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Abstract—The visual measurement restricts the navigation
accuracy of the vision-aided integrated navigation system.
Thus, how to obtain the visual measurement quickly and
accurately which involves the feature extraction becomes a
key focus. Among the various feature extraction methods, the
most commonly used feature extraction methods are the scale
invariant feature transform (SIFT), the speeded up robust
features (SURF) and the features from accelerated segment test
(FAST). The performance evaluation is beneficial to choosing
appropriate feature extraction methods for visual measure-
ments. Although a great many of studies on their performance
evaluation exist, there is lack of performance comparison
among the abovementioned three feature extraction methods.
Therefore, researching on the evaluation of SIFT, SURF and
FAST is of great importance, which is the main objective of
this manuscript. In this paper, the theoretical principles of
these three methods were firstly overviewed. And then their
performance was compared and analyzed from three aspects:
the computing time, the capability of extracting features and
their invariances. In order to make the comparative analysis
systematically, the sequences of the image transformations used
in this paper were carried on rotation, scale, blur, compression
and illumination, respectively. The experimental results showed
that among the three methods, the FAST method was the fastest
one and the SIFT method possessed the strongest extraction
capability. The rotation, scale and compression invariances with
the SIFT method were all superior to the ones with the other
two methods. For the blur invariance, the SIFT and SURF
methods had similar performance which was better than the
one of the FAST method. Besides, the illumination invariance
with the FAST was not as good as with the other methods.

Index Terms—scale invariant feature transform (SIFT),
speeded up robust features (SURF), features from accelerated
segment test (FAST), feature extraction method, invariance,
performance evaluation

I. INTRODUCTION

IN modern kinematic positioning and navigation, the
MEMS (Micro-electro-mechanical System) IMUs have

been more and more popularized due to their advantages for
being low cost, very compact and low power consumption
[1], [2], [3]. However, low positioning accuracy is a fatal
flaw of the MEMS IMUs which seriously discourages their
utilization in practice. At the same time, how to well aid the
inertial navigation in poor GNSS and/or GNSS denied envi-
ronment also becomes essential. Therefore, more and more
researchers devote to studying alternate aiding techniques in
order to improve the system’s accuracy [4], [5], [6].

With the rapid development of the digital imaging sensors
and the computer techniques, the vision-aided integrated
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navigation system has drawn extensive attention of plenty
research and development activities due to its low price,
small size and rich information and other numerous merits
[7], [8], [9]. In the vision-aided integrated navigation system,
the visual measurement obtained by utilizing its onboard
visual sensor. Therefore, how to effectively extract useful
visual information through visual sensors is one of the key
components in vision-aided integrated navigation systems.

So far, there are different varieties of feature extraction
methods. It is worth to mention a few of the most well-known
feature extractors, the Harris feature extractor proposed by
Harris and Stephens [10] based on the second moment
matrix, the Smallest Univalue Segment Assimilating Nucleus
(SUSAN) detector proposed by Smith et.al [11] based on the
morphology, and the Hessian extractor based on the second
order partial derivative matrix [12], [13], [14]. Besides, the
scale invariant feature transform (SIFT), the speeded up
robust features (SURF) and the features from accelerated
segment test (FAST) methods are most widely used for visual
measurements in vision-aided integrated navigation systems
now [15], [16], [17]. With the emergence of these new feature
extraction methods, the studies on their performance become
paramount and badly needed in practice. Accordingly, [12],
[13], [18] made outstanding contributions. Although some
of extraction methods were evaluated and compared, there is
still a lack of systematic analysis of the FAST method. Under
the consideration that FAST is one of the most increasingly
widespread used feature extraction methods, a systematical
evaluation of its performance is necessary and meaningful so
that it becomes the focus of this manuscript.

The fundamentals of the SIFT, SURF, and FAST methods
were firstly introduced in detail in this paper. Thereafter,
their performance was systematically analyzed and com-
pared. Since a good feature extraction method should have
many advantages including running faster, detecting more
features, and having good invariance for different transforms
etc. Therefore, the above indicators of these three feature
extraction methods were taken as the evaluation metrics to
perform the comparison and evaluation here.

The rest of the paper was organized as follows. Section
II introduced the related work. The principles of these three
methods were described in Section III. Section IV presented
the datasets and the evaluation criteria used in this paper.
Experimental results along with specific analysis were given
in Section V. Section VI concluded this manuscript.

