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Abstract—Our economy and society depend on the contin-
uous operation of the internet and other wireless networks.
However, during or after a natural disaster, communications
infrastructure can be affected and even interrupted. Effective
planning of emergency operations in these scenarios can play
an essential role in saving lives. Recently, the use of Unmanned
Aerial Vehicles (UAVs) has been proposed to provide broad-
band connectivity. UAVs can be rapidly deployed as aerial
base-stations over the affected area and provide connectivity
between victims and emergency operators. However, one of
the challenges for their deployment in emergency scenarios is
finding their optimal locations to provide the largest number of
communication services. This paper introduces an optimization
model which positions UAVs in such a way as to maximize their
coverage (the number of mobile users covered), thus guaran-
teeing a successful voice service in an LTE network. A genetic
algorithm (GA) with a steady-state population configuration
is used to find optimal locations of the UAVs. We present
the results of the GA using two different representations:
binary and floating-point. The results indicate that the genetic
algorithm with a steady-state model performs better using a
binary representation.

Index Terms—Binary representation, Floating-point repre-
sentation, Genetic algorithms, Unmanned aerial vehicles

I. INTRODUCTION

COMMUNICATIONS infrastructure can play an impor-
tant role during natural disasters and keeping it active

during catastrophes is a challenge faced by service providers,
emergency services and the government [1]. During such
events, communications systems can collapse. For example,
Hurricane Katrina in 2005 destroyed 2000 base stations and
911 emergency services were severely damaged, leaving
emergency operators without a reliable network to coordinate
rescue operations [2]. The East Japan earthquake and the
tsunami in 2011 damaged 1.9 million landlines and 29,000
base stations. The partial restoration took a month, while
the complete restoration took 11 months [3]. In October
2012, Hurricane Sandy, in the United States of America, left
25% of base stations without service. As a consequence the
affected population did not have the essential services of the
network for several weeks, hindering rescue operations [4].
In 2014 in México, Hurricane Odile affected the peninsula
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of Baja California. It devastated the electrical and commu-
nications infrastructure such that people could not request
emergency services during the first critical hours, and they
could not communicate with friends and family for several
weeks.

The efficient management of emergencies in scenarios
where communication is interrupted by a natural disaster
depends to a large extent on the ability of Public Safety
Communications (PSC) to coordinate and share critical in-
formation. Currently, PSC uses the narrow band, which limits
their interoperability, coverage, and service. The Federal
Communications Commission (FCC) has established that it
will use broadband technologies to enable PSCs to offer
voice, video and data services in order to save lives, reduce
damages and prevent criminal activities in the wake of nat-
ural disasters [5]. The Third Generation Partnership Project
(3GPP) is working on Long Term Evolution (LTE) to support
broadband requirements in PSC with the aim of creating a
reliable and interoperable network [6]. Diverse studies as in
[6], show LTE as a technology that has strong potential to
support specific requirements of emergency scenarios.

One opportunity for improving PSC with LTE is to use
UAVs as aerial base stations. The UAVs have mobility and
self-organization capabilities [5], [6], [7] that offer an agile
and low-cost communications infrastructure [8]. However,
their use in communications networks faces some challenges.
These challenges include achieving an optimal deployment
of the devices, interference management, trajectory planning,
network design, and channel model. [8], [9].

During an emergency, the deployment of UAVs to optimal
locations is key to providing reliable network coverage.
If a UAV is placed randomly within the affected area,
it will not guarantee that the greatest number of victims
have connectivity. On the other hand, if they are located in
optimal positions, then network coverage can be maximized,
ensuring that the largest number of victims have access to
communication services. In emergency scenarios the number
of UAVs and the number of transmission channels are usually
limited; therefore, resources have to be used efficiently.

