rate of the species is more suitable. If we take the famous —C1 +4/C? - O,
Beverton-Holt function ([32]) as the birth rate, then the T = b1 : (2.2)
system (1.8) should be revised to
dx ail —By + 4/ B% — 4B, B3 a9
=g ——— — a4y —biz). 1.9 * = == 2.3
dt x(a12 T a3z ai4 1$) ( ) € 231 y Y b2 ’ ( )
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here
C1 = biaiz + aysa13,
Cy = 4dbiaiz(araaiz —a11)
By = aizbi (y*)" + aizbs,
By, = (a12 b1 + a13a14 — a1301) (y*)* (2.4)
+a12 b1 + a13 aia,
By = —(y*)"(—a12a14 +aizc1 +an)

—ai1 + a12a14.

Concerned with the local stability property of the above

four equilibria, we have

Theorem 2.1. Ao (0,0) and A, (3*,0) are unstable; Assume
that ()P

ail c1\y

—_— = ——— <0 2.5

p_~ ayq + T+ () , (2.5)
then 4, (0, 32) is locally stable; Assume that

ai a(y )P

g+ 42 >, 2.6

a1z 14 1 + (y*)p ( )

then A3 (z*, y*) is locally stable.

*\p
of the above matrix are\; = L ayq + 11(%)
a
0, A2 = —az < 0. Therefore,A>(0, $2) is locally stable.
Under the assumption (2.6) holdslg is the positive
equilibrium. The Jacobian matrix about the equilibrivtp
is given by

a1 a1z ”

—7b1$* F12
(ar13z* + a12)2 ) (2.12)

0 —a9

where (g1
apr \y

Flg = ——+————. 2.13
SN CERTOTE (219)
The ael%envalues of the above matrix ar® =
1 5 — bz < 0,A2 = —a2 < 0. Hence,

(a13 7* 4 a12)
As(x*,y*) is locally stable.

This ends the proof of Theorem 2.1.

B. Global stability of the equilibria

Theorem 2.1 shows that depending on the sign of the

an ci(y*)?
term L _ AN S
a4 + 1+ ()7

a12
A>(0, 72) and the positive equilibriumA;(z

, the boundary equilibrium
*,y*) are all

Proof. The Jacobian matrix of the system (1.10) is calculatgubssible locally stable. Following we will further investigate

as

clpacyp_l
K ERIYIT)
J(z,y) = (1+yP) (2.7)
0 72b2y + aso
where
K, = — a1 a3 . aiil
(a13 2 + a12) a13T + a2 2.8)
2z + Y '
—a14 — T .
14 1 1+ g7

Then the Jacobian matrix of the system (1.10) about t

equilibrium Ay (0,0) is given by

the global stability property of those two equilibria.
Lemma 2.1[35] System

% =y(a—by) (2.14)

has a unique globally attractive positive equilibrigith= ¢

Theorem 2.2. Assume that (2.6) holds, thety (z*, y*) is
globally asymptotically stable; Assume that (2.5) holds, then
A>(0, 32) is globally asymptotically stable.

ﬁ’roof (1) We assume that (2.6) holds. Firstly we prove that
every solution of system (1.10) that startsfify is uniformly
bounded. From the second equation of (1. 10) one has

ari
— —a 0 d
az . (2.9) Y — y(az — bay). (2.15)
0 a9 dt
_ _ a1 It follows from Lemma 3.1 that system (2.15) has a unique
The eigenvalues of the above matrix ak¢ = — — globally attractive positive equilibriung* = .
ais, A2 = az > 0. Hence,Ay(0,0) is a unstable. Also, from the first equation of system (1. 10) one has
The Jacobian matrix of the system (1.10) about the equi- g, ar . c1yP
librium A;(x1,0) is given by T (m —a14 — 1T + T yp)
ai1 a3 L1
—————5 ~ by 0 < (E — —b )
< (a13 T+ (112)2 ) . (210) = 7 ai2 a14 17+
0 as (2.16)
The el%envalues of the above matrix ard, = By using the dlﬁergnt|al inequality theory and applying
a1 13Ty Lemma 2.1, we obtain
ﬁ — bll’l < 0,)\2 = a9y > 0. Hence, T
a13T1 T @12 .
Ay (z1,0) is unstable. lﬁligopif(t) Sy (2.17)
For A2(0, #2), its Jacobian matrix is given b
2(0,32) g y where N
ain (y) T=— —aus+ec.
oo ot ey ) 0 (2.11) ai2
2 0 —ay Hence, there exists @> 0 such that for alt > T’
T
z(t) < —+e, yt) <2, (2.18)