II. RELATED WORK

So far, there are a variety of feature extraction methods.
Each of them has its own properties. The Harris detector is
based on the second moment matrix describing the gradient
distribution in a local neighborhood of a point [12], [13],
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[14]. It was first used to find the salient features in the
image by Davison and Murray and it also uses the local
image to describe them. Although the Harris detector has
the translation invariance, the rotation invariance and the
illumination invariance, it does not possess the scale invariant
[19], [20]. SIFT was proposed in 1999 and was improved in
2004 by Lowe [21], [22]. This feature extraction method,
by combining extraction, description and matching steps, is
widely used in many computer vision applications. Further-
more, SIFT was used in 3D space by Se and Lowe through
utilizing the extracted features to aid the tracking algorithm,
and improving its robustness [23], [24]. However, one of
the biggest deficiencies with the SIFT method is that the
dimension of its descriptor is too high, which increases the
computational complexity, lengthens the running time and
reduces the speed of the feature matching. To solve this
problem, the SURF method was proposed by Bay in 2006
[16], [25], which was modified from SIFT, and also contained
extraction, description and matching steps. It was used for
location in omni-directional images, and the expected results
were achieved [26]. Although the SURF method runs faster
than the SIFT does, it does not perform as good as the SIFT
in terms of scale, rotation and illumination transformations.

Unlike the abovementioned methods, the SUSAN method
was proposed based on the morphology by Smith et.al, to
avoid the expensive computation burden since this method
only compares the gray values among the pixels and does
not involve the computation of the gradients [17], [27]. The
FAST method was further proposed by Rosten et.al based
on the SUSAN [17], [28] for simplicity, effectiveness and
rapidity. However, this method may not be robust to the noise
because only a limited number of the pixels were processed
with this feature extraction method.

With the emergence of these new feature extraction meth-
ods, the research on their performance evaluation attracts
plenty of attention. Mikolajczyk et.al [13], [29] compared
shape context, steerable filters, PCA-SIFT, differential in-
variants, SIFT, complex filters, and moment invariants for
different types of regions of interest. They also proposed
an extension of the SIFT descriptor and showed that it
outperformed the original method [13], [19], [30]. The per-
formance was measured against the changes in viewpoint, s-
cale, illumination, defocus and image compression. [12], [18]
compared the behavior of different detectors and descriptors
in VSLAM, such as the Harris, the SUSAN, the SIFT and
the SURF methods. They evaluated the repeatability of these
detectors, as well as the invariance and distinctiveness of
the descriptors. The performance evaluation of the SIFT and
SURF for the cross band matching of multispectral images
was present in [31]. Miksik et.al [30] evaluated BRIEF,
BRISK, ORB, and MRRID extractors and compared their
matching precisions. In [32], the SIFT, PCA-SIFT and SURF
methods were evaluated for their extracting and matching
speed. In summary, there have been many of works on
the performance evaluation. However, the question about
which feature extraction method is more suitable for visual
measurements is still open.

III. FUNDAMENTALS OF SIFT, SURF AND FAST
Among varieties of feature extraction methods, three are

commonly used for visual measurements, which are SIFT,

SURF, FAST.So here these three feature extraction methods
will be introduced in this section.

A. SIFT

SIFT which is utilized for detecting and describing local
features in images and was first published in [22]. The
significant advantage of SIFT is its scale invariance. To
achieve this efficiently, the scale space is first established
on the basis of the scale space theory, i.e., convolution
operations to the preprocessing images are carried out using
the Gaussian kernel function. Different scale images can
be obtained by changing the scale factor σ so that the
Difference-of-Gaussian (DoG) pyramid can be gotten by
computing the difference of two images which have the same
resolution and the nearby scales separated by a constant
multiplicative factor k. Thus,

D (x, y, σ) = (G (x, y, kσ)−G (x, y, σ)) ∗ I (x, y)
= L (x, y, kσ)− L (x, y, σ)

(1)

wherein L(x, y, σ) is the scale space with an input image
I(x, y), ∗ is the convolution operation, and G(x, y, σ) is a
variable-scale Gaussian function described as follows:

G (x, y, σ) =
1

2πσ2
e

−(x2+y2)
2σ2 (2)

Then, the extreme of each scale-space should be detected.
In order to detect the local maxima and minima of the DoG
images, each sample point is compared to its eight neighbors
in the current image and nine neighbors in the scale above
and below. The non-maximum suppression method is used
to find all candidate features [21].