Finding locations for UAVs that maximize network cover-
age is the problem addressed by this research. According to
the theory of computational complexity, this type of problem
is considered as NP-Hard because of the large number of
combinations of locations that a UAV can have [10], [11].
Metaheuristics are used to deal with this type of optimization
problem, delivering suitable solutions within a reasonable
time-frame [12]. Genetic algorithms (GAs) belong to this
class of metaheuristics; the population evolution inspires
them [13]. By applying selection, crossing and mutation
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operators, populations evolve [14]. GAs are robust techniques
to solve complex problems. While they do not guarantee an
optimal solution, they do find solutions very close to it. They
are global search algorithms, and if a local optimum that is
not useful is found, they can easily discard it and continue
to explore other options. Other techniques have to restart
the work. One of the challenges for their implementation
is a representation of the solutions. This leads to choosing
if it is appropriate to represent the solutions that the GA
will process as binary, integer, floating-point or permutations
strings. The information of these strings is relevant, given that
they must allow for simple mapping with the objective func-
tion and support in faithfully representing the phenomenon
studied. Representation of solutions has a high impact on
the performance of the GA regarding execution time and
quality of the solutions. For some problems, a commitment
to these performance factors is observed. In this work, two
representations are compared in the GA: binary and floating-
point.

Several studies have addressed the problem of the location
of UAVs for scenarios where communication is interrupted.
For example, in [5], UAVs are used to provide communi-
cation between emergency services and victims. It studies
two PSC scenarios in large and small scale to optimize the
deployment of UAVs, maximizing throughput in the net-
work with signal-interference ratio restrictions. A brute force
search technique is used to solve the problem. This same
technique is also at work in [15], where a device-to-device
(D2D) communication system is proposed and assisted by a
UAV. The UAV is deployed to aid communication between
the base station (EB) and a terminal device (DT). The UAV is
sent to an optimal position to maximize the data rate between
the EB and the DT. However, brute force algorithms are
time-costly due to the necessary evaluation of all potential
locations for the UAVs. Particularly in scenarios where lack
of connectivity compromises human lives, time is of the
essence.

In [16] the optimal deployment of UAVs is used to create
an aerial wireless network. UAVs are used to maximize
network coverage. A GA with a generational population
model (GAG) and a Hill Climbing Algorithm (HCA) are
combined to find the optimal locations of UAVs. The GAG
finds global locations of the UAVs, while the HCA is used
as a complement to the local search of the positions found
by GAG. However, executing the combination of the two
techniques has a high computational cost.

Some studies address the problem of optimal positioning
of UAVs in contexts other than emergencies. For example,
in [17] a UAV is used to meet the required needs of land
users in a given area. The objective is to find the optimal
location for the UAV in order to minimize the total power of
transmission required. It is based on the Facility Location
Problem (FLP) used to find the optimal locations of the
UAVs. The Optimal Transport Theory (OTT) is applied
to the locations found, to verify that the UAVs’ locations
minimize the total transmission power; otherwise, the FLP
is applied again until the objective is achieved. The OTT is
a powerful mathematical framework of probability theory.
However, applying it to NP-Hard type problems is not
appropriate, since it is too time-inefficient. In [18] UAVs are
used to improve the capabilities of the wireless network. The

objective is to find positions for the UAVs that can maximize
coverage of the downlink with a minimum transmission
power. This study developed a deterministic method for the
optimal deployment of UAVs, based on a classic optimization
problem called Circle Packing. However, when the number
of UAVs increases, the developed method may not solve the
problem in a reasonably fast time, due to the increase in
computational complexity. The study [19] uses UAVs as relay
nodes to improve network connectivity and communications
system performance. UAVs should be optimally positioned
to improve the worst connection in the network and improve
overall performance between equipment. The Particle Swarm
Optimization (PSO) algorithm is used to locate the optimal
locations for the UAVs. However, PSO easily falls into local
optima in spaces of high dimensionality.

