
AFPT: Accelerating Read Performance of
In-Memory File System Through Adaptive File

Page Table
Bingde Cui, and Huansheng Zhang

Abstract—Emerging non-volatile memory (NVM) technolo-
gies are expected to revolutionize storage systems by providing
cheap, persistent and fast data accesses through memory bus
interface. In oder to fully exploit NVM, many in-memory
file systems are proposed to achieve excellent performance
and strong consistency. Besides, to mitigate the read-write
asymmetric problem of NVM, many optimization strategies are
designed to hide the long write latency to NVM in critical path
of file operations, such as path resolution. However, we find that
the index structure of state-of-the-art in-memory file systems
cannot provide fast read performance in various use scenarios.

In this paper, we propose Adaptive File Page Table (AFPT),
a novel index scheme that combines software search and MMU
mapping to provide excellent read performance for different
workloads. For small requests, software search routines are
used to locate data pages by traversing the file index structure.
For large requests, we allocate a continuous address space and
build file page table to utilize hardware MMU for address
translation. A Cost Model is proposed to determine when to
build page table for a file. This model is 1.38-competitive
against optimal solution. We implement AFPT in PMFS and
NOVA and evaluate the performance with micro-benchmarks
and application workloads. The experimental results show that
AFPT improves file system performance by up to 55.62% and
41.78% for NOVA and PMFS, respectively.

Index Terms—In-Memory File System, File Page Table,
Virtual Address Space, Performance Optimization.

I. INTRODUCTION

Emerging byte-addressable, fast non-volatile memory (N-
VM) technologies, such as PCM [1]–[3], ReRAM [4]–[6],
memristor [7]–[9] are promised to revolutionize storage sys-
tem by providing persistent and instant accesses to storage-
class memory systems. Since NVMs can be directly attached
to memory bus and accessed by CPU through load/store
instructions, many approaches are proposed to integrate
NVMs into existing software stack [10]–[13].

In order to fully exploit NVM potential, state-of-the-art
in-memory file systems, such as PMFS [14], SIMFS [15],
NOVA [16] and BPFS [17], are designed and optimized
to achieve excellent performance and provide consistency
guarantees. Besides, the asymmetric read-write performance
of NVM calls for optimization strategies in critical path of
file operations, such as write and path name resolution [18].
Previous research efforts are based on the fact the NVM has
longer write latency and has similar read latency compared
with DRAM. Thus, many optimization techniques are pro-
posed to hide the long latency of NVM write [18], [19],

Manuscript received June 22, 2018; revised January 29, 2019.
Bingde Cui and Huansheng Zhang are with the Department of Computer

Science, Hebei University of Water Resources and Electric Engineering,
061001, China. e-mail: cuibd1975@163.com.

Huansheng Zhang is the corresponding author(plsyyq 8358@163.com).

and few efforts are devoted to optimize read performance of
in-memory file systems.

Unfortunately, we find that searching file index structure
by software routines leads to suboptimal read performance.
For in-memory file systems, software overhead of traversing
the file index to locate data pages is identified as the dominat-
ing bottleneck for performance improvement. Even though
SIMFS [15] and SCMFS [20] demonstrates the advantages
of using MMU along with file page table and virtual address
space to speedup address translation, file page table is not
efficiently utilized by state-of-the-art in-memory file systems.
On one hand, SIMFS builds file page table for all files,
not considering file size and access pattern. Thus, SIMFS
exhibits considerable space and runtime overhead for small
files [21]. On the other hand, NOVA and PMFS does not
utilize file page table concept for large files, which leads to
slower read performance than SIMFS [15].

The problem lies in the fact that fixed index structure
cannot meet the demands of various workloads. To address
this problem, we propose Adaptive File Page Table (AFPT),
a novel index scheme for in-memory file systems. The goal
of AFPT is to combine software search and file page table
to provide fast read speed in various use cases, regardless of
access pattern. Specifically, AFPT keeps track of file access
pattern using history information and utilizes a pre-defined
threshold to determine whether to build file page table. For
small requests, software search routine is used to locate
data pages. When the access size exceeds the threshold, a
continuous address space is allocated and file page table
is used to serve incoming requests. We build a cost model
to determine the appropriate threshold according to system
state. We implement AFPT in PMFS and NOVA, extensive
experiments show that AFPT can improve performance by
up to 55.62%.

In summary, this paper makes the following contributions:
• We reveal the inefficiency problem of file index struc-

ture of state-of-the-art in-memory file systems. Based on
our experimental results, we find that software search
routines are effective for small requests and MMU is
efficient for large data accesses.

• We propose a method to identify access pattern of files.
By consulting access history, we get the total amount
of accessed data and whether a file is one-shot access
or continuous access.

• We propose Adaptive Switching Algorithm to dynami-
cally switching between software search and file page
table according to file access pattern.

• We build a Cost Model to efficiently determine threshold
used in Adaptive Switching Algorithm. This model can

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

achieve 1.38-competitiveness against optimal solution.
The remainder of this paper is organized as follows.

Section II presents background and discusses challenges
of index structure of in-memory file systems. Section III
presents our detailed design of AFPT. Section IV presents
the evaluation results of AFPT. We discuss related work in
Section V and this paper is concluded in Section VI.

II. BACKGROUND & MOTIVATION

In this section, we first present the system architecture
of in-memory file system. Then we discuss the file index
structure commonly used to organize file data blocks. Finally,
we describe the challenges of current file index structure
design.

