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Abstract— Skip lot sampling plans (SkSP) are widely used in 

industry to reduce sample size and, therefore, save costs for 

inspecting products in the lot. In this paper, we propose a new 

technique for an acceptance sampling plan for lot inspection 

of the skip lot sampling plan V (SkSP-V) by variables with 

Empirical Bayes (EB) as a reference plan for specified by two 

points (AQL, RQL). This compares the traditional approach 

as a single sampling plan (SSP) by variables to SkSP-V which 

uses a single sampling plan by variables as a reference plan, 

with data normally distributed under a known mean but 

unknown variance and an unknown mean and known 

variance. The probability of acceptance (Pa) and average 

sample number (ASN) are considered as comparison criteria. 

Results indicated that the proposed plan yielded the smallest 

average sample size with the highest probability of acceptance 

of the lot. 

 

Index Terms— Empirical Bayes, Single Sampling Plan, 

Skip lot Sampling Plan V 

 

I. INTRODUCTION 

 Acceptance sampling plans have been widely used in 

industry for quality assurance inspection to reduce sample 

size and cost of inspecting products in the lot. Acceptance 

sampling plans can be classified into two types as attributes 

sampling plans and variables sampling plans. Variables 

sampling plans provide more information regarding 

production in the lots than the attributes ones, and using a 

small sample size [1]. Sampling plans include various 

schemes types as a single, double, multiple, sequential and 

skip lot plans (SkSP). Advantages of the SkSP include 

providing a smaller sample size for lot inspection than the 

single sampling plan, thereby reducing the cost of 

inspecting products in the lot [2]. 

 The SkSP was developed by Dodge (1955) for bulk 

production inspection. Later, the skip lot sampling plan 2 

(SkSP-2) was proposed by Dodge and Perry (1971), 

followed by the SkSP-V by Balamurali and Jun [3], which  
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was designed to reduce the number of lots at the normal 

inspection stage [4]. Aslam et al. [5] exhibited the SkSP as 

a variable resampling plan when data are assumed to follow 

a normal distribution with both known and unknown 

variances, and finding optimal parameters of a single 

sampling plan (SSP) and SkSP. The Pa and the ASN at 

acceptable quality level (AQL) and rejectable quality level 

(RQL) were considered as criteria of comparison. 

Balamurali and Subramani [6] studied SkSP-2 by variables 

using SSP by variables as a reference plan when data are 

normally distributed under both known and unknown 

variances. The Pa, ASN, average outgoing quality (AOQ) 

and average total inspection (ATI) were used as criteria of 

comparison. Muthulakshmi and Lakshmi (2012) compared 

SSP, SkSP-2 and SkSP-V by attributes using Pa, ASN, 

AOQ and ATI. Balamurali et al. [7] illustrated SkSP in a 

resampling plan using attributes and compared SSP with 

SkSP-2. The operating characteristic (OC) functions, ASN 

and ATI were used as criteria for comparison. Koatpoothon 

and Sudasna-na-Ayudthya [8] compared Pa, ASN, AOQ 

and ATI of SkSP-2 and SkSP-V by attributes. Aslam et al. 

[9] demonstrated SkSP-V by attributes, using a double 

sampling plan (DSP) as a reference and compared Pa and 

ASN at AQL and RQL to determine optimal parameters of 

DSP and SkSP-V. Aslam et al. [10] considered SkSP-V in a 

variable sampling plan based on the process capability 

index when data are normally distributed. Their proposed 

plan aimed to minimize ASN under both symmetric and 

asymmetric fraction of defective units. For more details 

about SkSP-V, it can see in [11], [12], [13], [14], [15], [16] 

and [17].  