This paper contributes to state-of-the-art with an opti-
mization model based on two representations of a GA that
allows locating UAVs in disaster zones. We developed a GA
with a steady-state population model (GAE) to find those
optimal locations for the UAVs in order to maximize network
coverage. The GAE processes only a part of its population
with the selection, crossing and mutation operators. This
makes the cost in time to be less than the cost of algorithms
such as brute force, PSO, HCA or GAG. Remember that
reducing the time to find a solution is a priority in emergency
scenarios. Unlike the works of [16], [18], Quality of Service
(QoS) is considered in this study to provide voice services.
This requirement is fundamental in emergency scenarios
because communication must be guaranteed. In this research,
QoS is considered in terms of the Signal-to-Interference
Ratio (SIR).

This paper is organized as follows: Section 2 shows an
overview of GAs. Section 3 describes the system model.
Section 4 describes the proposed algorithm for UAVs’ place-
ment. Section 5 shows the achieved experiments and results.
Finally, in Section 6 the conclusions are provided.

II. OVERVIEW OF GENETIC ALGORITHM

A GA is a classic evolutionary algorithm that uses tech-
niques inspired by natural evolution [13]. Evolution occurs
through natural selection and reproduction; they are essential
processes that improve the survival capabilities of the fittest.
The individuals that best adapt to the environment are the
ones that survive the most and reproduce the most.

GAs belong to the class of population-based metaheuristic
algorithms that improve solutions through iterative processes
[12]. The population is formed by a set of potential solutions,
called individuals. Individuals that are most likely to generate
offspring are usually the individuals that are best adapted to
the environment. To generate offspring, some individuals are
selected to evolve and reproduce; this is achieved by applying
crossing and mutation strategies. Several components, such
as coding of solutions (representation), the objective func-
tion (FO), population initialization, selection mechanism of
individuals and variations of reproduction operators (cross-
ing and mutation) influence the GA search process. It is
necessary to specify each component to implement a GA.
Additionally, to stop the algorithm, a stop condition must be
provided. The simple GA is shown in Algorithm 1.

The simple genetic algorithm starts by creating a popu-
lation of individuals in a random way (STEP 1). In STEP
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Algorithm 1: Simple genetic algorithm

1 Initialize population;
2 Evaluate each individual in the population;
3 while Stop condition=True do
4 Select parents;
5 Recombine pairs of parents;
6 Mutate resulting offspring;
7 Evaluate new individuals;
8 Replace individuals with the new generation created;
9 end

2, each of the individuals is evaluated in the FO. In STEP
4, the individuals that will be mated are selected. These
individuals are called parents. To carry out this process, a
selection operator is used. Once the parents are selected, the
crossover operating factor is executed in STEP 5. A recombi-
nation probability is necessary to obtain the offspring, which
indicates if the strings recombine or not. If the recombination
must take place, the corresponding operation is applied given
the representation.

Then, in STEP 6, the resulting offspring mutate given
a representation. This process occurs if a probability of
mutation is fulfilled. In STEP 7, the offspring are evaluated
in the FO. Finally, in STEP 8, parents are replaced by
their offspring. The processes between STEPS 4 and 8 are
executed while the stop condition is true. This stop condition
can be defined by the maximum number of generations, the
execution time, the error rate and even the optimal solution
(if known).

The GA has two different models of population man-
agement: the generational model and the steady-state model
[13]. In the generational model, the offspring are the same
size as the population, so that each generation is replaced
in its entirety by the offspring. In this way, each individual
only exists in a single generation of GA. In contrast, in the
steady-state population model, the population is not modified
in its entirety, but rather only a part of it is replaced.
Thus the offspring are superimposed on the population. In
particular, the steady-state population model was introduced
by Whitley’s GENITOR algorithm [20]. In the steady-state
population model, the idea of iteratively reproducing one or
two new descendants and inserting them directly into the
initial population means that there are not generations but
cycles.

III. SYSTEM MODEL

Figure 1 represents a natural disaster, such as an earth-
quake, tsunami or hurricane. This illustrates the area where
communication is interrupted in its entirety. The emergency
services have some UAVs that can be used as air base stations
to maintain connectivity between victims and emergency
personnel. To be able to maximize the coverage of the
UAVs, they must be deployed in optimized locations. Once
the optimized locations are found, the UAVs are quickly
deployed in the affected area. UAVs function as an LTE
access point, which allows information to be routed through
the network. It is expected that LTE technology will become
the broadband system of the PSCs [6].