A. System Architecture for In-Memory File System

Most in-memory file systems are designed to take the byte-
addressability of NVM. NVM can be directly attached to
memory bus and CPU can access NVM through load/store
instructions. Due to the limited write endurance of NVM,
the system can deploy DRAM alongside with NVM to form
a unified address space.

Fig. 1: Architecture overview of block device based file
system and in-memory file system.

Figure 1 shows the architectural overview of in-memory
file system and traditional block device based file systems.
Applications issue file I/O operations to Virtual File System
VFS) through system call interfaces. The VFS propagates the
I/O requests to the underlying file systems. For block device
based file system, the I/O requests traverse block layer, I/O
scheduler and device driver before reaching block devices
(disks). On the other hand, for in-memory file system, the
software stack is significantly shortened. In-memory file
system can directly copy contents between user buffer and
NVM.

Compared with traditional block based file system, the
software stack of in-memory file system may impose more
overhead to the system performance. Because the access
latency of block device is three orders of magnitude slower
than that of NVM. Thus, many optimization strategies are
proposed to hide the latency in the critical path of in-memory
file systems [18], [19].

B. File Index Structures of In-Memory File System

File index structure is of great importance for in-memory
file system. Since each I/O request needs to consult the
index structure to copy contents to/from NVM. Accessing
NVM and transferring data is fast. The efficiency of index
structure can significantly affect file system performance
exposed to users. Most of in-memory file systems adopt
tree-like structures for file index. For example, PMFS [14],
NOVA [16] and HiNFS [19] use B-Tree. SIMFS [15] uses
page table, which is radix tree by nature. PRAMFS [22], a
small in-memory file system for embedded system, utilizes
two-dimensional arrays for index structure.

These index structures differ significantly in how the
indexes are traversed to get the contents of file data. We
category the file index structure into two types: software
search and MMU mapping.

Software Search. In this approach, the data blocks of a
file are accessed one by one. For example, to access data
blocks stored in a typical B-Tree. The root node of the tree
stores many pointers to data blocks. Software routines must
get the first pointer and copy the contents to user buffer
and then fetch the next pointer and copy the contents. When
accessing large file, the overhead of software search can be
the bottleneck for performance improvement.

MMU Mapping. MMU is designed to accelerate address
translation in operating system. The virtual address space
of process is associated with page table to enable virtual
memory and isolation. MMU is involved in each address
access to get the physical location of virtual address. If
file index mimics the structure of page table. MMU can be
exploited to fast traverse page table and locate data blocks.
In order to use MMU, a file virtual address space is required.
SCMFS [20] and SIMFS [15] take advantages of virtual
address and file page table to achieve excellent performance.

C. Challenges for File Index Structure Design

Both SCMFS [20] and SIMFS [15] demonstrate the ad-
vantages of using MMU mapping. The essential step of using
MMU is to allocate virtual address space and build file page
table for the associated virtual address. However, building file
page table comes with certain cost, especially for small files.
In this section, we analyze the pros and cons of building file
page table and discuss how to optimize the index structure
to achieve stable performance in all use cases.

Due to lack of source code of SIMFS, we implement file
page table and virtual address space concept in PMFS. The
B-Tree structure in PMFS uses 4 KB blocks, which can also
be used to construct page table entries for a specific virtual
memory area.

We first present the overhead breakdown of read operations
when different approaches (software search and file page
table) are used for data blocks lookup. For software search,
the overhead consists of three parts: system call, software
search and memcpy. For file page table, the overhead consists
of system call, building page table and memcpy.

Based on the results of figure 2 and figure 3, we can get
the following conclusions:

1) For both approaches, the time for reading/memcpy
increases as the request size grows.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 1G

0

50

100
Pe

rc
en

ta
ge

s
of

 E
xe

ct
ut

io
n

Ti
m

e
 sw-search% memcpy% sys-call%

Fig. 2: Execution time breakdown of software search when
reading different amount of data.

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 1G

0

50

100

Pe
rc

en
ta

ge
s

of
 E

xe
ct

ut
io

n
Ti

m
e

 build% memcpy% sys-call%

Fig. 3: Execution time breakdown of file page table when
reading different amount of data.

2) The system call imposes considerable overhead for
small requests (less than 16KB), which can reach up
to more than 90% in both cases.

3) For small request sizes, the time for building page table
is larger than that of software search. The overhead of
building page table decreases as the request size grows.

Based on the above analysis, we argue that it is necessary
to design an efficient policy to take full advantages of file
page table and software search. The policy should take into
account the file size and request size.

III. AFPT DESIGN

We design an adaptive switching scheme that aims to
combine software search and file page table to provide fast
file accesses in various use cases. The proposed strategy is
called Adaptive File Page Table (AFPT). In this section, we
first present design overview of AFPT. Then we discuss in
detail the major concepts of AFPT.

A. Overview

The design of the proposed Adaptive File Page Table
scheme is based on three observations:

1) Software search is efficient for small requests, while
file page table is efficient for large requests.

2) Efficiency is closely related to file access pattern.
Specifically, continuous access to the same file benefits
most with file page table and virtual address space than
one-shot access.

3) How and when to build file page table should be
determined by system state. It is necessary to build
a cost model to make intelligent decision.

Fig. 4: Overview of Adaptive File Page Table (AFPT).

Figure 4 shows the overview of AFPT. We make the
following design decisions:

Keep track of access pattern for every opened file. The
benefit for building file page table varies with file size and
file access patterns. On one hand, the file size can provide
immediate hint on whether it is worthwhile to build file page
table. For example, if a file is small, the overhead of building
page table can dominate the performance overhead. On the
other hand, file access frequency and total request size are
more accurate to model the access pattern. For example,
if a big file is opened but only the first page is read and
closed, i.e., one-shot access. There is no need to build file
page table. In a typical map-reduce workload, the input data
is divided into 64 MB or 128MB blocks by HDFS and
stored in local file systems. For such workloads, the whole
file is continuously accessed and it can benefit from MMU
mapping.

