
 

  
Abstract—In financial mathematics, the procedure for 

finding the solutions of the Black-Scholes model defined in 
terms of Arithmetic Asian Option (AAO) is one of the most 
tasking issues when considering its corresponding analytical 
solutions. In this paper, such analytical solution of a continuous 
arithmetic Asian option is obtained through the application of a 
proposed semi-analytical approach known as Projected 
Differential transform Method (PDTM). The Asian option 
model in continuous arithmetic form witnesses the application 
of PDTM for the first time in literature (to the authors’ best of 
knowledge). The PDTM entails less computational work, even 
without neglecting the high level of accuracy. The obtained 
solution is in agreement with those in literature via other 
solution methods. In terms of recommendation, the proposed 
solution method will be of great interest for related versions or 
forms of Asian option pricing models (geometric) likewise other 
financial nonlinear differential models. 
 
 

Index Terms— Option pricing, Asian option, Black-Scholes 
model, Adomian polynomials, Analytical solution 

I. INTRODUCTION 
PTION pricing is a basic aspect of financial fields such 
as financial mathematics, financial engineering, and 

financial physics. Asian option is a special form of option 
contracts. The payoff functions associated with Asian 
options depend significantly on the average underlying price 
over some specified period of time usually referred to as the 
option life time [2, 3]. They are thus, classified as path 
dependent options since the payoff function depends on the 
sequence average of the prices of the underlying asset over 
some specified period of time. This indeed is a different case 
compared to the usual American and European style of 
options, where the option payoff function depends on the 
price of the underlying stock at exercise [4-7]. Asian options 
are therefore referred to as one of the main forms of exotic 
options. Asian options are advantageous because they 
minimize the risk of market influence of the underlying 
stock at maturity, and also encompass relative cost compared 
to American or European options [8]. 

Averages in option are of two forms namely: geometric 
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and arithmetic. Both of these can be structured as either calls 
or puts. It is noted that the geometric Asian option has a 
closed form solution, therefore the ease of pricing [9]. The 
arithmetic type happens to be the most frequently used but it 
seems challenging for pricing in terms of closed form 
solution since the average of a class of lognormal random 
variables (LNRVs) is not log-normally distributed [10]. 
Providing a simple analytical expression for the valuation of 
Asian (arithmetic) options has posed a lot of problems in 
financial mathematics [1]. 

In a bid to handle this, some researchers have developed 
and adopted varieties of solution techniques: German and 
Yor [10], consider Asian option price via Laplace transform 
but for some cases based on the conferment region of the 
transform. Rogers and Shi [1], consider the problem of 
valuing the Asian option in two ways by reducing the 
problem to a two-variable parabolic partial differential 
equation (PDE) using scaling property, and thereafter 
provide a lower bound formulae on the basis of some zero-
mean Gaussian variable. In [11],Vecer builds his approach 
on traded account by providing a PDE for Asian option in 
one-dimensional form. Zhang [12], considers Asian option 
pricing via a continuously-sampled theory in line with a 
perturbation technique.  

Chen and Lyuu [13], extended the work of Rogers and Shi 
[1] by including general maturity terms instead of one year 
with regard to the lower bound pricing formulae. 

Elshegmani, Ahmad and Zakaria [14] using Fourier 
Transform, present a simple solution for the Asian option 
PDE proposed by Rogers and Shi [1]. Kumar, Waikos and 
Chakrabarty [15], obtain a standard partial differential 
equation for the price of arithmetic average strike Asian call 
option via the derivation of a Crank-Nicolson implicit 
approach and a higher order compact finite different scheme 
for the considered pricing problem at various values of risk-
free and volatility rates. Zhang, Yu, and Wang [16], study 
the numerical solution for the Delta of Asian arithmetic 
option and provide a simple, fast and reliable solution on the 
basis of Monte Carlo Simulation (MCS). Fadugba [17], 
applies the Mellin transform method for analytical solution 
of geometric Asian option and obtain a closed form solution 
for the continuous geometric version of the Asian option.   
Elshegmani, and Ahmad [18], obtain a closed form solution 
for a continuous arithmetic Asian (CAA) option via PDE by 
Mellin transform. Recently, Elshegmani and Ahmad [2], 
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apply the PDE approach coupled with Laplace transform as 
an efficient method for pricing an arithmetic Asian option of 
continuous type. They [2] do this by transforming the PDE 
of the Asian option from three dimensional-form to two 
dimensional ordinary differential equation (ODE). 