Fig. 1: Typical scenario after a natural disaster

Figure 2 illustrates the scenario in which the simulation is
developed. The area affected by the natural disaster is repre-
sented by a two-dimensional area limited by [−Xmax, Xmax]
and [−Ymax, Ymax], with origin in (0, 0). A set of mobile
users {MU1,MU2, · · · ,MUn}, are located within the area,
each mobile user is represented by a Cartesian coordinate
(Xn, Yn), where n is the index of the mobile user. A set of
UAVs {U1, U2, · · · , Um} must provide service to the area,
their positions are Cartesian coordinates (Xm, Ym), where
m is the index of the UAVs.

Fig. 2: Simulation scenario

A. Objective function

The FO is a mathematical function that evaluates a can-
didate solution (individual). The optimized locations of the
UAVs that provide the maximal network coverage C, is given
by:

Maximize C = V/N (1)

where V is the number of mobile users covered by the set of
UAVs {U1, U2, · · · , Um} and N is the total of mobile users
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within the affected area (N 6= 0). For example, having a
total of 300 mobile users (N) and the UAVs only serve 180
mobile users (V ), then C = 180

300 = 0.6, the value obtained
is the coverage offered by the UAVs, that is, the candidate
solution’s measure of fitness. The optimal value is 1, which
means that 100% of the population is covered.

B. Restrictions

This paper analyzes the downlink and considers mobile
users that transmit on the same channel at the same time as
interfering transmitters. The downlink refers to the analysis
performed on the transmitted signal from an Um to a MUn.

A propagation model predicts the loss suffered by the sig-
nal when the transmission channel sends it. This study uses a
Hata propagation model for urban areas. Other studies such
as [21] show that this propagation model makes predictions
with a margin of error of less than 10 dB with respect to
the real values of a communications network for frequencies
of operation fc of 700 MHz. The proposed emergency LTE
network uses this frequency. Therefore, the path loss Lpnm
of the signal between a MUn and a Um is given by:

Lpnm(dB) = A+B log10(dnm) (2)

where A and B are constant values calculated in [22], and
are based on fc and the heights of Um and MUn. dnm is
the Euclidean distance between the Um and MUn.

This study considers the QoS based on the SIR in dB,
which indicates how much interference is perceived by a
MUn when a set of mobile users is using the same channel.
Figure 3 shows the calculation of the SIR in the MU1 of
a UAV that makes up the system, U1, where the interfering
MUs are those that are using the same transmission channel
as the MU1. The SIR guarantees a successful voice trans-
mission. So, the SIR in a MUn can be expressed by:

SIRn = (Ptx/ld
δ)/(

∑
k∈ϕ

Pk/id(k, n)
δ)) (3)

where Ptx is the transmission power of the Um. δ is the
attenuation factor that the signal suffers and takes a value
between 2 and 4. Pk is the transmission power of the MU
interfering k, MUk. ld is the distance between Um and
MUn. id is the distance between MUk to MUn. ϕ is the set
of the MUk using the same channel. k refers to the index
of interfering transmitters that have been assigned the same
channel.

Then, in order to consider that a MUn is covered by a
Um, it must comply with the following restrictions:

MUn = 0 (4)

Rm ≤ 2000m (5)

Lpnm < 120dB (6)

SIRn ≥ 3dB (7)

The restriction in (4) ensures that a MUn is only associ-
ated to an Um. If a MUn has a value of zero, it means that
it is not associated with any Um. On the contrary, if it has a
value greater than zero, it indicates that the MUn is already
associated with an Um. Inequality (5) guarantees that the
MUn is within the Rm radius of coverage of the Um. The
restriction in (6) indicates the pathloss between a MUn and

Fig. 3: Calculation of the SIR in a mobile user

an Um. The threshold value of Rm and Lpnm are derived
from characterization to reduce interference for a defined
area of 10,000,000 m2. The restriction in (7) guarantees a
successful voice transmission.