The access pattern of a file is updated in DRAM and it
is written back to NVM when the file is closed. We assume
the access pattern of a file is stable once it’s identified. The
access pattern does not require strong consistency, if it is lost
in case of system crash, it can be rebuilt by history access
information.

Combine software search and file page table. As
discussed in Section II, software search and file page table
both bear pros and cons. Neither approaches are efficient for
all use scenarios. Thus, we use software search as default
scheme and build file page table when continuous pattern is
detected.

Build a cost model to determine when to build file page
table. One challenge of combining software search and file
page table is to determine which files and when to build
file page table. If a file is accessed only a few pages, the
overhead of building file page table may offset the benefit
of using MMU and virtual address space. Thus, we build a
cost model to determine the condition for building file page
table.

B. Access Pattern Identification

In this section, we propose a scheme to identify file
access pattern based on request history window. The essential
concept is to record consecutive requests information, such
as operation type, file offset and request size. If a read/write
request is followed immediately by a close request, this file

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

is characterized as One-Shot Access. Otherwise, if many data
pages are accessed before close, this file is characterized as
Continuous Access.

We then discuss in detail how access pattern is identified.
We propose an algorithm, called Access Pattern Identifi-
cation (API) Algorithm to determine it. A file request is
represented by type, offset and size pair, it is denoted by
R(op, offset, size). The op of a request can be read, write
and close.

Algorithm III.1 API Algorithm
Input: R: an incoming request; T : threshold of data pages to determine

whether a file has continuous access pattern; Ntotal: the total number
of pages a file has been accessed before close.

Output: Access pattern of a file.

1: Pattern← Unkown.
2: if R.op == close then
3: if Ntotal < T then
4: Pattern← One-Shot Access.
5: else
6: Pattern← Continuous Access.
7: end if
8: end if
9: if R.op == read OR R.op == write then

10: Ntotal ← Ntotal +
R.size

PAGE SIZE
11: if Ntotal > T then
12: Pattern← Continuous Access.
13: end if
14: end if
15: return Pattern.

Algorithm III.1 works by checking the total number of
accessed pages (Ntotal) before close operation. If Ntotal is
less than T , the file has One-Shot Access pattern. Otherwise,
the file has Continuous Access pattern. In line 10, we
calculate the total number of pages of request R by dividing
request size. Note that we use total number of pages rather
than total amount of accessed data as threshold, because
each individual page needs to be searched by software
routine from file index. We discuss how the threshold T is
determined in Section III-D.

To improve the accuracy of access pattern identification
and prediction, some intelligent algorithms can be utilized,
such as neural networks and genetic algorithm [23]–[26], we
plan to further improve the algorithm in our future work.

C. Adaptive Switching Between Software Search and File
Page Table

In this section, we first present the structure change in
inode in order to support two approaches for data access-
es. Then, we discuss the algorithm for switching between
software search and file page table.

To support adaptive switching between software search
and MMU mapping, we add another pointer in inode to
indicate whether a virtual address space is assigned to a file.
The resulting structure of inode is depicted in figure 5.

In figure 5, the inode contains two pointers for file
accesses. The default one is the pointer to the root node of file
index tree. The file contents can be accessed by conventional
software search routines. That is, to traverse the tree and copy
contents from data blocks one by one. There is a new pointer,
VA, which points to file page table. The page table entries
are constructed with file data blocks. In this way, subsequent
accesses to the file virtual address can be instantly served by
MMU.

Index Treeinode

File Page Table

root

VA

Index Node

Data Blocks

Software

Search

MMU Mapping

Fig. 5: Structure of inode when applying adaptive file page
table scheme.

File page table can provide fast read/write performance.
There is no page fault when reading file contents, since all
the pages are pre-fault-in. Note that the data blocks are same
in both the file index tree and file page table. There is no
overhead of duplicating file data blocks. The physical address
of data blocks are used to build page table. That is, the last
level page table (PTE) contains pointers to data blocks. The
same blocks appear in both index tree and file page table.
The virtual address space and file page table just provides a
new route for data accesses.

To support file growth, the virtual address space is allocat-
ed two times larger than the actual file size. If write requests
are issued to the file and new data blocks are allocated. The
new blocks are inserted to both the file index tree and file
page table. When the file is closed, the virtual address space
and file page table is released so that other processes can
reuse the virtual address space.

The virtual address is not stored in NVM for two reasons.
First, it occupies extra NVM space to store the file page table.
Second, the virtual address space is dynamically allocated
from operating system, the same address is not guaranteed
to be valid after system reboot. Thus, we always allocate
new virtual address space when it is determined that the file
is about to build file page table.

We propose a strategy called Adaptive Switching (AS) to
build file page table when required. Adaptive Switching Strat-
egy tolerates limited number of software search operations to
reduce the cost of building file page table.

Algorithm III.2 shows the major steps of Adaptive Switch-
ing Strategy. For each opened file, we keep a counter to
indicate the total number of pages that are accessed by
software search. If the counter is smaller than a pre-defined
threshold T , file I/O requests are served by software search.
On the other hand, once the counter exceeds the threshold,
we allocate a virtual address space and build file page table
for that file. The subsequent I/O requests are served by MMU
mapping.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

Algorithm III.2 Adaptive Switching Algorithm
Input: F : the accessed file; N : the total number of pages that are accessed

by software search; T : the threshold for building file page table. R:
request to file F .