Hence, under the assumption (2.5) holds, the eigenvalues

b ba
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Let Hence, fort > Ty, from the first equation of system (1.10),
one has
2 T ag
D:{(x,y)ER+|x<—+€, y<—+€}. dx a1l c1yP
by ba - = (7 —as — bz + )
dt a2 +ai3x L+yP
Then every solution of system (1.10) starts i®% is ail c1(y* +¢e)P
uniformly bounded onD. Also, from Theorem 2.1, under = x(a_m —au = bt g F (g + E)p)
the assumption (2.6), system (1.10) admits an unique local < A
stable positive equilibriumds(z*, y*). To ensureds(z*, y*) = T (2.22)
is globally stable in above area, we consider the Du'%vchere '
functionu(z,y) = =1y =1, then a1 e (y* + )P
A== a4 <0,
a12 1 + (y* + E)p

O(uP) n o(uQ)

ard so, by using (2.20), one has

ox oy
I (K1 aig—2by 7+ e y? ) x(t) < x(T1) exp {A(t - Tl)} — 0 as t — +00. (2.23)
Ty L4yP
That is
1 cy xy? ’
—— | Kz — by a® + ) i —
22y < 27— bya” 4 o " (2.19) t_l}grnoox(t) 0. (2.24)

+_2 baytaz b ¥+ asy This completes the proof of Theorem 2.2.

2

ry Ty
A I11. NON-AUTONOMOUS CASE
= 7% Given a functiony defined onR, let g* andg™ be defined
Ty ((113 T+ a12) as
< 0, = inf = )
gr = lnf g(t), g f‘ggg“)
where From Lemma 2.1 of Liu, Xie and Lin[26], we have
K, = —-—auas? . ai 7 Lemma 3.1. If a > 0,b > 0 and i > 2(b—ax), whent > 0
(a13x +ap)” @13%+ a2 and z(0) > 0, we have
a1l
Ky = ———— —auy, . b
> —
a13 T + a2 ltlglﬁglj x(t) > o
D
P(z,y) = ac( M gy —ba 4+ =Y ), If a > 0,b> 0andi < z(b—ax), whent > 0 andz(0) > 0,
a2 + L4yr we have
. b
Q(x7y) = y(a2 — b2y) lim sup IZ?(t) < —.
t——+o00 a
Az,y) = a13%by 2% + a132by 2%y Theorem 3.1 Assume that the inequality
adf\r
+2a12a13b1 2% + 2 a1z a13 by vy M Ciw<_L)
M1 al Ny 0 (3.1)
2 2 al 14 aM\p '
+(112 b1x+a12 b2y+a11 aisx. 12 1+ (LL)
b2
By Dulac Theorem[36], there is no closed orbit in a®a 4,45 then
So As(z*, y*) is globally asymptotically stable. ' lim 2(t) =0
(2) Now let’s assume that (2.5) holds, from the continuous t—+00 ’
; ) L M
of the function , one could see that f enough .. .
1+yP ar>0 g % <liminfy(t) < limsupy(t) < QLL
small, by" T tmoo t—-+o0 bs
a1 aly*+e)? i.e., the first species will be driven to extinction, while the
PR 1 * <0. (2:20) second species is permanent
aia + (y* +e)r p p .