Once a candidate feature has been found, the next step is
to perform a detailed fit to the nearby data for location, scale,
and ratio of principal curvatures. The points which have low
contrast or are poorly localized along an edge can be rejected
by quadratic interpolation method and by computing the trace
of the Hessian matrix, respectively, introduced in [21], [22].
In this way, the stability and the noise immunity of SIFT
will be significantly enhanced.

Then, by assigning a consistent orientation to each feature
based on local image properties, the feature descriptor can
be represented relative to this orientation and therefore the
rotation invariance can be achieved. For each image sample
L(x, y), at its scale, the gradient magnitude m(x, y) and the
orientation θ(x, y) can be computed using the differences
between its neighbor pixels:

m (x, y) =
√

(L1 − L2)2 + (L3 − L4)2 (3)

θ (x, y) = tan−1 L3 − L4

L1 − L2
(4)

where L1 = L(x+ 1, y), L2 = L(x− 1, y), L3 =
L(x, y + 1), L4 = L(x, y − 1). An orientation histogram
is formed from the gradient orientations of features in the
neighborhood around a feature. The highest peak in the
histogram is defined as the dominant direction of this feature.
Around the feature, a circular Gaussian window, which is
divided into 4 × 4 subarea, is selected and then gradient
magnitudes of sample points in each subarea are summed in
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eight directions. Finally, a descriptor with 4×4×8 = 128 di-
mensions is obtained and normalized. Here the SIFT method
is invariant for scale and rotation transformations.

After the generation of the SIFT descriptors of two im-
ages, the extracted features can be matched by utilizing the
Euclidean distance as the similarity measure.

Overall, the SIFT method has expected performance on
scale and rotation transformations, but suffers from expensive
computation due to its high descriptor dimension, especially
in larger scale environment.

B. SURF

SURF, which is a robust local feature detector [25], was
modified based on the SIFT. It is achieved by using a set of
box-type filters to approximate Hessian matrix and by relying
on integral images for image convolutions, which drastically
reduce the computational complexity [16], [25].

Firstly, for an input image I(x, y), the integral image is
obtained by

IΣ(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (5)

Similarly to SIFT, the scale space is built for the scale
invariance. However, the SURF method approximates the
second-order Gaussian derivatives using a set of box-type
filters, while different filter sizes corresponds different scales
[25]. Based on the integral image theory, the scale space can
be obtained quickly. And by subtracting two images which
have nearby scales, the DoG will be built.

Then, the extremes of the DoG can be found using the
Hessian matrix, which is given for an input image I(x, y)
with σ scale as follows:

H (x, y, σ) =

[
Lxx (x, y, σ) Lxy (x, y, σ)
Lxy (x, y, σ) Lyy (x, y, σ)

]
(6)

where Lxx(x, y, σ) is the convolution of the I(x, y) and
the second-order Gaussian derivatives; Lxy(x, y, σ) and
Lyy(x, y, σ) are defined as similar as Lxx(x, y, σ). In SURF,
approximated by box-type filters, Lxx, Lxy , Lyy are denoted
by Dxx, Dxy , Dyy , respectively. So the determinant of the
Hessian matrix 6 is:

det (Happrox) = DxxDyy − (ωDxy)
2 (7)

where ω is an adjusting factor to ensure that the Gaussian
functions and the box filters can be approximated.

After the Hessian’s determinant of each pixel is obtained
and compared to its neighbors in 3 × 3 × 3 neighborhood,
the candidate features can be identified by utilizing the
non-maximum suppression method. Then their locations and
scales can be refined using quadratic interpolation in the
same way as with the SIFT method.

In order for assigning orientation, the Haar wavelet re-
sponses in x and y directions are calculated within a circular
neighborhood. Once the wavelet responses are weighted
based on Gaussian function, the wavelet responses in hor-
izontal and vertical directions are summed within a sliding
orientation window covering an angle of 60◦, respectively.
Since the orientation of the longest vector corresponds to
the dominant direction, without loss of the generality, let
assume the dominant direction in the x direction. Then, one

can build a square region around the feature and then split
it uniformly into 4 × 4 square sub-regions. For each sub-
region, the Haar wavelet responses in x and y directions,
denoted by dx and dy with their absolute values as |dx|
and |dy|, are computed at each sample point. Then, all
these four values are summed, represented by the vector
v = (Σdx,Σdy,Σ |dx| ,Σ |dy|). Hence the dimension of the
SURF descriptor is 4× 4× 4 = 64. After the normalization,
the SURF has the scale and rotation invariances.