Output: The desired access approach for file F .

1: if N is smaller than threshold T then
2: N ← N + 1.
3: Serve request R by software search routines.
4: else
5: Allocate virtual address space and build file page table for file F .
6: Serve request R by virtual address space.
7: end if

Note that the two schemes can work seamlessly to serve
I/O requests. Because once virtual address space is built, the
target blocks can be calculated by simply adding the request
offset to the beginning virtual address.

As discussed in Section III-A, file page table is not the
default method for file operations. Instead, we allocate virtual
address space and build file page table only when certain
conditions are met, such as the file has continuous access
pattern and request size is large so that it is worthwhile to
build file page table. It is straightforward to check the file
size to decide whether it is necessary to build file page table.
However, the decision of when and whether to build file
page table by access pattern is particularly challenging, as
it is unknown whether a file is to be accessed again after
building file page table with considerable cost. To address
this challenge, we propose a cost model to decide when to
build file page table.

D. Cost Model

We propose a (1+ε)-competitive cost model to determine
the threshold T used in Algorithm III.1 and Algorithm III.2.
The cost model considers the cost for building file page table
and the cost for software searching. ε is a small constant. We
prove that in a given system, the cost model can achieve near
optimal result. The goal of the cost model is to gain benefit
from file operations that are served by software search at
most T times.

We first present some notations used in the cost model.
The cost for build file page table is denoted by Cbt, which
includes the costs for allocating free blocks, allocating virtual
address space and inserting pages to page table entries. The
cost for software search is denoted by Csw. The cost for
MMU mapping is denoted by Cmmu.

We then give the detailed steps for building the cost model.
First, to gain benefit by directly serving I/O requests using

software search, the accumulated cost of software searching
T pages should satisfy

T × Csw ≤ Cbt. (1)

Second, the accumulated cost should not exceed the cost
of building file page table. Thus,

Cbt ≤ (T + 1)× Csw. (2)

Third, we analyze the impact of threshold T on the
proposed Adaptive Switching Strategy. Since requests are
initially served by software search, the cost of total file
accesses can be represented as follows:

Ctotal =

{
Csw × i, i ≤ T
Csw × T + Cbt + Cmmu × (i− T), i > T.

(3)
where i is the total number of pages that the file has been

accessed.
Now let us analyze the ideal solution for the two cases in

equation 3. On one hand, if eventually i ≤ T , the optimal
approach to serve I/O requests is to use software search to
find the total i file pages. On the other hand, if eventually
i > T , the optimal approach should build file page table for
the first I/O request. Thus, we get the cost of the optimal
approach:

Coptimal =

{
Csw × i, i ≤ T
Cbt + Cmmu × i, i > T.

(4)

According to equations (3) and (4), the proposed Adaptive
Switching Strategy can achieve optimal cost when i ≤ T .
When i > T , the ratio R of the solution generated by
adaptive switching strategy against the optimal strategy is

R =
Csw × T + Cbt + Cmmu × (i− T)

Cbt + Cmmu × i

= 1 +
Csw − Cmmu

Cbt + Cmmu × i
× T.

(5)

Thus, competitiveness ratio R is a monotone decreasing
function of i. The minimum value of i in equation (5) is
T + 1, since i > T and i must be integer. Therefore, the
worst case is a request accesses T + 1 blocks of a file. The
cost of the worst case is Csw × T + Cbt + Cmmu. Hence,

ε =
Csw − Cmmu

Cbt + Cmmu × (T + 1)
× T. (6)

In a given storage system, ε is uniquely determined by
Csw, Cmmu and Cbt, which means ε is constant. For different
CPU architecture and hardware platform, these values may
vary. For example, in our experiment, we estimated that the
cost of building a page table entry is 21600 ns, and reading
a page by MMU takes 800 ns while software search takes
1800 ns. i.e., Cbt = 21600, Csw = 1800 and Cmmu = 800.
According to equation (1), the threshold T is set to 12. Using
equation (6), we can get the ε is 0.38. Thus, the adaptive
switching strategy can is 1.38-competitive against the optimal
approach.

IV. EVALUATION

In this section, we evaluate the performance of Adaptive
File Page Table (AFPT) and answer the following two
questions.

• How does AFPT perform against state-of-the-art index
structure of in-memory file systems.

• How does AFPT behave in real-world applications and
enterprise workloads.

We first describe the experimental setup and then evaluate
AFPT with micro-benchmarks and application workloads.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

1K 2K 4K 8K 16K 32K 64K 128K 512K 2M
0

2000

4000

6000

8000

10000

12000
Th

ro
ug

hp
ut

 (M
B/

s)

BlockSize

 NOVA-Std
 NOVA-AFPT
 PMFS-Std
 PMFS-AFPT

(a) Read

1K 2K 4K 8K 16K 32K 64K 128K 512K 2M
0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (M

B/
s)

BlockSize

 NOVA-Std
 NOVA-AFPT
 PMFS-Std
 PMFS-AFPT

(b) Random Read

Fig. 6: Performance comparison of PMFS and NOVA when using standard file index structure and AFPT strategy.

A. Experimental Setup

We have implemented AFPT in PMFS [14] and NO-
VA [16] in linux kernel 4.4.4. The index structure (B-Tree)
of PMFS and NOVA is extended with file page table. We add
a new pointer in inode to indicate whether file page table and
virtual address space is allocated for a file. The access pattern
information is tracked and updated in each file operation.