Proof. Condition (3.1) implies that for enough small positive

F th d ti f(1.10 h T X
fom the second equation of ( ) one has constant > 0, the following inequality holds

dy M P
a = y(az — bay). o c{w(a%_i_g)
def @77 L by
. e = T—a14+T<O (32)
It follows from Lemma 2.1 that above system has a unique ara 14 (ai i E)p
globally attractive positive equilibriumg™ = 32. Hence, for bk

aboves > 0 enough small, there existsd > 0 such that From the second equation of system (1.11), one has
for all ¢t > T1,

dy
y(t) < y* +e. (2.21) = Sv(a’ —byy). (3:3)
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It follows from Lemma 3.1 and (3.1) that
M

limsupy(t) < LL (3.4)
t—+o0 b2
Hence, there exists &; > 0 such that
(IM
y(t) < b% +¢ for all t>Ts. (3.5)

2

For ¢t > T, from the first equation of (1.11) and (3.5), w
have
M
M Ay p
dx a{\{ M a <E +€)
o S ol et g (3.6)
dt .
2
= I
Hence

x(t) < x(Tz) exp {Fg(t - Tg)} — 0 as t = 4+o00. (3.7)

From the second equation of system (1.11), we also have

dy ,
= zy(az —03y). (3.8)
It follows from Lemma 3.1 and (3.8) that
. ak
lim infy(t) > P (3.9)

It follows from (3.5), (3.7) and (3.9) that the conclusions of

e

Applying Lemma 3.1 to (3.13) leads to

ay p
M C{w(_L +51)
ary M bs
- At —— g
12 ag p
4+ (5 =)
2

limsup z(t) < (3.14)

t—4o0 blL
Sincee; is any positive constants small enough, letting—
0 in (3.14) leads to

M
M as \P
aM L \pL
U M 2
L 14 M
ars
14+

Gr)

<M. (3.15)

limsup z(¢t) < 7

t——+oo bl
Condition (3.10) implies that for enough small positive
constants,, one has

L
L(% _ )p
afl M “ (bé\/j - >0 (3 16)
y —a —_— .
alf +alf(My +e5) 14 (ﬁ _ 52)1”
by

From the second equation of system (1.1), similarly to the
analysis of (3.8)-(3.9), one could easily see that

L
.. ay
ltlglﬁgfy(t) > b? (3.17)

Theorem 3.1 holds. This ends the proof of Theorem 3.1. Hence, for aboves, > 0, from (3.16) and (3.17), there exists

Theorem 3.2 Assume that the inequality

L
CL(a2 )p
L 1 M
, b

a /
11 M
- a14 + 7[[ > 0

UV 3.10
VS (3.10)

holds, then
my < liminfz(t) < limsupx(t) < My,
t—-+oo t—+oo

ak - . ay’

T < %slin-ﬁgy(t) < liglf_gop y(t) < 3
i.e., the system (1.11) is permanent, whefe, m; will be
defined in (3.15) and (3.23), respectively.

Proof. From (3.3)-(3.5), one could easily see that
! @
imsu t) < —=
H+00py( ) < ol
holds. Hence, foe; > 0 small enough, there existsig > 0
such that

(3.11)

M

a T, > 0 such that
L

y(t) > %@ — &y for all t> Ty (3.18)
x(t) < My +eo for all ¢ > Ty. (3.19)

Fort > Ty, (3.18), (3.19) together with the first equation of
system (1.11) lead to

dx

=> z(Agz - b{”x). (3.20)
where
L
def an M
A = , —a
- aff +alfj(Mi+e5)
L P
() (3.21)
b2
—_—
a/2 p
1+ (= —e9
(33 =)
Applying Lemma 3.1 to (3.21) leads to
A
liminf 2(t) > —= (3.22)

iopee M= AT

Sinceey is any positive constant small enough, setting—

a
y(t) < b% +e for all ¢ >Ts. (3.12) ¢ in (3.22) leads to
2
For t > T3, from the second equation of (1.11) and (3.12), lim inf z(t) > % 2 (3.23)
we have trteo by
M where
M (22 P
M ‘1 (_L +51) ak \p
Y (T G VL SR, | L Cf(%
dt ak, R ad! P A def ary M by (3.24)
1+(b—L +€1) a{b'21+a%M1 14 L o :