At last, the features from different images can be matched
by using the Euclidean distance.

The schematic flowchart of the SURF method is described
in Fig.1.

Input image

Build DoG space based 

on integral image 

theory and box filters

Find out the local 

maximum using Hessian 

matrix 

Refine candidate 

features

Use the Haar wavelet 

responses to assign 

orientation and obtain 

the descriptor

Match features based 

on the Euclidean 

distance

Fig. 1. The schematic flowchart of the SURF method

Therefore, compared with the SIFT, the SURF method has
not only the scale and rotation invariance but also the faster
computing speed.

C. FAST

Different from SIFT and SURF methods, the FAST
method does not compute the gradients to extract features,
but utilizes the comparison of the pixel gray values [28]. So
it belongs to the high-speed feature extraction methods.

Firstly, the FAST method finds candidate features using
the segment test [17], [28], which operates within a circle
of sixteen pixels around a center point p. Fig. 2 gives an
example of the segment test (right) using the Lena (left).

1
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1
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p
4
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89
1
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1
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1
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1

6
1 2

3

1

1

Fig. 2. An example of the segment test

Since the general test criteria have their weaknesses,
Rosten et.al [17], [28] presented an approach which used
machine learning to address the candidate features. For each
center pixel point p, its related pixels on the circle (denoted
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by p→ x, x ∈ {1, · · · , 16}) can have one of three states:

Sp→x =

 d, Ip→x ≤ Ip − t (darker)
s, Ip − t < Ip→x ≤ Ip + t (similar)
b, Ip + t < Ip→x (brighter)

(8)

where Ip and Ip→x are the gray values of p and the pixel
on the circle, respectively, and t is a threshold. By choosing
an x and computing Sp→x for all points in a training image,
each point has one of three states, darker, similar or brighter.
So the training image is divided into three parts, denote by
Pd, Ps and Pb.

Then the FAST method employs the algorithm used in ID3
[17] to select the pixels which yield the most information
about whether the candidate pixel is a feature. This is
measured by the entropy of a Boolean variable named Kp:

H (P ) = (c+ c̄) log2 (c+ c̄)− clog2c− c̄log2c̄ (9)

where c = |{p |Kp is ture}| is the number of features and
c̄ = |{p |Kp is false}| is the number of the non-features.

The choice of x then yields the information gain:

H (P )−H (Pd)−H (Ps)−H (Pb) (10)

Then this process is applied recursively on all three subsets
and terminates when the entropy is zero.

After the defined response function as below:

V = max(
∑
x∈Pb

|Ip→x − Ip| − t,
∑
x∈Pd

|Ip − Ip→x| − t)

(11)
the non-maxima suppression can be applied to extract fea-
tures finally.

Since the FAST method can only detect features, in this
paper the same description and matching methods are used
as introduced in the SURF. Overall, it is a high efficient
method, but sensitive to noise because only a small portion
pixels have been operated.

IV. EVALUATION METRICS AND IMAGE SAMPLES

In this section, the criteria and the datasets used in the
performance evaluation of the mentioned feature extraction
methods were introduced.

A. Evaluation Criteria

In order to evaluate the performance of each feature
extraction method, the following three metrics were used.

1) The running time: different feature extraction methods
were used to process the same image in the same hardware
environment. The less time a method takes, the more efficient
it works. In order to compare the running time with SIFT,
SURF and FAST clearly, the time ratios were calculated as
follows

SURF/SIFT =
SURF time

SIFT time
(12)

FAST/SIFT =
FAST time

SIFT time
(13)

2) The number of the detected features: the number of the
detected features reflects the capability of feature detection
and extraction with each method.

3) The percentage of the correctly matched features: this
criterion, calculated as the ratio of the number of the correct

matched features to the number of all matched features, mea-
sures the correctness of the feature detection and extraction.
A good feature extraction method should always have high
correctness when it extracts features from each image in the
same set. Here the “Correctness” describes the percentage of
the correctly matched features.