In this paper, PDTM which is an improved form of the 
standard differential transform method (DTM) is basically 
applied to a CAA option pricing model for analytical 
solutions. 

In terms of structure, in the rest sections of the paper are 
organised as follows:  we have a concise note as regards 
Asian option pricing model in section 2; section 3 is on 
PDTM- the proposed method of solution; applications and 
examples are considered in section 4 while section 5 is on 
concluding remarks. 

II. ASIAN OPTION PRICING MODEL VIA THE TWO-
DIMENSIONAL BLACK-SCHOLES EQUATION 

Suppose the price of the stock, ( )S t  follows a geometric 
(exponential) Brownian Motion (BM) governed by the 
stochastic differential (dynamical) equation of the form: 

( ) ( ) ( )( ) , dS t S t rdt dW t tσ += + ∈               (2.1) 

where r  is a drift term (average rate of growth), σ  is a 
volatility coefficient, 0 ,t T≤ ≤   and ( )W t  a BM. Then the 
payoff function for an Asian option associated with an 
arithmetic average strike (AAS) [19-21] is defined and 
denoted by: 

( ) ( ) ( )
0

1 ,  0 .
T

T S d S T
T

ς ς
+

 
Λ = − + 

 
∫            (2.2) 

The price of the option at 0 t T≤ ≤  is an equivalent 
martingale pricing formula (risk-neutral form) defined and 
denoted by [19] as: 

( ) ( ) ( )( )r T t
tt e T F− −Λ = Ε Λ                 (2.3) 

where ( )E ⋅  and tF  represent expected-value operator and 
filtration respectively. 

Now let us consider ( ), ,S I tΛ  as the price function and 

( )I I t=  the path dependent variable be defined as: 

( ) ( )( )
0

,
t

I t h S dς ς ς= ∫                            (2.4) 

where ( )h ⋅  is a specific function for any possible path-

dependent option under consideration. It is obvious that 

( ), ,S I tΛ = Λ  is a function of three variables since 

( )I I t=  does not depend on S  (the current asset price). 

Hence, 

( )( ),dI h S t t
dt

= .                                          (2.5) 

As such, applying the multidimensional Ito’s lemma on 

( ), ,S I tΛ  gives: 

( )

2
2 2

2

1
2

,

S rS
S S t dt

d h S t
I

S dW
S

σ

σ

 ∂ Λ ∂Λ ∂Λ
+ + ∂ ∂ ∂ 

 ∂Λ Λ = + ∂ 
 ∂Λ

+
∂

 .           (2.6) 

Suppose we construct a delta-hedge portfolio, Π , by 
longing a contingent claim value, and shorting a delta unit of 
the asset price, then we have: 

.
S

d d dS
Π = Λ − ∆

 Π = Λ − ∆
                                  (2.7) 

So, (2.1) and (2.6) in (2.7) gives: 

( )

( ) ( ) ( ){ }

2
2 2

2
1 ,
2

     

.

d d dS

S rS h S t dt
S t IS

S dW
S

rS t dt S t dW t

σ

σ

σ

Π = Λ − ∆

  ∂ Λ ∂Λ ∂Λ ∂Λ
 + + +    ∂ ∂ ∂∂   =  ∂Λ

+ ∂ 
−∆ +

                                                                                      (2.8)                                                                                                                       

We set 
S

∂Λ
∆ =

∂
 in order to eliminate the stochastic term 

from the portfolio, hence, 
 

( )
2

2 2
2

1 , .
2

d S h S t dt
t IS

σ
 ∂ Λ ∂Λ ∂Λ

Π = + +  ∂ ∂∂ 
       (2.9) 

For adopting the notion of no arbitrage opportunities, (it 
implies that change in the portfolio needs to coincide with 
the change of the corresponding monetary value as deposit 
in the bank account for a risk-free interest rate). Thus, 

( )     