 The Bayesian approach is applied widely in several 

sampling plans which are extensively applied in statistical 

inferences as an alternative or accompanying with 

traditional approaches. In addition, an application of 

Bayesian method in sampling plans used the posterior 

probability distribution function of defective proportion to 

obtain the acceptance probability in the lots [18]. If the 

posterior distribution functions are complicated then it can 

be used numerical methods. The Bayesian principle is to 

incorporate historical information regarding the parameters 

through a prior distribution, assuming a known form of 

distribution. The parameters of prior distribution, called 

hyper-parameters, are usually assumed to be known or can 

be estimated regardless of the observed data. However, 

when the hyper-parameters are unknown and estimated 

from observed data, this is called the EB approach [19]. 

Research involving Bayesian and EB has been conducted by 

many authors including [20], [21], [22], [23], [24], [25], 
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[26], [27] and [28]. For more details about Bayesian in 

SkSP, it can refer to [29] developed Bayesian risks in 

acceptance sampling that compared with classical method 

when data follows a Weibull distribution. Suresh and 

Umamaheswari [30] studied Bayesian methods in SkSP 

under the Poisson model for destructive testing to obtain 

optimal parameters at AQL and RQL when the fraction of 

defective units is assumed to follows a gamma prior. 

Rajeswari and Jose [31] developed SkSP-2 with a Bayesian 

modified chain sampling plan as a reference. The 

proportion of defective units, considered as gamma prior 

distribution, was applied to determine the probability of 

acceptance of the lots. Nirmala and Suresh [32] studied 

Bayesian methods in SkSP-V with multiple deferred states 

(0, 2) as a reference plan when the proportion of defective 

unit is defined by gamma prior distribution. Seifi et al. [33] 

considered a process capability index with the Bayesian 

method for sampling variables of resubmitted lots, using the 

posterior probability distribution function of the process 

capability index to obtain the acceptance probability in the 

lot. Their objective was to assess optimal parameters for 

various producer and consumer risks. The proposed plan 

was compared with SSP, DSP, multiple deferred states 

(MDS) and repetitive group sampling (RGS) when ASN 

was the criterion for comparison. Craig and Bland [34] 

considered the EB method in variables sampling plans for 

normally distributed data with unknown prior distribution. 

Delgadillo and Bremer [35] applied the EB method, 

combined with a specified cost function to test the 

destructiveness of high-quality products in the Poisson 

process compared with traditional methods.  

 However, there is no research regarding the EB method 

for SkSP-V by variables is currently available. Here, we 

propose a new technique to obtain an acceptance sampling 

plan which utilizes EB in SkSP-V by variables when data 

are normally distributed under two cases, an unknown 

mean but known variance, and a known mean but unknown 

variance. Our proposed plan is compared with traditional 

approaches as SSP by variables and SkSP-V with SSP as 

the reference. Details about SSP by variables and SkSP-V 

with SSP by variables as a reference plan are provided in 

section 2 and section 3, respectively. Section 4 describes the 

use of EB in SkSP-V. Section 5 covers simulation and 

comparison methods, and the example is provided in 

section 6. Conclusions are drawn in section 7.  

II. SINGLE SAMPLING PLAN (SSP BY VARIABLES) 

 The single sampling plan by variables is performed by 

taking a random sample size ,n  1 2, ,..., ,nX X X  the quality 

characteristic of interest has upper specification limits 

(USL) and then calculate ( )z USL X    when   is 

known and ( )z USL X s   when   is unknown. The lot 

is accepted if z K  and rejected if z K  where K is 

acceptance criterion [4]. The SSP by variables is based on 

two parameters  ,  n K which can be calculated as follows. 
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III. SKIP LOT SAMPLING PLAN V (SKSP-V) 

 For the acceptance of a sampling plan by variables, the 

quality characteristics are measured by a continuous scale 

and then the data are assumed a normal distribution [1]. In 

this paper, the SkSP-V plan uses the SSP by variables as 

the reference plan. The SkSP-V plan depends on four 

parameters in which i is consecutive lots on the reference 

plan, f is the proportion of lots (0 < f < 1), k is consecutive 

lots on skipping inspection when k < i, k = i, k > i and c or  

x is the number of the lots being reduced from the stage of 

skipping inspection (clearance number) when c < i [9]. 