Correctness =
(Num correctmatches)

(Num allmatches)
× 100 (14)

B. Data Sets

In order to analyze the performance of the SIFT, SURF,
and FAST methods, five different datasets 1 of the trans-
formed images were used (Fig.3-Fig.7). The transformations
included rotation transformation (Fig.3), scale transformation
(Fig.4), blur transformation (Fig.5), compression transforma-
tion (Fig.6) and illumination transformation (Fig.7). Each im-
age set had six images, of which the last five images of each
set had the corresponding transformation referred to their first
images which were the original and reference images. In the
rotated image set, the original image 3(a) was rotated 20, 30,
40, 50 and 60 degrees clockwise, respectively, of which the
last one was shown in Fig.3(b). The scale transformed image
set was obtained by varying the scale values contrasted to the
Fig.4(a). And the scale values of the rest images in this image
set were 1.2, 1.8, 2.4, 3.0 and 3.5, respectively. The blur
transformation was acquired by adding some Gaussian noises
with zero means and different variances which were 0.02,
0.04, 0.06, 0.08, and 0.1, respectively. The Fig.5(b), whose
noise variance was 0.1, was present as an example. The
image quality parameter of the Fig.6(a) was set as 50%, 20%,
10%, 5%, and 2%, and then the compression sequence was
generated. The illumination transformation was introduced
by varying the camera aperture.

( )a ( )b

Fig. 3. Rotation transformation

Fig. 4. Scale transformation

1Available at http://www.robots.ox.ac.uk/vgg/research/affine/.
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( )a ( )b

Fig. 5. Blur transformation

( )a ( )b

Fig. 6. Compression transformation

V. EXPERIMENTAL RESULTS

In order to evaluate their performance, the datasets intro-
duced in Section 4.2 were processed on the same computer
equipped with an Intel Core 2 T6570, 2.1 GHz processor
and 3 GB RAM under Windows XP. The evaluation metrics
were calculated for all of the images using SIFT, SURF and
FAST, respectively.

The results of the first set of images as in Fig.3 were
graphically represented in Fig.8, of which the running time,
the number of detected features and the correctness were
compared in Fig.8(a), Fig.8(b) and Fig.8(c), respectively.

As can be seen from Fig.8, compared with SIFT, the SURF
ran faster at a ratio of 0.1-0.15 whilst the FAST ran faster
at a ratio of 0.02-0.05. Therefore, the FAST method was
the fastest one in rotation transformation image sequences
which was 20-50 times faster than SIFT and 3-6 times faster
than SURF. The number of the detected features from SURF
was largest among these three feature extraction methods,
followed by SURF, and then FAST. For the correctness,
SIFT had the highest correctness (about 78%) and SURF and
FAST were almost of equal reliable (nearly 45%). Therefore,
SIFT showed the best performance in rotation invariance
among these three methods. The rotation invariance of SURF
and FAST were almost of equivalent.

The results of the image set as in Fig.4 were shown in
Fig.9. The running time, the number of detected features and
the correctness were compared using bar graphs in Fig.9(a),
Fig.9(b) and Fig.9(c), respectively.

Compared with SIFT, SURF ran faster at the ratio of 0.08-
0.13 and FAST was faster at the ratio of 0.01-0.1. Therefore,
the FAST method had the shortest running time with the scale
transformation, which was 10-100 times faster than SIFT
and 1-9 times faster than SURF. With the scale increment,
the number of detected features by SIFT remained stable.
However, the one by SURF was increased whilst the one

( )a ( )b

Fig. 7. Illumination transformation

by FAST was decreased. For the correctness of the feature
detection, SIFT performed correctly at about 90% which
was maintained stably while the feature detection correctness
of SURF and FAST were both unsteady. But in general
the correctness of FAST was better than the one of SURF.
Therefore, SIFT had the best performance in scale invariance
among these three method, followed by FAST.

The results of the image set as in Fig.5 were shown in
Fig.10. The running time, the number of detected features
and the correctness were compared in Fig.10(a), Fig.10(b)
and Fig.10(c), respectively.

From Fig.10, it is obvious that compared with SIFT, the
SURF ran faster at a ratio of 0.06-0.12 whilst the FAST
ran faster at a ratio of 0.01-0.04. Therefore, the FAST
method was the fastest method in blur transformation image
sequences which was 25-100 times faster than SIFT and 3-6
times faster than SURF. SIFT detects more features than the
other two methods, followed by SURF. Besides, the number
of detected features by these three methods kept stable as
the noise covariance increased. For the correctness, SIFT
and SURF had almost the same and stable performance
(nearly 70%), but the one of FAST was lower and unstable.
Therefore SIFT and SURF had nearly the same performance
in blur invariance which was much better than FAST.