     .

d r dt
r S dt

r S dt
S

Π = Π

= Λ − ∆

∂Λ = Λ − ∂ 

                      (2.10) 

So, combining (2.9) and (2.10) gives: 
 

( )
2

2 2
2

1 , .
2

S h S t dt r S dt
t I SS

σ
 ∂ Λ ∂Λ ∂Λ ∂Λ + + = Λ −    ∂ ∂ ∂∂   

                                                                                  (2.11) 
That implies that: 

( )
2

2 2
2

1 , 0.
2

S rS h S t r
t S IS

σ
 ∂Λ ∂ Λ ∂Λ ∂Λ

+ + + − Λ =  ∂ ∂ ∂∂ 
  

                                                                                   (2.12). 
In order to consider the Black-Scholes model for Asian 

option, the payoff ( )TΛ
 

is based the trajectory past 

knowledge ( path dependent). Thus, a stochastic process in 
(2.13) is introduced [19]: 
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( ) ( )
0

t

I t S dω ω= ∫                                      (2.13)  

whose first derivative w.r.t. time, t , gives ( )h ⋅ , and ( )I t  

denotes the strike price running total. Hence, 
   

( ) ( ),dI S t h S t
dt

= = .                   (2.14) 

So, using (2.14) in (2.12) gives the associated option price 
of the Asian call described by the following model: 

   
2

2 2
2

1 0
2

S rS S r
t S IS

σ
 ∂Λ ∂ Λ ∂Λ ∂Λ

+ + + − Λ =  ∂ ∂ ∂∂ 
      (2.15) 

solved by ( ), ,S I tΛ  for [ )0,t ∈ ∞  and ( )0,S ∈ ∞ . It is 

obvious that (2.15) is comparable to the classical form of the 
time-fractional Black-Scholes (BS) option pricing model at 

1α = but for the averaging term denoted by S
I

∂Λ 
 ∂ 

 [22-

23].  In most cases,  modification may be required leading to 
the adoption of numerical-approximate or semi-analytical 
methods [24-29]. Though, the associated volatility in (2.5) 
can be further viewed from the aspect of transaction cost 
inclusion, and stochastic point while adopting a simple and a 
class control variate methods [30-32]. Rehurek [33] 
considered (2.15) by discussing some numerical techniques 
as well as their corresponding variations. Recently, 
analytical solutions and the associated Greek (sensitivities) 
parameters of a CAA option pricing model were considered 
[34, 35].  It is obvious that (2.15) will finally yield a 
problematic issue in terms of computational since it is of 
three (3) dimensional. Therefore, the notion of reduction to a 
lower level in dimension is needed with aid of 
transformation variables [2, 36]: 
 

( ) ( ), , , ,

.

S I t Sg t
IS k
T

ψ

ψ

Λ =



= −

                 (2.16) 

Hence, (2.5) becomes: 

( ) ( )

2
2 2

2

1 1 0,
2

, .

g g gr
t T

g T

σ ψ ψ
ψ ψ

ψ ϕ ψ

∂ ∂ ∂ + − + =  ∂ ∂ ∂ 
 =

    (2.17) 

It can thus be remarked that (2.17) is now in two 
dimensional form. The solution of this (2.17) will yield the  
price of the Asian option via the relation in (2.16). 

III. THE DTM AND PROJECTED DTM 

A. Analysis of a Two-Dimensional DTM 
Here, we make remarks on the preliminaries of two 

dimensional version of the DTM as follows. 

Suppose the two-variable function: ( ),x yυ  is analytic 

function at ( )* *,x y  w.r.t. the Domain, *D  so, the 

differential transform of ( ),x yυ  is presented as follows: 

( ) ( )
( ) ( )* *, ,

,1,
! !

k h

k h
x y x y

x y
k h

k h x y

+

=

 ∂ υ
ϒ =  ∂ ∂ 

  

while the differential inverse transform of ( ),k hϒ  is: 

( ) ( )( ) ( )* *
0 0

, , k h

k h
x y k h x x y yυ

∞ ∞

= =

= ϒ − −∑∑ , 

where the capital and the small letters denote the 
transformed and the original functions respectively. 