The experiments are conducted on a 4-Core PC with Intel
Core i5-7500@3.40GHZ CPU. The platform is equipped
with 64GB DDR4 memory. The reported memory bandwidth
by STREAM [27] benchmark is 13.5GB/s. We use Persis-
tent Memory Development Kit [28] to emulate a persistent
memory device and mount PMFS and NOVA on it. The
threshold for building file page table is set to 12 as discussed
in Section III-D. That is, once more than 48KB blocks of a
file have been continuously accessed, we build a file page
table for that file.

In the experiments, the original PMFS and NOVA is
denoted by PMFS-Std and NOVA-Std. The file systems with
AFPT strategy applied is called PMFS/NOVA-AFPT.

B. Micro-Benchmarks

We use FIO [29] to evaluate read and random read
performance. The file size is 4GB. The block size varies
from 1KB to 2MB. To avoid build file page table for small
requests, we modify FIO so that a file is closed after each
read operation. Thus, for block size which is less than 48KB,
conventional software search routine is used.

Figure 6 shows the throughput of sequential and random
read performance of NOVA and PMFS when using the
default B-Tree index and AFPT strategy. We can get the
following conclusions.

First, AFPT has similar performance with the standard B-
Tree index for small requests. This is AFPT falls back to
the conventional software routines for file operation when
the request size is less than 48KB. For both PMFS and
NOVA, the performance degradation caused by access pattern
identification is less than 2% for small block sizes. This is
because only limited information is recorded in each file
operation, as discussed in Section III-B. In other words, small
requests can reflect the overhead of AFPT and the result
shows that it is negligible.

Second, AFPT can accelerate read and random read perfor-
mance for large data accesses. The improvement for PMFS
and NOVA can reach up to 21.15% and 19.34%, respectively.
When request size exceeds 48KB, file page table is built

and the read operations are served by continuous virtual
address space, which is efficient for both read and random
read operations. For random read, the address of the desired
file data page can be calculated by simply adding the offset to
the file virtual address space. In this way, no software search
is involved and software overhead can be totally avoided.

C. Macro-Benchmarks

We use four Filebench [30] workloads, including fileserv-
er, webproxy, webserver and varmail, to evaluate how AFPT
behave when running real-world applications. Table I lists
the characteristics of the selected benchmarks. They have
different read/write ratio and access pattern. We test two
different configuration of workloads by using small and large
I/O sizes. For small I/O size, the file page table is not built
until the a file is accessed many times to reach the threshold.
For large I/O size, the file page table is built when the
file is accessed for the first time. We run each workload
configuration for 5 times and report the average throughput
results.

TABLE I: Workload characteristics.

Workload Average I/O Size # of Threads R/W Ratiofile size (Small/Large)
Fileserver 512KB 16KB/64KB 50 1:2
Webproxy 64KB 16KB/1MB 50 5:1
Webserver 256KB 8KB/1MB 50 10:1

Varmail 128KB 16KB/1MB 50 1:1

Figure 7 shows the throughput of Filebench workloads,
when issuing small and large I/O to PMFS and NOVA.
We can ge the following conclusions. First, AFPT strategy
outperforms the standard file index for both file systems and
AFPT is especially efficient for read-intensive workloads,
such as webproxy and webserver. Second, AFPT is more
efficient for large I/O requests than small I/O requests. This
is because some small I/O requests have to be served by
software search routines before using file page table. While
large I/O can trigger file page table when it is issued for the
first time. The performance improvement of AFPT against
the B-Tree file index can be up to 55.62% for NOVA and
41.78% for PMFS.

Fileserver and varmail are write-intensive workloads. AF-
PT strategy can improve performance by up to 25.12% for
NOVA. The improvement for PMFS in varmail workload is
only 3.24%, this is because varmail scatters many files in
large directory, PMFS suffers from poor directory operations.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

Small-IO Large-IO
0

100

200

300

400
O

ps
 p

er
 S

ec
on

d
(x

10
00

)

 NOVA-Std
 NOVA-AFPT
 PMFS-Std
 PMFS-AFPT

(a) Fileserver

Small-IO Large-IO
0

100

200

300

400

500

O
ps

 p
er

 S
ec

on
d

(x
10

00
)

 NOVA-Std
 NOVA-AFPT
 PMFS-Std
 PMFS-AFPT

(b) Webproxy

Small-IO Large-IO
0

100

200

300

400

500

600

O
ps

 p
er

 S
ec

on
d

(x
10

00
)

 NOVA-Std
 NOVA-AFPT
 PMFS-Std
 PMFS-AFPT

(c) Webserver
Small-IO Large-IO

0

100

200

300

400

500

600

O
ps

 p
er

 S
ec

on
d

(x
10

00
)

 NOVA-Std
 NOVA-AFPT
 PMFS-Std
 PMFS-AFPT

(d) Varmail

Fig. 7: Filebench throughput with different I/O size when PMFS and NOVA using default file index and AFPT.

The major bottleneck for PMFS in varmail workload is
metadata operation.

Webserver and webproxy are read-intensive workloads.
AFPT demonstrates significant performance improvement.
Since webserver involves little directory operations, PMFS
can achieve up to 41.78% speedup. However, for webproxy
workload, PMFS suffers from directory lookup inefficiency
and has limited improvement.

D. Enterprise Workloads

We select several workload traces from Microsoft data
center [21], [31] and evaluate how the proposed AFPT
scheme can improve the performance of typical enterprise
workloads. Table II lists the description of the workloads.

TABLE II: Enterprise workloads description.

Workload R/W Ratio Total Request Size Description
hm 4:1 10GB Hardware monitor.
mds 1:4 20GB Metadata server.
prn 5:1 20GB Printer server.

rsrch 1:6 15GB Research server.
web 8:1 30GB Webserver.