Thus, the procedure of the SkSP-V plan is shown in Fig 1.  

 

 
      Fig. 1. The procedure of the SkSP-V sampling plan [9]. 

 

 Let p be the proportion of defective units in the lot and 

Q is the probability of acceptance a lot with the reference 

plan or SSP by variables [7]. The criterion for comparison 

of the SkSP-V is the probability of acceptance a lot (Pa) and 

average sample number (ASN). Generally, the Pa is 

considered with two points as follows: the producer’s risk 

(α) and the consumer’s risk (β) that are called AQL, 

denoted by 1p  and RQL, denoted by 2 ,p respectively. Thus, 

it can be shown as  
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and the Pa at the AQL and RQL are given as 
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      1   1 ,aP p                        (5) 

      2   .aP p                          (6) 

 

The ASN is provided by 
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IV. EMPIRICAL BAYES (EB) APPROACH IN SKSP-V 

In Bayesian approach, the unknown parameters   are 

considered as a random variable, depending on information 

in the history of parameters, called prior probability density 

function, assuming known prior distribution,  | ,    and 

known hyper-parameter .  Thus, inference concerning   

is performed using Bayes’ theorem which can be expressed 

up to proportionality as the product of likelihood 

function,   ,L  and the prior distribution,  | ,    The 

posterior distribution,
 
 | ,h x  is determined by  
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where  M x denotes the marginal distribution of .x  

 The EB approach is involved, when the unknown hyper-

parameter    is estimated from the observed data which 

do not conform to Bayesian concept.  The hyper-parameter 

can be calculated from the marginal distribution of ,x  

given by 

                       

      ( | ) | | .M x f x d


                (9) 

 

where the observed data x  are continuous random sample 

[16]. 

 In this paper, we propose the use of EB in SkSP-V by 

variables when data are normally distributed, 
2( , ),X N   with two cases as follows: case 1: unknown 

mean   but known variance 
2

0  and case 2: known mean 

0  but unknown variance 2 . The defective proportion of 

samples in a lot is given by  
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cumulative distribution function of standard normal 

distribution, (0,1)z N  [36]. 

 

 

A. Case 1: unknown mean   but known variance
2

0 . 

 Let   be unknown parameter, assuming   is defined 

on informative prior: 2( , )N    and hyper-parameters 

  and 2  are unknown. The hyper-parameters can be 

estimated from the marginal likelihood distribution as 

follows. 
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Then, the likelihood function is provided by 
2 2( , | ) ( | , ),L x M x     the maximum likelihood (ML) 

estimator of   is ˆ x   and the ML estimator of 2 is 

2 2

0
ˆ n  . After that, the estimators ̂  and 2̂  will be 

substituted into the posterior distribution function.  

 The posterior distribution function is determined as 

follows. 
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Thus, the posterior distribution is normal distributed as 
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cumulative posterior distribution function of   when the 

proportion of defective units (p) is defined. Therefore, the 

probability of acceptance the lot is given by 
1

Q  which can 

Engineering Letters, 27:2, EL_27_2_07

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



be obtained using the posterior probability distribution 

function of   [18]. 

 

B. Case 2: known mean 0 but unknown variance 
2.  

 Assuming 2  is defined on informative prior: 

 2 ,IG a b with hyper-parameters a and b are unknown. 

Similarly, the hyper-parameters can be calculated from the 

marginal likelihood distribution which can be written as 
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Next, let ( , | ) ( | , )L a b x M x a b , which is not a closed 

form, causing difficulty in solving a problem. The hyper-

parameters alternatively are obtained using numerical 

method. In this study, we utilized the Newton Raphson 

method [37]. Then, the estimators â  and b̂  will be 

replaced into the posterior distribution function.  