B. Projected Differential Transform Method 
We present a brief but concise introduction of the proposed 
method (PDTM) with emphasis on the basic features and 
properties [37, 38]. 
 

Let ( ),z tω  be considered analytic w.r.t ( )* *, tω  in a 

given domain D , then by the Taylor series expansion of 

( ),z tω , with a preference to some variables, say: vs t=  

rather than all the concerned variables as presumed in the 
standard DTM. Therefore, the projected DTM of ( ),z tω  

with respect to t  at *t  is defined and denoted by: 

( ) ( )

*

,1,
!

t t

z t
Z

t

ε

ε

ω
ω ε

ε
=

 ∂
=  ∂ 

              (3.1)      

and consequently: 

( ) ( )( )*
0

, ,z Z t t ε

ε

ω ε ω ε
∞

=

= − +∑ .                (3.2)   

Equation (3.2) is the inverse PDTM of ( ),Z ω ε   in (3.1). 

Note, at * 0t t= = , (3.1) helps in realizing ( ),0Z x  from 

the given initial condition(s) ( ),0z x , where the capital and 
the small letters denote the transformed and the original 
functions respectively. 
 

C. Properties of the proposed method: PDTM 

Let ( ),z tω  be as defined above, then the following hold: 

a: 
( ) ( ) ( )

( ) ( ) ( )
, , ,

 Z , , ,
a b

a b

z t z t z t

Z Z

ω α ω β ω

ω ε α ω ε β ω ε

 = +

⇒ = +

 , 

b: 
( ) ( )

( ) ( ) ( )

*

*

, t
,

!
, ,

!

n

n

z
z t

t
n

Z Z n

ω
ω β

ε
ω ε β ω ε

ε

 ∂
= ∂


+⇒ = +

 , 
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c: 

( ) ( )

( ) ( ) ( )

( ) ( )

*

*

*

,
,

1 ! , 1
,

!
                 1 , 1

z t
z t

t
Z

Z

Z

ω
ω α

ε ω ε
ω ε α

ε
α ε ω ε

 ∂
= ∂

 + +
⇒ =


 = + +



 , 

d: 
( ) ( ) ( )

( ) ( ) ( )

*

*

, t
,

,
,

n

n

n

n

z
z t p

Z
Z p

ω
ω ω

ω
ω ε

ω ε ω
ω

 ∂
= ∂


∂⇒ = ∂

 , 

e:

( ) ( ) ( )

( ) ( ) ( ) ( )

2
*

* *
0

, ,  

, , , ,
h

r

z t p z t

Z h p Z r Z h r

ω ω ω

ω ω ω ω
=

 =


⇒ = −


∑

 

f:

( )
( ) ( )

( ) ( )

*,

, , *

                * ,

n nl y y

L k h k n h n

k n h n

ω ω

δ

δ δ

 =

⇒ = − −

 = − −

 

where  
( ) {
( ) {

1 , if ,  0 , if 
1 , if ** 0 , if *.

k nk n k n
k nk n k n

δ

δ

=− = ≠

=− = ≠

 

IV.  APPLICATIONS / ILLUSTRATIVE EXAMPLES 
In this section, analytical solutions the Asian option 

pricing model are considered based on the PDTM with 
regard to three cases: I, II and III as follows: 

A. Case I 
Consider (2.15) via (2.16-2.17) in the following form: 

( ) ( )

2
2 2

2

1 1
2

0, .

g g gr
t T

g

ψ σ ψ
ψ ψ

ψ ϕ ψ

∂ ∂ ∂ = + −  ∂ ∂ ∂ 
 =

              (4.1) 

Taking the PDTM of (4.1) gives: 

( )

( )

( )2
2 2

2

,1
1, 1

1 ,1
2

G h
r

T
G h

h G h

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

∂  +   ∂  + =  + ∂ − ∂ 

,  (4.2) 

( ) ( )1,0 1 .rT rTG e e
rT

ψ ψ− −= − −                 (4.3) 

Hence, for 0h ≥  , we have: 

( )

( )

( )2
2 2

2

,01

,1 ,
,01

2

G
r

T
G

G

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

∂  +   ∂  =  
∂ − ∂ 

     

( )

( )

( )2
2 2

2

,11
1,2 ,
2 ,11

2

G
r

T
G

G

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

∂  +   ∂  =  
∂ − ∂ 

  

( )

( )

( )2
2 2

2

, 21
1,3 ,
3 ,21

2

G
r

T
G

G

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

∂  +   ∂  =  
∂ − ∂ 

  

( )

( )

( )2
2 2

2

,31
1,4 ,
4 ,31

2

G
r

T
G

G

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

∂  +   ∂  =  
∂ − ∂ 



  

( )

( )

( )2
2 2

2
1.