The results of the image set as in Fig.6 were represented
in Fig.11, of which the running time, the number of detected
features and the correctness were compared using bar graphs
in Fig.11(a), Fig.11(b) and Fig.11(c), respectively.

Compared with the SIFT method, SURF ran faster at the
ratio of 0.1-0.15 and FAST was faster at the ratio of 0.02-
0.06. Therefore, the FAST method was the fastest method
in compression transformation image sequences which was
15 50 times faster than SIFT and 2-6 times faster than SURF.
SIFT detected more features than the other two method,
followed by SURF, and then FAST. With the compression
ratio increment, the number of detected features by SIFT
and SURF increased. But there was no obvious regular-
ity for FAST. In general, the correctness of these three
methods decreased as the compression ratio increased. But
the correctness of these three algorithms did not change
obviously unless the compression ratio was larger than 90%.
When the compression ratio was larger than 90%, all of
their correctness decreased rapidly. The correctness of SIFT
decreased the least and the one of FAST decreased the most
(when the compression ratio was 98%, its correctness was
only 6%). Therefore, SIFT had the best performance on the
compression invariance, followed by SURF, and then FAST.

The results of image set as in Fig.7 were shown in Fig.12.
The running time, the number of detected features and the
correctness were compared using bar graphs presented in
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Fig. 8. Comparison of the three algorithms in rotation transformation
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Fig. 9. Comparison of the three algorithms in scale transformation
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Fig. 10. Comparison of the three algorithms in blur transformation

Fig.12(a), Fig.12(b) and Fig.12(c), respectively.
It is easy to know that compared with the SIFT method,

SURF ran faster at the ratio of 0.1-0.18 and FAST was faster
at the ratio of 0.04-0.06. Therefore, the FAST method was
the fastest method with the illumination transformation which
was about 25 times faster than SIFT and nearly 3 times faster
than SURF. In general, the detected features decreased with
the image illumination weakening. For the same image, the
features detected by SIFT was more than the ones detected by
the other two methods and FAST detected the least features.
From Fig.12(c), we can see that the correctness of SIFT
decreased with the image illumination intensity weakening
(decreased from 74% to 50%), but the correctness of SURF
maintained stably (about 60%). The correctness of FAST was
always lower than 45% and it changed with the illumination
randomly. Therefore, SURF had the best performance in
illumination invariance, followed by SIFT.

In summary, the comparison results of the three feature

extraction methods were shown in Table I, in which more
stars correspond to better performance.

TABLE I
THE PERFORMANCE COMPARISON OF THE SIFT, SURF AND FAST

Methods Invariance
Rotation Scale Blur Compression Illumination

SIFT FF FFF FF FFF F
SURF F F FF FF FFF
FAST F FF F F F

VI. CONCLUSION

Three features extraction methods, SIFT, SURF and FAST,
are most widely used for visual measurements. In this
manuscript, their performance were analyzed and compared
comprehensively. In order to do this, five image sets were
processed, respectively. Besides, their performance was sys-
tematically evaluated and compared through three criteria:
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Fig. 11. Comparison of the three methods in compression transformation
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Fig. 12. Comparison of the three methods in illumination transformation

the running time, the number of the detected features and
the correctness. The experimental results showed that the
FAST method had the fastest computing speed, the SURF
method took the second place, and the SIFT method had
the slowest computing speed among these three methods.
The number of the detected features from the SIFT method
was the largest while the one from FAST was the least.
With different transformations, their performance varied. The
rotation invariance, the scale invariance and the compression
invariance with the SIFT method were all superior to the
ones with other two methods. About the blur invariance, the
performance from SIFT and SURF were similar, which was
better than the FAST method. Besides, the FAST method
had the worst illumination invariance. Additionally, SURF
and FAST had a similar performance on rotation invariance
while on scale invariance FAST was better than SURF.
However, the FAST method had a worst performance on
compression transformation. Furthermore, SURF was good
with the illumination transformed and FAST had the worst
illumination invariance. Since in vision-aided integrated nav-
igation system a great many of images should be deal with,
the SIFT method is unsatisfactory for its low computing
speed. Besides, the FAST method has similar invariances
with the SURF method in different transformations, but much
faster than the SURF method. Thus, for visual measurements,
the FSAT method is recommended. And this performance
evaluation filled in a gap in the performance comparison
among the SIFT, SURF and FAST methods and can be
useful for choosing appropriate feature extraction methods
for visual measurements in practice.
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