(3.13)

a p
1+ (5)
+ béw

(Advance online publication: 27 May 2019)



Engineering Letters, 27:2, EL._27 2 05

(3.11), (3.15), (3.17) and (3.23) shows the conclusion &f this system, all the coefficients are the same as that of
Theorem 3.2 holds, this ends the proof of Theorem 3.2. system (4.1), only withz; changed to%. From the second

Now let’s further consider the periodic case of the systeﬁwquatlon of system (4.2), we also haye= 1, and so,

(1.11), As a direct corollary of Theorem 2 in [37], from a1l 1y 1 0
Theorem 3.2, we have PR a4 + Ty* < 5 <0,

*

Corollary 2.1. Under the assumption (3.10) holds, assumie follows from Theorem 3.1 that the boundary equilibrium
further that all the coefficients of the system (1.11) are th&,(0, 32) = (0, 1) is globally asymptotically stable. Fig. 2
continuous positivel'-periodic function, then system (1.3)supports this assertion.

admits at least one positivE-periodic solution.

IV. NUMERIC SIMULATIONS Dynamic behavior of system (4.2)
Now let's consider the following examples. 207
Example 4.1 1.81
dx 2 1 3 vy 1.6
ar _ _c gz __),
at J(3+2x 2" 3Ty
(4.1) 14
dy
@ — Y- B 1N S5 et

1.0

In this system, corresponding to system (1.10), we take=

2.2 = 3,013 = 214 = Lhy = bo0 = 3.p = Lo = o] 1) S ——

1,60 = 1. From the second equation of system (4.1), we £ A

havey* =1, and 0.6 1 } "Q \\\\\\
an c1y” 5 0.4 —
T EENAN S ——
ai2 14y 12

. . o 024 A AN NN SN S S e —

it follows from Theorem 3.1 that the positive equilibrium ‘ ‘

As(z*,y*) = (0.5,1) is globally asymptotically stable. Fig. 0 02 RS 08 !

1 supports this assertion.

Fig. 2. Dynamic behaviors of the system (4.2), the ini-
Dynamic behavior of system (4.1) tial condition (z(0),4(0)) = (1,0.3),(0.4,2), (1, 2),

204 t % { \ L)y % t (0.1,2), (0.6,0.2) and (1, 0.6), respectively.
|
S '
L6 t { k t k t k Example 4.3
PR IR | . UL T A |
k\tkk 55 dt 1.5 — 0.5sin(t) + z(t) 21+y
1.24
VNN NN /7 dy _ _ :
»(1) o >>/::> T il y(l 0.5cos(t) — (14+0.5 sm(t))y).
17777 (4.3)
817177111 One could easily check that the coefficients of system (4.3)
06 ; ; % % { \ satisfies the inequality (3.1), hence it follows from Theorem
1114040\ 3.1 that the first species will be driven to extinction, while
041 1 1 AAN the second species is permanent. Fig. 3 and 4 support this
02 .1\ .\\ Q:l:l:: NNNNNNNN assertion.
011 0.‘2 O.‘3 0.‘4 O.‘S;(t)o.‘6 017 04‘8 019 1.‘0 Example 4.4
dv 1.5 4 0.5 sin(t) 3 1y
Fig. 1. Dynamic behaviors of the system (4.1), the ini-  qt x( 15— 05sin(t) +a(t) toTy y)’
tial condition (z(0),y(0)) = (1,0.3),(0.4,2), (1, 2), dy
(0.1,2), (0.6,0.2) and(1,0.6), respectively. U y(l —0.5cos(t) — (1+0.5 sin(t))y).
(4.4)
Example 4.2 One could easily check that the coefficients of system
da 9 1 1y (4.4) satisfies the inequality (3.10), hence it follows from
i x(g T 1- B + ET)’ Theorem 3.2 and corollary 3.1 that the system is permanent
* 4 (4.2) and admits at least ongr-periodic solution. Fig. 5 and 6
dy  _ y<1 _ y) support this assertion.
dt '
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Dynamic behavior of the first component of system (4.3) Dynamic behavior of the first component of system (4.4)
1 20
1 ]
1.8
0.8
1.6
0.6 M
x(1) x(t) 1.2
0.4 1o,
0.8
0.2
0.6
0 0.41 ;
0 1 2 3 4 5 0 5 10 15 20 25
t t
Fig. 3. Dynamic behaviors of the first component Fig. 5. Dynamic behaviors of the first component
of system (4.3), the initial conditioriz(0),y(0)) = of system (4.4), the initial conditioriz(0),y(0)) =
(0.5,0.01), (1.5,1),(0.7,0.3), (1,0.7) and (0.3,1), (1,1),(0.4,0.4) and (2, 2), respectively.
respectively.
Dynamic behavior of the second component of system (4.4)
Dynamic behavior of the second component of system (4.3) 20 1
2.0
1
1.8
1.6
1.6
1.4
1.4
1.2 y(t) 1.2
y(1)
1.0 1.0 4
0487 08,
0.6 0.6
0.4
0.4 ‘
0 5 10 15 20 25
0.2 T T T 1 t
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Fig. 6. Dynamic behaviors of the second component
Fig. 4. Dynamic behaviors of the second component of system (4.4), the initial conditioriz(0),y(0)) =
of system (4.3), the initial conditiofiz(0),y(0)) = (1,1),(0.4,0.4) and (2, 2), respectively.

