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Abstract—Water level may influence local community dynam-
ics. In this paper, an almost predator-prey model is investigated
to study the influence of water level variations on the interaction
between two species. By using several comparison theorems and
some analytical technicals, we derive some sufficient conditions
for permanence of the system. Moreover, by using the prop-
erties of almost periodic functions and constructing a suitable
Lyapunov functional, sufficient conditions which guarantee the
existence of uniformly asymptotically stable almost periodic so-
lution of the system are obtained. Finally, numerical simulations
are carried out to illustrate the feasibility of the main results.
The theoretical results confirm the assumption that the water
exerts a strong influence on the interaction between the species.

Index Terms—water level fluctuations; permanence; almost
periodic solution; asymptotical stability.

I. INTRODUCTION

IT is well known that significant variations of water level
can have a strong impact on the persistence of some

species. In fact, the increase of water volume hinders the
capture of the prey by the predator. The same reasoning is
applied when there is a decrease in the volume of water,
favoring the capture of the prey by the predator. During the
last decade, the impact of water level fluctuations on the
species communities has been widely studied in rivers, lakes
and reservoirs; see, for example, [1-7].

Notice that ecosystems are often disturbed by outside
continuous forces in the real world, such as seasonal effects
and variations in weather conditions, food supplies, mating
habits, etc., the assumption of almost periodicity of the
parameters is a way of incorporating the almost periodicity of
a temporally nonuniform environment with incommensurable
periods (nonintegral multiples).

Motivated by the works [3] and [4], we propose an almost
predator-prey model with water level fluctuations as follows:
Let G(t) and B(t) be respectively the biomass of the prey
and predator at time t. When a predator attacks a prey, it
has access to a certain quantity of food depending on the
water level. When water level is low the predator is more in
contact with the prey. Let r(t) be the accessibility function
for the prey. It is assumed that the function r(t) is almost
periodic and continuous. The minimum value rl is reached in
spring and the maximum value ru is attained during autumn,
denoted respectively by γG(t) and γB(t) the consumption
rate of the resource by the prey and predator. Let eB(t)
be the conversion rate of the prey in biomass and mG(t),
mB(t) be respectively the consumption rate of biomass by
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metabolism of the prey and predator. The predator needs
a quantity γB(t)B(t) for his food, but he has access to a
quantity

r(t)
G(t)B(t)

B(t) +D(t)
(≤ γB(t)B(t)),

where D(t) measures the other causes of mortality outside
the metabolism and predation. It gives the extent to which
environment provides protection to the prey.

Accordingly, the predator-prey model can be expressed as
dG(t)
dt = G(t)(γG(t)−mG(t)G(t))

−r(t) G(t)B(t)
B(t)+D(t) ,

dB(t)
dt = eB(t)r(t)

G(t)B(t)
B(t)+D(t) −mB(t)B(t).

(1)

The initial conditions for system (1) take the form of

G(s) = φ1(s) > 0, B(s) = φ2(s) > 0,

s ∈ (−∞, 0], φi(0) > 0, (2)

where φi, i = 1, 2 are bounded and continuous functions on
(−∞, 0].

Let B0, G0 be respectively the initial density of the
predator and prey with B0 > 0 and G0 > 0. By the theory
of functional differential equations [8], it is clear that system
(1) has a unique positive solution which satisfies the initial
condition (2).

The following standard analysis shows that the model (1)
is biologically sound.

Lemma 1. Every solution of system (1) with initial condi-
tions (2) exists in the interval [0,+∞] and remains positive
for all t ≥ 0.

Proof: Firstly, we show that G(t) > 0 for all t ∈ [0, α),
where 0 < α ≤ +∞. Otherwise, there exists a t1 ∈ [0, α)
such that G(t1) = 0, dG

dt (t1) < 0 and G(t) > 0 for all
t ∈ [0, t1).

Hence, there must have B(t) > 0 for all t ∈ [0, t1). If this
statement is not true, then there exists a t2 ∈ [0, t1) such that
B(t2) = 0 and B(t) > 0 on [0, t2). Furthermore,

dB(t)

dt
≥ −mB(t)B(t),∀t ∈ [0, t2],

then

B(t) ≥ B0 exp(−mB(t)t),∀t ∈ [0, t2],

thus,

B(t2) ≥ B0 exp(−mB(t2)t2) > 0.