 The posterior distribution function of 2 is provided as 
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After some calculation, we obtain 
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Therefore, the posterior distribution of 2 has inverse 

gamma distribution that is  

 

2 2

0

1

1ˆˆ| ,  ( ) .
2 2

n

i

i

n
x IG a b x 



 
   

 
   

 

 Determination   2 2

2
0

( | ) 
p

Q F p h x d     is a 

cumulative posterior distribution function of 2  when the 

proportion of defective units is determined. Thus, the 

probability of acceptance the lot is specified by 2Q  which 

can be obtained using the posterior probability distribution 

function of the 2.  

V. THE CRITERION FOR COMPARISON IN THE EB IN SKSP-V  

The Pa and ASN of the EB in SkSP-V for the case 1 and 

2 are given as follows. 
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where j = 1 and 2. 

VI. SIMULATION AND COMPARISON METHODS   

 The data are generated from 0,1 ,X N( ) under two 

cases as follows: case 1: unknown mean   but known 

variance 2
0 ,  by assuming informative prior on  :  

 2,N   and case 2: known mean 0  but unknown 

variance 
2 ,  by assuming informative prior on 2 : 

 2 , ,IG a b  where 2,  ,  a   and b  denote hyper-

parameters. The number of iterations is given by t = 1,000, 

 = 0.05 and  = 0.10. The proportion of defective at 

AQL(p1) is 0.01, at RQL(p2) is 0.02 and the sample sizes 

(n) are defined as n = 115 for known and n = 388 

for unknown. The parameters of the SkSP-V are specified 

by two situations as follows: (1) i = 5, f = 1/3, 1/5, k = 3, 5, 

10, c = 3, 2 and (2) i = 10, f = 1/5, 1/10, k = 5, 10, 15,              

c = 8, 5, respectively.  

 In this paper, the EB in SkSP-V is compared with 

traditional methods, SSP by variables and SkSP-V with 

SSP by variables as a reference plan and the Pa and ASN at 

p1 and p2 are considered as the criteria for comparison. The 

result of simulation can be as shown in Table I to Table IV. 

 Table I shows Pa at the p1 and p2 of the SSP by 

variables, SkSP-V and EB in SkSP-V, with an unknown 

mean  but known variance 2
0 ,  where the values of the 

hyper-parameters in case 1 are ̂ = 0.0007, 2̂ = 0.0087, 

respectively. The Pa of SkSP-V and EB in SkSP-V can be 

determined by equation (15). At p1, the value of Pa for the 

proposed plan is highest, varying from 0.9952 to 0.9991 for 

all cases. In addition, the value of Pa in SkSP-V is higher 

than those in SSP by variables, with values of Pa falling 

between 0.9810 and 0.9931, whereas the value of Pa in SSP 

by variables is 0.95. At p2, the value of Pa for EB in SkSP-

V is smallest falling between 0.0017 and 0.0095, which is 

smaller than those in SkSP-V, and SSP by variables. 

 Table II illustrates ASN comparison at p1 and p2 of three 

methods, which can be determined by equation (16). The 

EB in SkSP-V gives the smallest ASN, about 12 to 39 per 
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lot at p1 and 12 to 40 at p2, whereas SSP by variables gives 

the highest ASN, about 115 per lot for all cases. The ASN 

of SkSP-V is between 16 and 44 per lot at p1 and 25 to 51 

per lot at p2, respectively. 

 For the case of known mean 0 but unknown variance 

2 ,  where the values of the hyper-parameters in case 2 are 

â = 0.0998 and b̂ = 0.1496, respectively. The result shown 

in Table III and Table IV. The Pa of EB in SkSP-V can be 

determined by equation (16). At p1, the value of Pa for EB 

in SkSP-V is highest, between 0.9963 and 0.9990. The 

value of Pa for SkSP-V is higher than those in SSP by 

variables. At p2, the value of Pa for EB in SkSP-V is 

smallest between 0.00215 and 0.00693. All value of Pa for 

SSP by variables is higher than those for SkSP-V.  

 Table IV displays ASN of three approaches at p1 and p2. 