IV. PROPOSED ALGORITHM FOR UAVS PLACEMENT

For an efficient deployment of a set of UAVs
{U1, U2, · · · , Um}, the GAE, proposed in [23], is applied,
where a tournament selection is used to select two parents.
Then, two offspring are created, and following that, the two
best individuals of the two parents and the two offspring are
reintroduced into the population. The deployment of UAVs
to optimal locations in this paper is proposed by means of
two representations of the GAE: binary GAE (GAEB) and
floating-point GAE (GAEF).

The process followed by the GAEB and GAEF for the
deployment of UAVs in optimal locations is shown in Algo-
rithm 2.

Algorithm 2: GAEB and GAEF algorithm
Require: total number of mobile users (N ), total number

of UAVs (M ), population size (P ), recombination
probability (Pc), mutation probability (Pm) and total
number of cycles (Tc).

Ensure: Maximum coverage (C)
1: Randomly generate the positions of N
2: Randomly initialize P
3: while number of cycles < Tc do
4: Select two parents using a tournament selection
5: Crossover parents by using two-points
6: Mutate the resulting offspring
7: Evaluate new individuals in (1)
8: Select the two best individuals of the two parents

and the two offspring. Name these two best
individuals as M1 and M2 respectively

9: Replace the two parents with the M1 and M2

individuals
10: Keep the most suitable individual in the population
11: end while
12: Select the most suitable individual of the total number

of cycles Tc

In STEP 1, the scenario is created by locating N mobile
users in the area affected by the disaster. Then in STEP 2,
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Fig. 4: Codification of individuals ip of the GAEB

Fig. 5: Codification of individuals ip of the GAEF

the size P population is generated randomly and is made up
of a set of individuals {i1, i2, · · · , ip}, where p is the index
of the individual. Each ip individual represents a candidate
solution to the problem.

An ip for the GAEB is composed of two vectors (see
Figure 4). The first is a binary vector where a bit with value
1, denotes that the m − th UAV is selected and a bit with
value 0 means that it is not. The second vector has different
UAV positions in Cartesian Coordinates Um = (Xm, Ym).
Each individual of the population has different positions of
the Um. In the case of the GAEF, each ip contains a different
combination of Um positions and their coding as shown in
Figure 5. Once the population is initialized, in STEP 4 the
tournament selection operator is applied (tournament size T
= 2). The process begins by randomly selecting two ip of
the population; the one with the best fitness will be the first
father P1. The same process is repeated to assess the second
father P2. In order to obtain the fitness of the competitors
of the tournament, the individual must be evaluated in the
FO described in (1). The process that must be followed to
evaluate the individuals in the FO is shown in Algorithm 3.
This process starts by verifying that the m−th position of the
binary vector of the individual ip is selected (bit = 1) for the
GAEB case. If this is fulfilled, it is verified that the n−th MU
is not associated with any Um. This is MUn = 0. If this is
fulfilled, we continue to calculate the Euclidean distance dnm
between MUn and Um. If dnm complies with the constraint
of (5), then we must calculate the pathloss Lpnm. If Lpnm
satisfies the condition from (6), then we proceed to calculate
the SIR of the MUn. If the signal to interference ratio SIRn
of the MUn complies with the constraint of (7), then the
MUn is associated with the Um. To finish the process, the
MUn that were covered by the Um of the individual ip are
added to obtain the value of V , and the fitness of the selected
ip individual is calculated.

Once the parents are selected, STEP 5 is applied, where
the parents create two new individuals called offspring. A
2-point crossover operator [13] is used for the GAEB case
while the arithmetic crossover operator is used for the GAEF
[13]. In STEP 6, a bit-flip mutation operator is applied for
the GAEB [13]. In the case of GAEF, the MPTM mutation
operator is applied [24].