It is a contradiction. Hence, B(t) > 0 for all t ∈ [0, t1).
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On the other hand

dG(t)

dt
≥ G(t)

(
− r(t)

B(t)

B(t) +D(t)
+ γG(t)

−mG(t)G(t)

)
,

then

G(t) ≥ G0 exp

(∫ t

0

[
− r(s)

B(s)

B(s) +D
+ γG(s)

−mG(s)G(s)

])
ds,

thus

G(t1) ≥ G0 exp

(∫ t1

0

[
− r(s)

B(s)

B(s) +D
+ γG(s)

−mG(s)G(s)

])
ds > 0.

It is a contradiction with G(t1) = 0, so G(t) > 0 for all
t ≥ 0. This completes the proof.

For convenience, we introduce the notation

fu = sup
t∈R

f(t), f l = inf
t∈R

f(t),

where f is a positive and bounded function. Throughout this
paper, we assume that the coefficients of the almost periodic
system (1) satisfy

min{γl
G,m

l
G, r

l, elB, D
l,ml

B} > 0,

max{γu
G,m

u
G, r

u, euB , D
u,mu

B} < +∞.

In the following sections, we shall study the existence and
stability of almost periodic solutions of system (1).

II. BASIC RESULTS

In this section, we shall develop some preliminary results,
which will be used to prove the main result.

Lemma 2. (see [9]) If a > 0, b > 0, and x′ ≥ x(b − ax),
when t ≥ 0 and x(0) > 0, then

lim inf
t→+∞

x(t) ≥ b

a
.

If a > 0, b > 0, and x′ ≤ x(b − ax), when t ≥ 0 and
x(0) > 0, then

lim sup
t→+∞

x(t) ≤ b

a
.

Let D denotes R or an open subset of R. The relevant
definitions and the properties of almost periodic functions,
see [10].

Definition 1. (see [10]) f ∈ C(R,R) is an almost periodic
function if and only if for any sequence α′

n ⊂ T, there exists
a subsequence αn ⊂ α′

n such that f(t + αn) converges
uniformly on R as n → +∞. Furthermore, the limit function
is also an almost periodic function.

Lemma 3. (see [10]) If f(t), g(t) are almost periodic func-
tions, then, for any ε > 0, E{ε, f} ∩E{ε, g} is a nonempty
relatively dense set in R; that is, for any given ε > 0, there

exists a constant l(ε) > 0, such that in any interval of length
l(ε), there exists at least a τ ∈ E{ε, f} ∩E{ε, g} such that

|f(t+ τ)− f(t)| < ε, |g(t+ τ)− g(t)| < ε,∀t ∈ R.

Consider the following almost periodic dynamic equation

x′ = f(t, x) (3)

and the associate product system of (3)

x′ = f(t, x), y′ = f(t, y). (4)

Lemma 4. (see [10]) Suppose that there exists a Lyapunov
function V (t, x, y) ∈ C(R+ × D × D,R) satisfying the
following conditions:
(1) a(∥x − y∥) ≤ V (t, x, y) ≤ b(∥x − y∥), where a, b ∈

K,K = {a ∈ C(R+, R+) : a(0) = 0 and a is
increasing};

(2) |V (t, x1, y1)−V (t, x2, y2)| ≤ L(∥x1−x2∥+∥y1−y2∥),
where L > 0 is a constant;

(3) D+V ′
(4)(t, x, y) ≤ −µV (t, x, y), where µ > 0 is a

constant.
Moreover, if there exists a solution x(t) of (3) such that
x(t) ∈ S, where S ⊂ D is a compact set. Then there exists
a unique uniformly asymptotically stable almost periodic
solution p(t) of (3) in S. Furthermore, if f(t, x) is periodic
with period ω in t, then p(t) is a periodic solution of (3)
with period ω.

III. PERMANENCE

Assume that the coefficients of (1) satisfy
(H1) γl

G > ru ≥ rl >
mu

BDu

elBm1
.

Theorem 1. Let (G(t), B(t)) be any positive solution of sys-
tem (1) with initial condition (2). If (H1) holds, then system
(1) is permanent, that is, any positive solution (G(t), B(t))
of system (1) satisfies

m1 ≤ lim inf
t→+∞

G(t) ≤ lim sup
t→+∞

G(t) ≤ M1, (5)

m2 ≤ lim inf
t→+∞

B(t) ≤ lim sup
t→+∞

B(t) ≤ M2, (6)

especially if m1 ≤ G0 ≤ M1, m2 ≤ B0 ≤ M2, then

m1 ≤ G(t) ≤ M1, m2 ≤ B(t) ≤ M2, t ∈ [t0,+∞),

where

M1 =
γu
G

ml
G

− rlm1

ml
G(m1 +Du)

, M2 =
euBr

uM1

ml
B

−Dl,

m1 =
γl
G − ru

mu
G

, m2 =
elBr

lm1

mu
B

−Du.