We replay the workload traces by issuing I/O requests ac-
cording to the request sequence. Operations per second (Ops)
is used to evaluate the performance when using different file
systems.

Table III and Figure 8 show the performance of enterprise
workloads when using different file system index schemes.
The results show that AFPT scheme can better improve
read-intensive workloads, such as hm, prn and web. The
improvement over the standard software search scheme can
be up to 37.45% for NOVA and 44.93% for PMFS. For write-
intensive workload rsrch, the improvement is around 4% for
both file systems. This is because rsrch has multiple small
write requests, which limits the potential of file page table.

TABLE III: Performance (Ops) of enterprise workloads when
using different index schemes.

Workload Strategy Imprv. Strategy Imprv.
NOVA NOVA PMFS PMFS

-Std -AFPT -Std -AFPT
hm 89430 107463 20.16% 78547 89197 13.56%
mds 76341 88951 16.52% 84276 95907 13.80%
prn 82127 99215 20.81% 67239 89021 32.39%

rsrch 43087 44816 4.01% 30982 32186 3.89%
web 109821 150945 37.45% 98351 142543 44.93%

0

20000

40000

60000

80000

100000

120000

140000

160000

hm mds prn rsrch web

O
p
s
 p

e
r

S
e
c
o

n
d

Enterpirse Workload

NOVA-Std NOVA-AFPT PMFS-Std PMFS-AFPT

Fig. 8: Performance comparison of enterprise workloads
when PMFS and NOVA use the standard index scheme and
the proposed AFPT scheme.

Since enterprise workloads are mixed with read and write
requests, the proposed Adaptive File Page Table scheme can
be utilized to improve the overall performance.

E. Application Workloads

We select some application workloads to test how the
proposed AFPT scheme behave when running real-world
applications, such as MapReuce, Key-Value Storage and
Relational Database. Table IV shows the characteristics of
the applications.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

TABLE IV: Application workloads characteristics.

Application Total Data Size Description
WordCount 25GB Count the words of wiki pages using mapreduce library.

TeraSort 30GB Sort randomly-generated numbers using mapreduce library.
RocksDB 30GB Put and Get value to a KV database.

SQLite 20GB Insert and query to a relational database.
Kernel-Make 10GB Compile the Linux kernel source files.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

WordCount TeraSort RocksDB SQLite Kernel-Make

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Enterpirse Workload

NOVA-Std NOVA-AFPT PMFS-Std PMFS-AFPT

Fig. 9: Performance comparison of application workloads
when PMFS and NOVA use the standard index scheme and
the proposed AFPT scheme.

Figure 9 shows the normalized performance of PMFS and
NOVA when using different index schemes. We can get the
following conclusions.

For MapReduce workloads (WordCount and TeraSort),
the AFPT scheme can improve performance by up to 40%.
This is because mapreduce workloads needs to read large
data blocks continuously. The sequential access pattern can
benefit most from file page table index structure.

For Key-Value and relational database workloads, we
carry out large number of queries after inserting data into
the database. The AFPT scheme can improve the query
performance by up to 25%.

For Kernel-Make workload, it involves reading source files
from file system and writing object files to the file system.
There are more than 60000 source files in the linux kernel
source tree, both input and output can benefit from the fast
AFPT index scheme.

F. Sensitivity to File Size

6600

6800

7000

7200

7400

7600

7800

8000

1GB 2GB 4GB 8GB 16GB

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

File Size

NOVA-Std NOVA-AFPT PMFS-Std PMFS-AFPT

Fig. 10: Sensitivity to file size when PMFS and NOVA
accessing file with standard index scheme and the proposed
AFPT scheme.

Figure 10 shows the performance comparison when PMFS
and NOVA accessing different size of files with the standard
index scheme and the proposed AFPT index scheme. The
performance is measured by re-reading file contents multiple
times to ensure the file page table is setup and stored in file

inode. Both PMFS and NOVA benefit from file page table
and virtual address space. The maximal throughput of NOVA
and PMFS is 7874MB/s and 7709MB/s respectively. Since
the file page table is stored in inode after the file is accessed
for the first time. Re-reading operations can be instantly
served by the virtual address space. The AFPT scheme is
especially useful for large file.

V. RELATED WORK

In this section, we discuss some research work that is
closely related to ours.

In-Memory File System Design. There are a num-
ber of in-memory file systems aiming at exploiting byte-
addressability of NVM, such as BPFS [17], SCMFS [20],
SIMFS [15], PMFS [14], HiNFS [19], NOVA [16], PRAMF-
S [22] and EXT4-DAX [32], [33]. These file systems are
designed to address the following two concerns in NVM-
based system. First, to avoid traditional software stack over-
head by directly copying contents to and from file system
without involving page cache. Second, to provide a strong
consistency mechanism in order to protect file system from
corruption caused by power failure or system crash.

BPFS utilizes shadow paging and atomic updates to pro-
vide consistency for update operations. PMFS and NOVA
provide new mechanisms for metadata and data consistency,
such as light-weight journal and log-structured design. D-
WARM [21] aims to optimize wear-leveling for in-memory
file systems. SCMFS and SIMFS utilizes virtual address
space and MMU for file operations. But SIMFS fails to
consider the overhead of building file page table for small
files may lead to performance degradation in some cases.