The ASN of EB in SkSP-V is obtained by equation (17). At 

p1, the proposed plan gives smaller values of ASN than SSP 

by variables and SkSP-V, which lies at between 40 and 132 

per lot. In contrast, the SSP by variables gives the largest 

ASN at 388 per lot for all cases. The ASN of the SkSP-V 

lies between 54 and 147 per lot. At p2, the EB in SkSP-V 

yields the smallest ASN, about 42 to 135 per lot. The ASN 

of SkSP-V is also smaller than those of SSP by variables, 

about 83 to 173 per lot.   

 Furthermore, Fig. 2 and Fig. 3 illustrate that the EB in 

SkSP-V case 1 and 2 provide higher the Pa than the SSP by 

variables and SkSP-V where the proportion of defective 

units is higher than 0.1.  

 Fig. 4 and Fig. 5 show the ASN curves for three 

sampling plans. The charts give that the two proposed plans 

provide smaller the ASN than as compared to the 

traditional approaches where the proportion of defective 

units is higher than 0.05.  

 
Fig. 2. The comparison Pa  of the EB in SkSP-V case 1, SSP 

by variables and SkSP-V where i = 5, f = 1/3, k = 3, c = 2. 

 

 
Fig. 3. The comparison Pa  of the EB in SkSP-V case 2, SSP 

by variables and SkSP-V where i = 5, f = 1/3, k = 3, c = 2. 

 
Fig. 4. The comparison ASN of the EB in SkSP-V case 1, 

SSP by variables and SkSP-V where i = 5, f = 1/3, k = 3, c = 2. 

 
Fig. 5. The comparison ASN of the EB in SkSP-V case 2, SSP 

by variables and SkSP-V where i = 5, f = 1/3, k = 3, c = 2. 

 

 

 

 

 

 

OC curve for case 1 

OC curve for case 2 

ASN curve for case 1 

ASN curve for case 2 
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TABLE I 

THE PA AT AQL(P1) AND RQL(P2) OF THE SSP BY VARIABLES, SKSP-V AND EB IN SKSP-V IN CASE OF UNKNOWN  

MEAN   BUT KNOWN VARIANCE
2

0 .  

 

Parameters 
Unknown ,  known 

2

0  

Pa(p1) Pa(p2) 

i f k c SSP SkSP-V EB in 

SkSP-V 

SSP SkSP-V EB in 

SkSP-V 

5 1/3 3 3 0.9500 0.9813 0.9969 0.0999 0.0432 0.0064 

   2 0.9500 0.9818 0.9966 0.0999 0.0415 0.0068 

  5 3 0.9500 0.9812 0.9971 0.0999 0.0437 0.0065 

   2 0.9500 0.9816 0.9965 0.0999 0.0424 0.0067 

  10 3 0.9500 0.9810 0.9967 0.0999 0.0446 0.0085 

   2 0.9500 0.9813 0.9952 0.0999 0.0438 0.0057 

 1/5 3 3 0.9500 0.9886 0.9975 0.0999 0.0275 0.0043 

   2 0.9500 0.9888 0.9981 0.0999 0.0262 0.0051 

  5 3 0.9500 0.9884 0.9977 0.0999 0.0280 0.0043 

   2 0.9500 0.9887 0.9985 0.0999 0.0269 0.0066 

  10 3 0.9500 0.9883 0.9972 0.0999 0.0287 0.0039 

   2 0.9500 0.9886 0.9978 0.0999 0.0281 0.0032 

10 1/5 5 8 0.9500 0.9858 0.9975 0.0999 0.0405 0.0052 

   5 0.9500 0.9867 0.9986 0.0999 0.0380 0.0042 

  10 8 0.9500 0.9857 0.9984 0.0999 0.0410 0.0046 

   5 0.9500 0.9864 0.9976 0.0999 0.0396 0.0068 

  15 8 0.9500 0.9855 0.9980 0.0999 0.0413 0.0095 

   5 0.9500 0.9861 0.9972 0.0999 0.0405 0.0038 

 1/10 5 8 0.9500 0.9925 0.9989 0.0999 0.0233 0.0027 

   5 0.9500 0.9931 0.9987 0.0999 0.0214 0.0022 

  10 8 0.9500 0.9924 0.9988 0.0999 0.0236 0.0017 

   5 0.9500 0.9928 0.9985 0.0999 0.0226 0.0022 

  15 8 0.9500 0.9923 0.9989 0.0999 0.0238 0.0024 

   5 0.9500 0.9927 0.9991 0.0999 0.0232 0.0019 

 