, 11
1,

, 11
2 p

G p
r

T
G p

p G p

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ ≥

∂ −  +   ∂  =  
∂ − − ∂ 

   (4.4) 

Thus, by subjecting (4.1) to: 

( ) ( )1,0 1 rT rTg e e
rT

ψ ψ− −= − − ,              (4.5) 

The following are obtained: 

( ) 1,1 rTG r e
T

ψ ψ − = − + 
 

, 

( ) 1 1,2
2!

rTG r re
T

ψ ψ − = − + 
 

, 

( ) 21 1,3
3!

rTG r r e
T

ψ ψ − = − + 
 

, 

( ) 31 1,4
4!

rTG r r e
T

ψ ψ − = − + 
 

, 

( ) 41 1,5
5!

rTG r r e
T

ψ ψ − = − + 
 

, 

( ) 51 1,6
6!

rTG r r e
T

ψ ψ − = − + 
 

, 

( ) 61 1,7
7!

rTG r r e
T

ψ ψ − = − + 
 

, 

( ) 71 1,8
8!

rTG r r e
T

ψ ψ − = − + 
 

,  

( ) 81 1,9 ,
9!

rTG r r e
T

ψ ψ − = − + 
 



. 

( ) 11 1, ,  1
!

p rTG p r r e p
p T

ψ ψ − − = − + ≥ 
 
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Hence, 

( ) ( )
0

, , m

m
g t G m tψ ψ

∞

=

= ∑  

( )
2 3 2 4 3

1 1

1
2! 3! 4!

rT rT

rT

e e
rT

t r t r t rt r e
T

ψ

ψ

− −

−

 − −  = 
  − + + + + +     



 

( )

( ) ( ) ( )2 3 4

1 1

1
2! 3! 4!

rT rT

Tr

e e
rT

rt rt rte rt r
r T

ψ

ψ

− −

−

 − + −  =      − + + + + +     


 

( ) ( )
1

1 1 11
!

i
rT Tr rT

i

rt
e e r e

Tr r i T
ψ ψ

∞
− − −

=

   = − + − + − +   
   

∑

  

( )

( )
0

1 1

11
!

rT rT

irT

i

e e
rT

rte r
r i T

ψ

ψ

− −

− ∞

=

 − + −  =    − − + +      
∑

 

( )

( )

1 1

11

rT rT

rT
rt

e e
rT
e e r

r T

ψ

ψ

− −

−

 − + −  = 
 − − + +   

,  

( )( ) ( )1 1r T t r T te e
rT

ψ− − − − = − + − 
 

, 0ψ ≤ .        (4.6) 

But from (2.16), 
( ) ( ), , , ,

.

S I t Sg t
IS k
T

ψ

ψ

Λ =



= − −

   

Therefore, 

( ) ( )( ) ( ), , 1r T t T t rS IS I t e k e
rT T

− − − −  Λ = − + − −  
  

.   (4.7)  

Equation (4.7) is the analytical solution of (2.15) 
corresponding to the CAA option pricing model. This can be 
validated as follows. From (4.5), we have 
for ( ), ,S I tΛ = Λ : 

( )
( )

r T t
r T tSe Ir k e

t T T

− −
− − ∂Λ −  = − −  ∂   

,         (4.8) 

 

( )( )
2

2

1 1

0

r T te
S rT

S

− −∂Λ  = − +  ∂  


∂ Λ = ∂

  ,                         (4.9) 

( ) .r T tT e I− −∂Λ = ∂                        (4.10) 
Thus, using (4.5) through (4.8) in (2.15) gives: 