As indicated in STEP 7, the new offspring are evaluated,
under the procedure of Algorithm 2. Then, in STEP 8, the
fitness of the two parents and the two offspring is compared,
and the two individuals with the highest fitness are selected.
These are called M1 and M2. In STEP 9, the vectors of

Algorithm 3: Evaluation of individuals in the FO
Require: total number of mobile users (N ), total number

of UAVs (M )
Ensure: Maximum coverage (C)

1: m = 0
2: while m < M do
3: n = 0 {For the GAEF go to STEP 5}
4: if Um = 1 then
5: while n < N do
6: if MUn = 0 then
7: Compute Euclidian distance dnm between

Um and MUn
8: if dnm ≤ 2 then
9: Compute pathloss Lpnm

10: if Lpnm < 120dB then
11: Compute SIR of the MUn
12: if SIRn ≥ 3dB then
13: Associate MUn to Um
14: end if
15: end if
16: end if
17: end if
18: n = n+ 1
19: end while
20: end if
21: Add associated MUn
22: m = m+ 1
23: end while
24: Return C

parents P1 and P2 are replaced by vectors M1 and M2,
respectively. In STEP 10, the most suitable individual in the
population is searched and saved. The process is repeated
until the stop condition is met. In this case, the total number
of cycles Tc is used. When the number of cycles is met, the
solution to the problem is the individual with the highest
fitness of the total number of cycles Tc. This solution
contains the optimal locations for the UAVs.

V. SIMULATION RESULTS

The experiments in this study were carried out using
GAEB and GAEF. The purpose was to determine which
genetic coding representation is most efficiently positioned
UAVs in disaster zones. The experiments were divided into
two cases:
• Case 1. The worst-case scenario. Here, each UAV had

only one transmission channel to provide connectivity
to mobile users.

• Case 2. The best-case scenario. The UAVs were as-
signed more resources; i.e., they had more than one
transmission channel to serve affected mobile users.

In both cases, each experiment was executed 50 times to
show which representation was the best one statistically.

For Case 1, the worst-case scenario, each UAV has one
transmission channel, and there are a total of 500 mobile
users within the affected area (N=500). The name of each
experiment is listed in Table I, first column. The names
include a capital letter and an underscore symbol, along with
the type of representation (GAEB or GAEF) applied. The
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capital letter represents the mobile user configuration, that
is, the number of UAVs deployed and the size of the service
area. In the second column of the table is the number of
UAVs used, represented by M . The third column indicates
the size of the service area.

TABLE I: Case 1, worst-case scenario

Experiment Total num-
ber of UAVs
(M )

Area (m2)

A GAEB 5 10,000,000

A GAEF 5 10,000,000

B GAEB 10 10,000,000

B GAEF 10 10,000,000

C GAEB 5 1,000,000

C GAEF 5 1,000,000

D GAEB 10 1,000,000

D GAEF 10 1,000,000

For Case 2, the best-case scenario, each UAV had five
transmission channels and there were a total of 500 mobile
users within the affected area (N=500). Table II shows the
name of the experiment, the total number of UAVs used (M ),
and the size of the service area.

TABLE II: Case 2, best-case scenario

Experiment Total num-
ber of UAVs
(M )

Area (m2)

E GAEB 5 10,000,000

E GAEF 5 10,000,000

F GAEB 10 10,000,000

F GAEF 10 10,000,000

G GAEB 5 1,000,000

G GAEF 5 1,000,000

H GAEB 10 1,000,000

H GAEF 10 1,000,000

Table III shows the best parameter selection for running
the GAEB and GAEF algorithms. The size of the initial
population directly affects the production and diversity of
individuals, therefore, P = 100. The stop criteria for both
algorithms is 1000 iterations (Tc = 1000 in Algorithm 2).

Table IV shows the values used to design the emergency
network. The transmission power of a mobile user is PTn
while the transmission power of each UAV is PTm, the
suggested values in [6] were used. We carried out preliminary
tests to set heights for each Um and MUn; therefore, the
values shown in Table IV for these parameters are the ones
which led to lower path-losses. The frequency fc has a value

TABLE III: Parameters used for GAEB and GAEF

Parameter GAEB GAEF
Selection Tournament Tournament
Crossover Two-points Arithmetic
Mutation Bit flip MPTM
Crossover
probability
Pc

0.5 0.7

Mutation
probability
Pm

0.1 0.1

Population
size P

100 100

Number of
cycles Tc

1000 1000

which is expected to be used by the PSC to provide LTE
broadband communication [6].