TABLE II 

THE ASN AT AQL(P1) AND RQL(P2) OF THE SSP BY VARIABLES, SKSP-V AND EB IN SKSP-V IN CASE OF UNKNOWN  

MEAN   BUT KNOWN VARIANCE
2

0 .  

 

Parameters 
Unknown , known 

2

0  

ASN(p1) ASN(p2) 

i f k c SSP SkSP-V EB in 

SkSP-V 

SSP SkSP-V EB in 

SkSP-V 

5 1/3 3 3 115.2914 43.2265 39.0752 115.2914 49.8199 39.8802 

   2 115.2914 42.0828 38.8915 115.2914 47.9082 39.5089 

  5 3 115.2914 43.4292 39.0253 115.2914 50.4176 39.9057 

   2 115.2914 42.4044 38.9306 115.2914 48.9056 39.5453 

  10 3 115.2914 43.8500 39.1429 115.2914 51.4355 40.5803 

   2 115.2914 43.0689 39.2335 115.2914 50.5785 39.4282 

 1/5 3 3 115.2914 26.5998 23.6959 115.2914 31.7754 24.2501 

   2 115.2914 25.7389 23.3806 115.2914 30.2363 24.0836 

  5 3 115.2914 26.7535 23.6557 115.2914 32.2632 24.2668 

   2 115.2914 25.9799 23.2663 115.2914 31.0353 24.5582 

  10 3 115.2914 27.0736 23.8444 115.2914 33.1016 24.2107 

   2 115.2914 26.4805 23.4858 115.2914 32.3951 23.7439 

10 1/5 5 8 115.2914 32.7391 24.6980 115.2914 46.7372 26.7491 

   5 115.2914 30.5768 23.6677 115.2914 43.8616 25.1826 

  10 8 115.2914 33.0174 24.1951 115.2914 47.3098 26.3896 

   5 115.2914 31.3654 24.2367 115.2914 45.6679 26.9352 

  15 8 115.2914 33.2315 24.4380 115.2914 47.6436 29.9098 

   5 115.2914 31.9656 24.5257 115.2914 46.6925 25.1538 

 1/10 5 8 115.2914 17.2762 12.3277 115.2914 26.8101 13.6495 

   5 115.2914 15.9380 12.2252 115.2914 24.7185 12.7810 

  10 8 115.2914 17.4508 12.5964 115.2914 27.2355 12.9413 

   5 115.2914 16.4222 12.3352 115.2914 26.0236 12.8952 

  15 8 115.2914 17.5856 12.7505 115.2914 27.4849 13.4918 

   5 115.2914 16.7937 12.0145 115.2914 26.7770 12.7062 

Engineering Letters, 27:2, EL_27_2_07

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



 

TABLE III 

THE PA AT AQL(P1) AND RQL(P2) OF THE SSP BY VARIABLES, SKSP-V AND EB IN SKSP-V IN CASE OF KNOWN  

MEAN 0 BUT UNKNOWN VARIANCE 
2.  

 