( )
2

2 2
2

1 , , .
2

S rS S r H S I t
t S S I

σ∂Λ ∂ Λ ∂Λ ∂Λ
+ + + − Λ =

∂ ∂ ∂ ∂
 

 
Thus, for ( ), ,H S I t H= , we have: 

( )
( )

( )( )
( )

( )( ) ( )

1 1

1

r T t
r T t

r T t
r T t

r T t r T t

Se Ir k e
T T

SeH rS e
rT T

S Ir e k e
rT T

− −
− −

− −
− −

− − − −

  −  − −   
    

 
  = + − +   

 
   − − − −      

          

( )
( ) ( )( )

( )
( )( ) ( )

( )

1

1

0 , , .

r T t
r T t r T t

r T t
r T t r T t

Se I Sr k e e
T T T

Se S Ie r k e
T T T

H S I t

− −
− − − −

− −
− − − −

 −    − − + −    
    =    + − − + −    

= =

 

 

B. Case II 
Consider (2.15) via (2.16-2.17) subject to the initial 
condition: 

( ) 1,0 rTg r Se
rT

ψ ψ − = − 
 

 .           (4.11) 

This gives:  
 

( )

2
2 2

2

1 1
2

1,0 rT

g g gr
t T

g r Se
rT

ψ σ ψ
ψ ψ

ψ ψ −

∂ ∂ ∂ = + −  ∂ ∂ ∂  


  = −          (4.12)

 

 
Taking the PDTM of (4.12) yields: 

( )

( )

( )

( ) { }

2
2 2

2

,1
1, 1

1 ,1
2

1,0 ,  0 .rT

G h
r

T
G h

h G h

G r Se h
rT

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

ψ ψ −

  ∂  +    ∂   + =   + ∂  −  ∂ 
   = − ∈ ∪   



,  (4.13) 

Thus, following the approach in Case I, the following are 
obtained: 

( ) 1,1 rTG r rSe
T

ψ ψ − = + 
 

, 

( ) 21 1,2
2!

rTG r r Se
T

ψ ψ − = + 
 

, 

( ) 31 1,3
3!

rTG r r Se
T

ψ ψ − = + 
 

, 
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( ) 41 1,4
4!

rTG r r Se
T

ψ ψ − = + 
 

, 

( ) 51 1,5
5!

rTG r r Se
T

ψ ψ − = + 
 

, 

( ) 61 1,6
6!

rTG r r Se
T

ψ ψ − = + 
 

, 

( ) 71 1,7
7!

rTG r r Se
T

ψ ψ − = + 
 

, 

( ) 81 1,8
8!

rTG r r Se
T

ψ ψ − = + 
 

, 

( ) 91 1,9
9!

rTG r r e
T

ψ ψ − = + 
 

, 

( ) 1 1, ,  .
!

p rTG p r r Se p
p T

ψ ψ − = + ∈ 
 

 

 
 So, we have:

 
( ) ( )

0
, , m

m
g t G m tψ ψ

∞

=

= ∑  

( ) ( ) ( )2 3 4

1

1
2! 3! 4!

rT

rT

r Se
rT

rt rt rt
rt r Se

T

ψ

ψ

−

−

 −  =      + + + + + +     
  

( )
0

1 11
!

n
rT rT

n

rt
r Se r Se

rT n T
ψ ψ

∞
− −

=

     = − + − + +        
∑

( )1 11 .rt rTr e r Se
rT T

ψ ψ −    = − + − + +    
      

Thus, we have:     

  
( ) ( ), , , ,

.

S I t Sg t
IS k
T

ψ

ψ

Λ =



= −

          

( )
( )

21 11
 

, , .

rt rTr e r S e
rT T

S I t

ψ ψ −     Λ = − + − + +     ∴     
Λ = Λ

 

                                                                                  (4.14) 
Equation (4.14) represents the analytical solution of 

(2.15) subject to (4.11). 