In conclusion, state-of-the-art in-memory file systems
mainly focus on providing a new architecture for emerging
NVM and a set of accompanying consistency mechanisms to
achieve consistency. They fail to consider the performance
optimization for specific workloads. Our proposed Adaptive
File Page Table strategy can be seamlessly applied to any in-
memory file system with moderate modification to the file
system source code, since most of the in-memory file systems
use 4KB blocks as file index. It is straightforward to build
file page table using the same pages in the existing index
structure.

Optimization Strategies for File Systems. Since NVM
has large write performance gap compared with DRAM [34],
many optimization strategies have been proposed to mitigate
the asymmetric read-write performance of NVM [35]–[42].
The essential idea is to hide long write latency to NVM
in the critical path, in order to avoid system performance
degradation.

PTree [18] utilizes page table to provide fast path name
resolution. PTree organizes the metadata of file systems with
page table to exploit the fast random access of NVM, it

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

significantly increases the efficiency and scalability of name
resolution. HiNFS [19] proposes an NVM-ware write buffer
policy to cache lazy-persistent file writes in DRAM to elim-
inate the long write latency for NVM accesses. SwapX [43]
proposes to map address space of hosts directly to NVM pool
so that it can improve energy efficiency and performance of
swap operations.

Most of the existing optimization techniques aim to im-
prove write performance of in-memory file systems. And
page table and virtual address space concept have been
widely adopted in optimizing swap and metadata operations.
Our proposed AFPT scheme can be integrated with other
strategies to achieve excellent performance for in-memory
file systems.

VI. CONCLUSION

The development of NVM-aware file systems results in
many novel architecture innovation and new approaches for
consistency. However, few effort is devoted to optimize read
performance of in-memory file systems. In this paper, we
reveal the challenges of state-of-the-art file index structure,
that is, file page table and virtual address space concept is not
efficiently utilized by in-memory file systems. This finding
motivates the design of a new index scheme, called Adaptive
File Page Table (AFPT), that achieves excellent read per-
formance for variety of access patterns. AFPT dynamically
determines whether to use software search or MMU for
file accesses. We implement AFPT scheme in PMFS and
NOVA, the experimental results show that AFPT can improve
performance by up to 55.62%.

REFERENCES

[1] H. Jeong, “High density pcm(phase change memory) technology,” in
2016 International SoC Design Conference (ISOCC), Oct 2016, pp.
187–188.

[2] G. W. Burr, M. J. Brightsky, A. Sebastian, H. Y. Cheng, J. Y.
Wu, S. Kim, N. E. Sosa, N. Papandreou, H. L. Lung, H. Pozidis,
E. Eleftheriou, and C. H. Lam, “Recent progress in phase-change
memory technology,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 6, no. 2, pp. 146–162, June 2016.

[3] R. Annunziata, P. Zuliani, M. Borghi, G. D. Sandre, L. Scotti,
C. Prelini, M. Tosi, I. Tortorelli, and F. Pellizzer, “Phase change
memory technology for embedded non volatile memory applications
for 90nm and beyond,” in 2009 IEEE International Electron Devices
Meeting (IEDM), Dec 2009, pp. 1–4.

[4] W. H. Chen, W. J. Lin, L. Y. Lai, S. Li, C. H. Hsu, H. T. Lin,
H. Y. Lee, J. W. Su, Y. Xie, S. S. Sheu, and M. F. Chang, “A
16mb dual-mode reram macro with sub-14ns computing-in-memory
and memory functions enabled by self-write termination scheme,” in
2017 IEEE International Electron Devices Meeting (IEDM), Dec 2017,
pp. 28.2.1–28.2.4.

[5] S. G. Kim, J. C. Lee, T. J. Ha, J. H. Lee, J. Y. Lee, Y. T. Park, K. W.
Kim, W. K. Ju, Y. S. Ko, H. M. Hwang, B. M. Lee, J. Y. Moon, W. Y.
Park, B. G. Gyun, B. K. Lee, D. Yim, and S. J. Hong, “Breakthrough
of selector technology for cross-point 25-nm reram,” in 2017 IEEE
International Electron Devices Meeting (IEDM), Dec 2017, pp. 2.1.1–
2.1.4.

[6] I. Messaris, A. Serb, S. Stathopoulos, A. Khiat, S. Nikolaidis, and
T. Prodromakis, “A data-driven verilog-a reram model,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
pp. 1–1, 2018.

[7] H. Hossam, M. El-Dessouky, and H. Mostafa, “Time-based read
circuit for multi-bit memristor memories,” in 2018 7th International
Conference on Modern Circuits and Systems Technologies (MOCAST),
May 2018, pp. 1–4.

[8] M. Stork, “Properties of one type memristor emulator,” in 2018 28th
International Conference Radioelektronika (RADIOELEKTRONIKA),
April 2018, pp. 1–6.

[9] Z. I. Mannan, C. Yang, and H. Kim, “Oscillation with 4-lobe chua
corsage memristor,” IEEE Circuits and Systems Magazine, vol. 18,
no. 2, pp. 14–27, Secondquarter 2018.

[10] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage
recovery methods for non-volatile memory database systems,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’15. New York, NY, USA: ACM,
2015, pp. 707–722.

[11] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A high-performance storage array architecture
for next-generation, non-volatile memories,” in Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO ’43. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 385–395.

[12] C. Wu, G. Zhang, and K. Li, “Rethinking computer architectures
and software systems for phase-change memory,” J. Emerg. Technol.
Comput. Syst., vol. 12, no. 4, pp. 33:1–33:40, May 2016.

[13] C. Costa and M. Y. Santos, “Big data: State-of-the-art concepts, tech-
niques, technologies, modeling approaches and research challenges,”
IAENG International Journal of Computer Science, vol. 44, no. 3, pp.
285–301, 2017.