(0.5,0.01), (1.5,1),(0.7,0.3), (1,0.7) and (0.3,1),
respectively.

we propose the system (1.10). Theorem 2.2 shows that

depending on the sign of the terml— —ayg + M

V. DISCUSSION L+
the positive equilibriumAs or the boundary eC]UIllbI’(IUI’mQ

Recently, many scholars studied the dynamic behaviarsmybe globally asymptotically stable, respectively. Noting
of the commensalism symbiosis model ([17]-[28]). All othat the stability of A; means that the extinction of the
the works of [17]-[28] are based on the traditional Logistifirst species. That is, by introducing the density dependent
model. Specially, Wu et al[17] had showed that the systebirth rate, the dynamic behaviors of the system becomes
(1.4) admits a unique positive equilibrium which is globallcomplicated. Also, from (2.5) and (2.6) we can see that
asymptotically stable, which means that the two specidse cooperate intensity between the species (represented by
could be coexist in a stable state. c1) plays important role on the persistent or extinct of the
In this paper, we argued that it is more suitalbe to considgpecies, this is confirmed by the numeric simulation.

the density dependent birth rate of the species, consequentlj\ext, we consider the non-autonomous case of system

(Advance online publication: 27 May 2019)
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(1.10), i.e, system (1.11), by using the differential inegyal [18] R. X. Wu, L. Li, “Dynamic behaviors of a commensal symbiosis

theory we obtain sufficient conditions which ensure the model with ratio-dependent functional response and one party can not
' . . . survive independentlyJournal of Mathematics and Computer Science,
permanence and partial survival of the system, respectively. 16 (>016) 495-506.

Also, for the periodic case, sufficient conditions which ensufes] R. X. Wu, L. Lin, et al, “A Holling type commensal symbiosis model

the existence of at least one positiVeperiodic solution is involving Allee effect,” Communications in Mathematical Biology and
. Neuroscience\ol 2018 (2018), Article ID 5.

obtained. [20] T. T. Li, Q. X. Lin, et al, “Positive periodic solution of a discrete

We mentioned here that we only consider the density commensal symbiosis model with Holling Il functional response,”

dependent birth rate of the first species, one could expect Communications in Mathematical Biology and Neuroscienvo,2016

: . \ . (2016), Article ID 22.
that if both species have the density dependent birth ral8) R. Y. Han, F. D. Chen, “Global stability of a commensal symbio-

the dynamic behaviors of the system maybe become more sis model with feedback controlsCommunications in Mathematical
complicated. Biology and Neurosciencé/fol 2015 (2015), Article ID 15.
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