Parameters 
Known 0 , unknown 

2  

Pa(p1) Pa(p2) 

i f k c SSP SkSP-V 
EB in 

SkSP-V 
SSP SkSP-V 

EB in 

SkSP-V 

5 1/3 3 3 0.9500 0.9814 0.9969 0.0999 0.0432 0.00698 

   2 0.9500 0.9818 0.9965 0.0999 0.0415 0.00685 

  5 3 0.9500 0.9813 0.9966 0.0999 0.0437 0.00693 

   2 0.9500 0.9820 0.9964 0.0999 0.0424 0.00680 

  10 3 0.9500 0.9811 0.9963 0.0999 0.0446 0.00692 

   2 0.9500 0.9812 0.9962 0.0999 0.0438 0.00682 

 1/5 3 3 0.9500 0.9888 0.9980 0.0999 0.0275 0.00419 

   2 0.9500 0.9889 0.9978 0.0999 0.0262 0.00413 

  5 3 0.9500 0.9885 0.9979 0.0999 0.0280 0.00416 

   2 0.9500 0.9887 0.9977 0.0999 0.0269 0.00411 

  10 3 0.9500 0.9884 0.9976 0.0999 0.0287 0.00418 

   2 0.9500 0.9886 0.9977 0.0999 0.0281 0.00412 

10 1/5 5 8 0.9500 0.9858 0.9975 0.0999 0.0407 0.00445 

   5 0.9500 0.9868 0.9979 0.0999 0.0380 0.00430 

  10 8 0.9500 0.9856 0.9978 0.0999 0.0410 0.00442 

   5 0.9500 0.9864 0.9980 0.0999 0.0396 0.00428 

  15 8 0.9500 0.9857 0.9974 0.0999 0.0413 0.00439 

   5 0.9500 0.9865 0.9979 0.0999 0.0405 0.00427 

 1/10 5 8 0.9500 0.9928 0.9989 0.0999 0.0234 0.00226 

   5 0.9500 0.9932 0.9991 0.0999 0.0214 0.00217 

  10 8 0.9500 0.9925 0.9990 0.0999 0.0236 0.00224 

   5 0.9500 0.9929 0.9988 0.0999 0.0226 0.00216 

  15 8 0.9500 0.9924 0.9987 0.0999 0.0238 0.00222 

   5 0.9500 0.9927 0.9994 0.0999 0.0232 0.00215 

 

TABLE IV 

THE ASN AT AQL(P1) AND RQL(P2) OF THE SSP BY VARIABLES, SKSP-V AND EB IN SKSP-V IN CASE OF KNOWN  

MEAN 0 BUT UNKNOWN VARIANCE
2.  

 

Parameters 
Known 0 and unknown 

2  

ASN(p1) ASN(p2) 

i f k c SSP SkSP-V 
EB in 

SkSP-V 
SSP SkSP-V 

EB in 

SkSP-V 

5 1/3 3 3 387.5267 145.2963 131.8950 387.5267 167.4587 134.4099 

   2 387.5267 141.4521 131.0722 387.5267 161.0327 132.8403 

  5 3 387.5267 145.9777 131.8787 387.5267 169.4675 134.3481 

   2 387.5267 142.5331 131.0722 387.5267 164.3854 132.8403 

  10 3 387.5267 147.3922 131.8393 387.5267 172.8890 134.2040 

   2 387.5267 144.7664 131.0722 387.5267 170.0083 132.8403 

 1/5 3 3 387.5267 89.4094 79.4517 387.5267 106.8059 81.2841 

   2 387.5267 86.5157 78.8555 387.5267 101.6325 80.1388 

  5 3 387.5267 89.9259 79.4398 387.5267 108.4457 81.2389 

   2 387.5267 87.3259 78.8550 387.5267 104.3181 80.1385 

  10 3 387.5267 91.0020 79.4113 387.5267 111.2638 81.1335 

   2 387.5267 89.0084 78.8553 387.5267 108.8890 80.1380 

10 1/5 5 8 387.5267 110.0452 82.2447 387.5267 157.0969 86.3140 

   5 387.5267 102.7774 80.5850 387.5267 147.4314 83.3512 

  10 8 387.5267 110.9809 82.0804 387.5267 159.0214 85.7315 

   5 387.5267 105.4279 80.5007 387.5267 153.5024 83.0455 

  15 8 387.5267 111.7006 81.9239 387.5267 160.1434 85.2030 

   5 387.5267 107.4453 80.4204 387.5267 156.9468 82.7685 

 1/10 5 8 387.5267 58.0702 41.4323 387.5267 90.1162 43.7714 

   5 387.5267 53.5722 40.4872 387.5267 83.0858 42.0653 

  10 8 387.5267 58.6573 41.3385 387.5267 91.5462 43.4347 

   5 387.5267 55.1997 40.4392 387.5267 87.4725 41.8901 

  15 8 387.5267 59.1102 41.2492 387.5267 92.3844 43.1297 

   5 387.5267 56.4483 40.3937 387.5267 90.0050 41.7317 

Engineering Letters, 27:2, EL_27_2_07

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



 