[14] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer
Systems, ser. EuroSys ’14. New York, NY, USA: ACM, 2014, pp.
15:1–15:15.

[15] E. H. M. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang, “A new design
of in-memory file system based on file virtual address framework,”
IEEE Transactions on Computers, vol. 65, no. 10, pp. 2959–2972,
Oct 2016.

[16] J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid
volatile/non-volatile main memories,” in 14th USENIX Conference on
File and Storage Technologies (FAST 16). Santa Clara, CA: USENIX
Association, 2016, pp. 323–338.

[17] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009,
pp. 133–146.

[18] J. Zeng, N. Xiao, F. Liu, L. Zhu, Y. Li, Y. Xing, and S. Li, “Ptree:
Direct lookup with page table tree for nvm file systems,” in 2017 IEEE
15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th
Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technol-
ogy Congress(DASC/PiCom/DataCom/CyberSciTech), Nov 2017, pp.
1160–1167.

[19] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-
volatile main memory,” in Proceedings of the Eleventh European
Conference on Computer Systems, ser. EuroSys ’16. New York, NY,
USA: ACM, 2016, pp. 12:1–12:16.

[20] X. Wu and A. L. N. Reddy, “Scmfs: A file system for storage class
memory,” in 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), Nov 2011, pp.
1–11.

[21] L. Wu, Q. Zhuge, E. H.-M. Sha, X. Chen, and L. Cheng, “Dwarm: A
wear-aware memory management scheme for in-memory file systems,”
Future Generation Computer Systems, vol. 88, pp. 1 – 15, 2018.

[22] “Protected non-volatile ram filesystem.” [Online]. Available: https://
pramfs.sourceforge.net/tech.html.

[23] S. H. A. Antoni Wibowo and N. Z. Abidin, “Combined multiple neural
networks and genetic algorithm with missing data treatment: Case
study of water level forecasting in dungun river - malaysia,” IAENG
International Journal of Computer Science, vol. 45, no. 2, pp. 246–
254, 2018.

[24] X.-X. Ma and J.-S. Wang, “Function optimization and parameter per-
formance analysis based on krill herd algorithm,” IAENG International
Journal of Computer Science, vol. 45, no. 2, pp. 294–303, 2018.

[25] Q. Z. Qinghe Zheng, Mingqiang Yang and J. Yang, “A bilinear multi-
scale convolutional neural network for fine-grained object classifica-
tion,” IAENG International Journal of Computer Science, vol. 45,
no. 2, pp. 340–352, 2018.

[26] A. S. Wei Cao and J. Hu, “Stacked residual recurrent neural network
with word weight for text classification,” IAENG International Journal
of Computer Science, vol. 44, no. 3, pp. 277–284, 2017.

[27] “Introduction to STREAM benchmark,” http://www.cs.virginia.edu/
stream/ref.html.

[28] “Persistent Memory Development Kit,” https://github.com/pmem/
pmdk.

[29] “Fio: flexible i/o tester,” http://freecode.com/projects/fio.
[30] “Filebench benchmark.” [Online]. Available: https://github.com/

filebench/filebench/wiki.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

[31] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” Trans. Storage,
vol. 4, no. 3, pp. 10:1–10:23, Nov. 2008.

[32] “Supporting filesystems in persistent memory.” [Online]. Available:
https://lwn.net/Articles/610174/.

[33] “Support ext4 on nv-dimms.” [Online]. Available: http://lwn.net/
Articles/588218/.

[34] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” SIGARCH Comput. Archit. News, vol. 39, no. 1,
pp. 91–104, Mar. 2011.

[35] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in Proceedings of the 5th Biennial Con-
ference on Innovative Data Systems Research, ser. CIDR ’11, 2011,
pp. 21–31.

[36] C. Wu, G. Zhang, and K. Li, “Rethinking computer architectures
and software systems for phase-change memory,” J. Emerg. Technol.
Comput. Syst., vol. 12, no. 4, pp. 33:1–33:40, May 2016.

[37] P. Chi, W. C. Lee, and Y. Xie, “Adapting B+ -tree for emerging
nonvolatile memory-based main memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 9, pp. 1461–1474, Sept 2016.

[38] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in
transaction systems,” Proc. VLDB Endow., vol. 8, no. 4, pp. 389–400,
Dec. 2014.

[39] Y. Zhang and S. Swanson, “A study of application performance with
non-volatile main memory,” in 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST), May 2015, pp. 1–10.

[40] D. Niu, Q. He, T. Cai, B. Chen, Y. Zhan, and J. Liang, “Xpmfs: A new
nvm file system for vehicle big data,” IEEE Access, pp. 1–1, 2018.

[41] Z. Zhang, D. Feng, Z. Tan, J. Chen, W. Zhou, J. Zhang, and L. T.
Yang, “An approach of spatial usage optimization for nvm-based
storage system,” in 2017 IEEE International Symposium on Parallel
and Distributed Processing with Applications and 2017 IEEE Inter-
national Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), Dec 2017, pp. 229–236.

[42] Y. Xu, L. Yang, Z. Hou, Q. Huo, and K. Qiu, “Energy-efficient cache
management for nvm-based iot systems,” in 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications
and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC), Dec 2017, pp. 491–493.

[43] G. Zhu, K. Lu, X. Wang, Y. Zhang, P. Zhang, and S. Mittal, “Swapx:
An nvm-based hierarchical swapping framework,” IEEE Access, vol. 5,
pp. 16 383–16 392, 2017.

Engineering Letters, 27:2, EL_27_2_13

(Advance online publication: 27 May 2019)

__