Proof: Assume that (G(t), B(t)) be any positive solu-
tion of system (1) with initial condition (2). It follows from
the first equation of system (1) that

G′(t) = G(t)(γG(t)−mG(t)G(t))

−r(t)
G(t)B(t)

B(t) +D(t)

≥ G(t)[(γl
G − ru)−mu

GG(t)]. (7)

By Lemma 2, we can get

lim inf
t→+∞

G(t) ≥ γl
G − ru

mu
G

:= m1.
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Then, for arbitrarily small positive constant ε > 0, there
exists a T1 > 0 such that

G(t) > m1 − ε, ∀t ∈ [T1,+∞].

From the second equation of system (1), when t ∈
[T1,+∞),

B′(t) = eB(t)r(t)
G(t)B(t)

B(t) +D(t)
−mB(t)B(t)

> elBr
l (m1 − ε)B(t)

B(t) +D(t)
−mu

BB(t).

Let ε → 0, then

B′(t) ≥ elBr
l m1B(t)

B(t) +D(t)
−mu

BB(t)

≥ B(t)

B(t) +D(t)
[elBr

lm1 −mu
BD

u

−mu
BB(t)]. (8)

By Lemma 2, we can get

lim inf
t→+∞

B(t) =
elBr

lm1

mu
B

−Du := m2.

Then, for arbitrarily small positive constant ε > 0, there
exists a T2 > T1 such that

B(t) > m2 − ε, ∀t ∈ [T2,+∞).

On the other hand, from the first equation of system (1),
when t ∈ [T2,+∞),

G′(t) = G(t)(γG(t)−mG(t)G(t))− r(t)
G(t)B(t)

B(t) +D(t)

< G(t)

(
γu
G − rl(m1 − ε)

(m1 − ε) +Du
−ml

GG(t)

)
.

Let ε → 0, then

G′(t) ≤ G(t)

(
γu
G − rlm1

m1 +Du
−ml

GG(t)

)
. (9)

By Lemma 2, we can get

lim sup
t→+∞

G(t) =
γu
G

ml
G

− rlm1

ml
G(m1 +Du)

:= M1.

Then, for arbitrarily small positive constant ε > 0, there
exists a T3 > T2 such that

G(t) < M1 + ε, ∀t ∈ [T3,+∞].

From the second equation of system (1), when t ∈
[T3,+∞),

B′(t) = eB(t)r(t)
G(t)B(t)

B(t) +D(t)
−mB(t)B(t)

<
B(t)

B(t) +D(t)
[euBr

u(M1 + ε)−ml
BD

l

−ml
BB(t)].

Let ε → 0, then

B′(t) ≤ B(t)

B(t) +D(t)
[euBr

uM1 −ml
BD

l −ml
BB(t)].(10)

By Lemma 2, we can get

lim sup
t→+∞

B(t) =
euBr

uM1

ml
B

−Dl := M2.

Then, for arbitrarily small positive constant ε > 0, there
exists a T4 > T3 such that

B(t) < M2 − ε, ∀t ∈ [T4,+∞].

In special case, if m1 ≤ G0 ≤ M1, m2 ≤ B0 ≤ M2, by
Lemma 2, it follows from (7)-(8), (9)-(10) that

m1 ≤ G(t) ≤ M1, m2 ≤ B(t) ≤ M2, t ∈ [t0,+∞),

This completes the proof.

IV. ALMOST PERIODIC SOLUTION

In this section, by constructing a suitable Lyapunov func-
tional, we shall study the existence of a unique almost
periodic solution of (1), which is uniformly asymptotically
stable.

Let S be the set of all solutions (G(t), B(t)) of system
(1) satisfying m1 ≤ G(t) ≤ M1, m2 ≤ B(t) ≤ M2 for all
t ∈ R+.

Lemma 5. S ̸= ∅.