VII. AN EXAMPLE 

 The real data in thin film transistor liquid crystal 

display (TFT-LCD) [38] is utilized, where USL = 25 

m and n = 46. The defective proportions are 0.04 and 

0.09 at p1 and p2, respectively. = 0.05 and  = 0.10. The 

observations are shown as follows. 

 

11.6015  15.0628    9.9393  14.4734  15.7765  16.2799  

16.0025  13.3181  10.0423  12.0464  11.0135  17.1608  

13.4624  14.2235  10.9065  17.9988  12.5331  13.8901  

10.1995  16.1308  12.8635    9.8069  12.0955    9.0961      

9.2012  10.6522  13.9687  10.8885  14.9516  12.6782 

10.2634  10.8754  14.4964  16.7877  11.3240  12.5248  

15.0168  15.0026  13.3096  11.1455  15.1508  11.9452     

    9.8483  15.6493  11.3775  10.2598 

 

 The sample mean is x =12.8966 and standard deviation 

is s = 2.3902. Suppose that i = 5, f = 1/3, k = 3, c = 2, and 

then the values of Pa at p1 in SSP by variables, SkSP-V and 

EB in SkSP-V are 0.8564, 0.9292 and 0.9856, respectively. 

However, the values of Pa at p2 in SSP by variables, SkSP-V 

and EB in SkSP-V are 0.2034, 0.1191 and 0.0351, 

respectively. In addition, the ASNs at p1 in SSP by 

variables, SkSP-V and EB in SkSP-V are 46, 23 and 17 per 

lot. The ASNs at p2 in SSP by variables, SkSP-V and EB in 

SkSP-V are 46, 27and 18 per lot.  

 Therefore, it is clear that the values of Pa in proposed 

plan at p1 are higher than those in SSP by variables and 

SkSP-V whereas the values of Pa in proposed plan at p2 is 

smaller than those in SSP by variables and SkSP-V. The 

ASNs of proposed plan at two points is the smallest.  

 Fig. 6 shows the OC curve for three sampling plans for 

real data analysis. It can see that the proposed plan provides 

higher the Pa than the classical methods where the 

proportion of defective units is higher than 0.15.  

 Fig. 7 gives the graph that the proposed plan provide 

smaller the ASN than as compared to the traditional 

approaches where the proportion of defective units is higher 

than 0.03. 

 
Fig. 6. The comparison Pa  of the EB in SkSP-V case 2, SSP 

by variables and SkSP-V for real data. 

 
Fig. 7. The comparison ASN of the EB in SkSP-V case 2, SSP 

by variables and SkSP-V for real data. 

VIII. CONCLUSIONS  

 In this paper, we propose the SkSP-V with EB approach 

as a reference plan which incorporates prior information 

about parameters in computation of Pa and ASN. The 

proposed plans are divided into two cases, according to an 

unknown mean but known variance and known mean but 

unknown variance. The Pa and ASN for the proposed plan 

are then compared with classical approaches as the SSP by 

variables and SkSP-V with a SSP by variables as a 

reference plan for specified values of p1 and p2. For both 

cases, the results of simulation indicate that the proposed 

method provides a higher Pa and a smaller ASN than the 

classical methods. The proposed method also reduces the 

number of average sample sizes for products inspection in 

the lot and lower both producer risk and consumer risk. In 

addition, we apply the proposed plan to real data, thin film 

transistor liquid crystal, which yields consistent results with 

those in simulation. 
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