C. Case III 

Suppose the initial condition associated with (2.15) via  
(2.16-2.17) is 

( ) 21,0 1 rTg S e
rT

ψ ψ − = + 
 

                      (4.15) 

then we have: 

( )

2
2 2

2

2

1 1
2

1,0 1 .rT

g g gr
t T

g S e
rT

ψ σ ψ
ψ ψ

ψ ψ −

∂ ∂ ∂ = + −  ∂ ∂ ∂  


  = +   

          (4.16) 

Taking the PDTM of (4.16) gives: 

( )

( )

( )

( )

2
2 2

2

2

,1
1, 1

1 ,1
2

1,0 1 .rT

G h
r

T
G h

h G h

G S e
rT

ψ
ψ

ψ
ψ

ψ
σ ψ

ψ

ψ ψ −

 ∂  +    ∂   + =   + ∂  −  ∂ 
   = +   

    

      (4.17) 
                
Hence, for 0h ≥  , we have: 
                         

( ) 21,0 1 rTG S e
rT

ψ ψ − = + 
 

                 

( ) 21 1,1 1 rTG r S e
T rT

ψ ψ −  = + +  
  

,  

( )
21 11

,2
2!

rTr rS e
T rTG

ψ
ψ

−  + +  
  = ,  

( )
2 21 11

,3
3!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = ,  

( )
3 21 11

,4
4!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = ,  

( )
4 21 11

,5
5!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = ,  

( )
5 21 11

,6
6!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = , 

( )
6 21 11

,7
7!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = ,  

( )
7 21 11

,8
8!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = , 

( )
8 21 11

,9
9!

rTr r S e
T rTG

ψ
ψ

−  + +  
  = ,  

( ) 11 1, ,  1
!

p rTG p r r e p
p T

ψ ψ − − = − + ≥ 
 

 . 
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Hence, 

( ) ( )
0

, , m

m
g t G m tψ ψ

∞

=

= ∑  

2

2

11

1 11

rT

rT

S e
rT

r tS e
T rT

ψ

ψ

−

−

  +    =  
   + + +      

 

2 2

2 2 3

1 1 11
2!

1 1 11
3!

rT

rT

r rS e t
T rT

r r S e t
T rT

ψ

ψ

−

−

   + +       =  
   + + +      

 

3 2 4

4 2 5

1 1 11
4!

1 1 11
5!

rT

rT

r r S e t
T rT

r r S e t
T rT

ψ

ψ

−

−

   + +       =  
   + + +      

 

5 2 6

6 2 7

1 1 11
6!

1 1 11
7!

rT

rT

r r S e t
T rT

r r S e t
T rT

ψ

ψ

−

−

   + +       =  
   + + +      

 

7 2 8

8 2 9

1 1 11
8!

1 1 11
9!

rT

rT

r r S e t
T rT

r r S e t
T rT

ψ

ψ

−

−

   + +       =  
   + + + +      



 

( )
2

1 2

1

11
,

1 1 11
!

rT

n
k rT k

k

S e
rT

g t
r r S e t

k T rT

ψ
ψ

ψ

−

− −

=

  +    =  
   + + +      

∑
,. 

( )2

1

1 1 11 .
!

k
rT

k

rt
S e r

rT T r k
ψ ψ

∞
−

=

     = + + +    
     

∑  

                                                               (4.18)
           

Hence, by (2.6), we obtain the following:   

( )

( )

31 1 11 1 ,

,  , , .

rT rtS e r e
rT T r

IS k S I t
T

ψ ψ

ψ

−     + + + − +        Λ = 
 = − Λ = Λ

 

                        (4.19) 

Equation (4.19) represents the analytical solution of 

(2.15) subject to (4.15). 

V. CONCLUSION AND REMARKS 
In this work, we have successfully obtained analytical 

solutions of the CAA option pricing model via the 

application of a proposed PDTM. The method involved less 
computational work without compromising the level of 
accuracy. Three cases were considered as regards illustration 
whose results ascertained the method’s efficiency and 
effectiveness. The works of Rogers & Shi [1], and 
Elshegmani & Ahmad [2] serve as benchmarks to this 
current work. The proposed semi-analytical approach is 
therefore endorsed for obtaining analytical and/or 
approximate solutions of similar forms of Asian option 
pricing models likewise other financial pricing models. In 
addition, other financial PDEs resulting from stochastic 
dynamics can be considered via this approach. 
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