Proof: By Theorem 1, we see that for any t0 ∈ R+ with
m1 ≤ G0 ≤ M1, m2 ≤ B0 ≤ M2, system (1) has a solution
(G(t), B(t)) satisfying m1 ≤ G(t) ≤ M1, m2 ≤ B(t) ≤
M2, t ∈ [t0,+∞).

Since r(t) is almost periodic, it follows from Definition
1 that there exists a sequence {tn}, tn → +∞ as n →
+∞ such that γG(t+ tn) → γG(t), mG(t+ tn) → mG(t),
r(t + tn) → r(t), D(t + tn) → D(t), eB(t + tn) → eB(t),
mB(t+ tn) → mB(t) as n → +∞ uniformly on R+.

Now, we claim that {G(t + tn)} and {B(t + tn)} are
uniformly bounded and equi-continuous on any bounded
interval in R+.

In fact, for any bounded interval [α, β] ⊂ R+, when n is
large enough, α+ tn > t0, then t+ tn > t0, ∀t ∈ [α, β]. So,
m1 ≤ G(t + tn) ≤ M1, m2 ≤ B(t + tn) ≤ M2 for any
t ∈ [α, β], that is, {G(t+tn)} and {B(t+tn)} are uniformly
bounded. On the other hand, ∀t1, t2 ∈ [α, β], from the mean
value theorem of differential calculus, we have

|G(t1 + tn)−G(t2 + tn)|

≤
(
M1(γ

u
G +mu

GM1) + ru
M1M2

m2 +Dl

)
|t1 − t2| (11)

|B(t1 + tn)−B(t2 + tn)|

≤
(
euBr

u M1M2

m2 +Dl
+mu

BM2

)
|t1 − t2|. (12)

The inequalities (11) and (12) show that {G(t + tn)} and
{B(t+ tn)} are equi-continuous on [α, β]. By the arbitrary
of [α, β], the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subsequence of
{tn}, we still denote it as {tn}, such that

G(t+ tn) → p(t), B(t+ tn) → q(t),

as n → +∞ uniformly in t on any bounded interval in R+.
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Furthermore,

dG(t+tn)
dt = G(t+ tn)(γG(t+ tn)

−mG(t+ tn)G(t+ tn))

−r(t+ tn)
G(t+tn)B(t+tn)
B(t+tn)+D(t+tn)

,
dB(t+tn)

dt = eB(t+ tn)r(t+ tn)
G(t+tn)B(t+tn)
B(t+tn)+D(t+tn)

−mB(t+ tn)B(t+ tn).

Let n → +∞, then{
dp(t)
dt = p(t)(γG(t)−mG(t)p(t))− r(t) p(t)q(t)

q(t)+D(t) ,
dq(t)
dt = eB(t)r(t)

p(t)q(t)
q(t)+D(t) −mB(t)q(t).

It is clear that (p(t), q(t)) is a solution of system (1).
Moreover,

m1 ≤ p(t) ≤ M1, m2 ≤ q(t) ≤ M2, ∀t ∈ R+.

This completes the proof.

Remark 1. From the proofs of Theorem 1 and Lemma 5,
we know that if the conditions of Theorem 1 hold, S is a
positive invariant set of system (1).

Theorem 2. Suppose the condition (H1) holds, assume
further that

(H2) λ < 0, where

λ = max

{
−ml

Gm1 +
euBr

u(M1 +M2 +DuM1)

(m2 +Dl)2
,

DuruM2 − elBr
l(m1 +m2)

(m2 +Dl)2

}
,

then there exists a unique uniformly asymptotically stable
almost periodic solution (G(t), B(t)) of system (1) which is
bounded by S∗ for all t ∈ R+.

Proof: Let x(t) = ln(G(t)), y(t) = ln(B(t)), then
system (1) can be transformed into

x′(t) = γG(t)−mG(t) exp(x(t))

−r(t) exp(y(t))
exp(y(t))+D(t) ,

y′(t) = eB(t)r(t)
exp(x(t))

exp(y(t))+D(t) −mB(t).

(13)

From Lemma 5, system (13) has a bounded solution
(x(t), y(t)) satisfying

lnm1 < x(t) < lnM1, lnm2 < y(t) < lnM2, ∀t ∈ R+,

then

|x(t)| < M̃1, |y(t)| < M̃2,

where

M̃1 = max{| lnm1|, | lnM1|},
M̃2 = max{| lnm2|, | lnM2|}.

For (x, y) ∈ R2, we define the norm ∥(x, y)∥ = |x|+ |y|.
Consider the product system of system (13)

x′(t) = γG(t)−mG(t) exp(x(t))

−r(t) exp(y(t))
exp(y(t))+D(t) ,

y′(t) = eB(t)r(t)
exp(x(t))

exp(y(t))+D(t) −mB(t),

u′(t) = γG(t)−mG(t) exp(u(t))

−r(t) exp(v(t))
exp(v(t))+D(t) ,

v′(t) = eB(t)r(t)
exp(u(t))

exp(v(t))+D(t) −mB(t).

(14)

Suppose X = (x(t), y(t)), Y = (u(t), v(t)) be any two
solutions of system (13), then ∥X∥ ≤ A, ∥Y ∥ ≤ A, where
A = M̃1 + M̃2. Set

S∗ = {(x(t), y(t))| lnm1 < x(t) < lnM1,

lnm2 < y(t) < lnM2, ∀t ∈ R+}.
Consider a Lyapunov functional defined on R+×S∗×S∗

as follows

V (t,X, Y ) = |x(t)− u(t)|+ |y(t)− v(t)|. (15)

Since ∥X − Y ∥ = |x(t)− u(t)|+ |y(t)− v(t)|, we have
1

2
∥X − Y ∥ ≤ V (t,X, Y ) ≤ 2∥X − Y ∥.

Let a, b ∈ C(R+, R+), a(x) = 1
2x, b(x) = 2x, thus the

condition (1) of Lemma 4 is satisfied.
In addition,

|V (t,X, Y )− V (t, X̃, Ỹ )|
=

∣∣|x(t)− u(t)|+ |y(t)− v(t)|
−|x̃(t)− ũ(t)| − |ỹ(t)− ṽ(t)|

∣∣
≤

∣∣(x(t)− u(t))− (x̃(t)− ũ(t))
∣∣

+
∣∣(y(t)− v(t))− (ỹ(t)− ṽ(t))

∣∣
≤ |x(t)− x̃(t)|+ |u(t)− ũ(t)|

+|y(t)− ỹ(t)|+ |v(t)− ṽ(t)|
= ∥X − X̃∥+ ∥Y − Ỹ ∥.

Let L = 1, then the condition (2) of Lemma 4 is satisfied.
Finally, calculate the V ′(t,X, Y ) along the solutions of

(13), we can obtain

V ′(t,X, Y )

= sgn(x(t)− u(t))(x(t)− u(t))′

+sgn(y(t)− v(t))(y(t)− v(t))′

= sgn(x(t)− u(t))

[
mG(t)(exp(u(t))− exp(x(t)))

+r(t)

(
exp(v(t))

exp(v(t)) +D(t)
− exp(y(t))

exp(y(t)) +D(t)

)]
+sgn(y(t)− v(t))eB(t)r(t)

[
exp(x(t))

exp(y(t)) +D(t)

− exp(u(t))

exp(v(t)) +D(t)

]
= sgn(x(t)− u(t))

[
mG(t)(exp(u(t))− exp(x(t)))

+D(t)r(t)
exp(v(t))− exp(y(t))

(exp(v(t)) +D(t))(exp(y(t)) +D(t))

]
+sgn(y(t)− v(t))eB(t)r(t)

· exp(x(t) + v(t))− exp(y(t) + u(t))

(exp(y(t)) +D(t))(exp(v(t)) +D(t))

+sgn(y(t)− v(t))DeB(t)r(t)

· exp(x(t))− exp(u(t))

(exp(y(t)) +D(t))(exp(v(t)) +D(t))
. (16)

By using the mean value theorem, we have

exp{x(t)} − exp{u(t)} = ξ1(t)(x(t)− u(t)),

exp{y(t)} − exp{v(t)} = ξ2(t)(y(t)− v(t)),

exp{x(t) + v(t)} − exp{y(t) + u(t)}
= ξ3(t)[(x(t)− u(t)) + (v(t)− y(t))], (17)
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where ξ1(t) lies between exp{x(t)} and exp{u(t)}; ξ2(t)
lies between exp{y(t)} and exp{v(t)}; ξ3(t) lies between
exp{x(t) + v(t)} and exp{y(t) + u(t)}.

From (16) and (17), we have

V ′(t,X, Y )

= sgn(x(t)− u(t))

[
mG(t)(exp(u(t))− exp(x(t)))

+D(t)r(t)
exp(v(t))− exp(y(t))

(exp(v(t)) +D(t))(exp(y(t)) +D(t))

]
+sgn(y(t)− v(t))eB(t)r(t)

· exp(x(t) + v(t))− exp(y(t) + u(t))

(exp(y(t)) +D(t))(exp(v(t)) +D(t))

+sgn(y(t)− v(t))D(t)eB(t)r(t)

· exp(x(t))− exp(u(t))

(exp(y(t)) +D(t))(exp(v(t)) +D(t))

≤
[
−ml

Gm1 +
euBr

u(M1 +M2 +DuM1)

(m2 +Dl)2

]
·|x(t)− u(t)|

+
DuruM2 − elBr

l(m1 +m2)

(m2 +Dl)2
|y(t)− v(t)|

≤ λV (t,X, Y ), (18)

where λ = max
{

− ml
Gm1 +

euBru(M1+M2+DuM1)
(m2+Dl)2

,
DuruM2−elBrl(m1+m2)

(m2+Dl)2

}
. From the condition (H2), λ < 0,

the condition (3) of Lemma 4 is satisfied.
To sum up, from Lemma 4, there exists a unique uniformly

asymptotically stable almost periodic solution (x(t), y(t)) of
system (13) which is bounded by S∗ for all t ∈ R+, which
means that there exists a uniqueness uniformly asymptotical-
ly stable almost periodic solution (G(t), B(t)) of (1) which
is bounded by S for all t ∈ R+. This completes the proof.

Corollary 1. Assume that (H1)-(H2) hold. Suppose that
the nonnegative coefficient r(t) is periodic of period ω;
then system (1) has a unique uniformly asymptotically stable
periodic solution of period ω.

Remark 2. Assume that (H1)-(H2) hold, then system (1)
has a unique uniformly asymptotically stable almost periodic
solution.

Remark 3. Assume that (H1)-(H2) hold. Suppose that the
nonnegative coefficient r(t) is periodic of period ω; then
system (1) has a unique uniformly asymptotically stable
periodic solution of period ω.

V. AN EXAMPLE AND SIMULATIONS

Consider the following system
dG(t)
dt = −(0.9 + 0.1 sin(

√
3t)) G(t)

B(t)+0.4B(t)

+G(t)[2.5 + 0.1 sin(
√
5t)− 0.1G(t)],

dB(t)
dt = 0.3(0.9 + 0.1 sin(

√
3t)) G(t)

B(t)+0.4B(t)

−0.5B(t).

(19)

that is r(t) = 0.9 + 0.1 sin(
√
3t), D = 0.4, γG(t) = 2.5 +

0.1 sin(
√
5t),mG(t) = 0.1,mB(t) = 0.5, eB(t) = 0.3.

By a direct calculation, we can get

m1 = 16.0000,M1 = 16.1951,

m2 = 7.2800,M2 = 9.3171,

and

(H1) γl
G = 2.4 > ru ≥ rl > 0.7583 = mB(t)D

eB(t)m1
;

(H2) λ = max
{

− ml
Gm1 +

euBru(M1+M2+DuM1)
(m2+Dl)2

,
DuruM2−elBrl(m1+m2)

(m2+Dl)2

}
= −0.0315 < 0.

Therefore, the conditions (H1)-(H2) hold. According to
Theorem 2, system (19) has a unique uniformly asymptot-
ically stable almost periodic solution. Dynamic simulations
of system (19), see Figures 1, 2 and 3.
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Fig. 1. Trajectory of G(t) with initial condition (x(0), y(0)) =
{(15, 15), (17, 17), (19, 19)}.
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Fig. 2. Trajectory of B(t) with initial condition (x(0), y(0)) =
{(8, 8), (10, 10), (12, 12)}.
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Fig. 3. The phase trajectory of G(t) and B(t) with initial condition
(x(0), y(0)) = {(12, 12), (15, 15), (20, 20)}.
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VI. CONCLUSION

This paper is concerned with an almost predator-prey
model with water level fluctuations. This study provides
preliminary results of the evolution of the ecosystem based
on water management of a lake. Permanence, stability, ex-
istence and uniqueness almost periodic solution are done.
We showed that variations in water level of a lake has
an important influence on the existence of almost periodic
solution of system (1).

As we all know, aquatic ecosystem are often altered by
human activities. One may consider many other types of
predator-prey models with water level fluctuations. Models
of predator-prey systems, see [11-13].
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