TABLE IV: Parameters used in the emergency LTE mobile
network

Parameter Values
MUn transmit power PTn 24 dBm
Um transmit power PTm 73 dBm
Altitude of Um 150 m
Height of MUn 1.5 m
Frequency fc 700 MHz

In the experiments, for a service area of 10,000,000
m2, the restrictions of (5) and (6) were satisfied using the
restriction values shown in these equations; i.e., Rm < 2000
m and Lpnm < 120 dB. However, any change to the service
area must be followed by a detailed interference analysis
to provide the best values. For example, for a service area
of 1,000,000 m2, the new restriction values will be Rm <
250 m and Lpnm < 90 dB.

Table V shows the performed experiments for Case 1 using
GAEB and GAEF. Each experiment was executed 50 times to
obtain statistical values. For each experiment, the best and
worst solutions found in both coding representations were
reported. All the solutions provided good results. However,
as expected, the best solutions are those that locate the
UAVs closest to the optimal position, thus providing the best
coverage. This table shows that in all the cases, the statistical
distribution of solutions has a small standard deviation from
the average, indicating that, most of the time, the solutions
will be very close to the optimal increasing the coverage.

Table V shows that as the number of UAVs increases, the
number of mobile users that can be covered also increases.
This is demonstrated by “average fitness” of each experi-
ment: B GAEB, B GAEF , D GAEB, and D GAEF .
Therefore, the more UAVs deployed, the more mobile users
can have connectivity. It is also observed that the aver-
age fitness obtained by the GAEB (A GAEB, B GAEB,
C GAEB, and D GAEB) is better than that obtained
by the GAEF (A GAEF , B GAEF , C GAEF , and
D GAEF ). Furthermore, in smaller areas (1,000,000 m2)
better solutions were obtained than in the experiments carried
out in large areas of 10,000,000 m2. For example, average
fitness reported in experiments C GAEB (1,000,000 m2

and M=5) and C GAEF (1,000,000 m2 and M=5) is better
than average fitness in experiments A GAEB (10,000,000
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TABLE V: Case 1. Worst-case scenario results. Experiments
using GAEB and GAEF to test the performance of both
methods. GAEB provided the best results.

Experiment Best solu-
tion found

Worst solu-
tion found

Average Standard de-
viation

A GAEB 0.414 0.352 0.382 0.012

A GAEF 0.408 0.358 0.378 0.011

B GAEB 0.696 0.572 0.627 0.022

B GAEF 0.622 0.546 0.575 0.016

C GAEB 0.438 0.376 0.408 0.013

C GAEF 0.424 0.380 0.402 0.010

D GAEB 0.696 0.610 0.657 0.020

D GAEF 0.674 0.572 0.610 0.020

m2 and M=5) and A GAEF (10,000,000 m2 and M=5).
This observation is also true for average fitness in D GAEB
(1,000,000 m2 and M=10) and D GAEF (1,000,000 m2

and M=10) vs. B GAEB (10,000,000 m2 and M=10) and
B GAEF (10,000,000 m2 and M=10). This is because in
a smaller area more users can be covered by the UAV.

Table VI reports the average execution time of the ex-
periments considering the worst-case scenario. As is shown,
the smaller the area in which UAVs are located, the longer
it takes for the GAEB and the GAEF to execute. Take, for
example, experiments that have the same number of UAVs
to deploy, such as C GAEB and C GAEF vs. A GAEB
and A GAEF . C GAEB and C GAEF have higher av-
erage execution time than A GAEB and A GAEF . The
same is shown in experiments D GAEB and D GAEF vs.
B GAEB and B GAEF . Average execution time is higher
in experiments D GAEB and D GAEF than experiments
B GAEB and B GAEF . This indicates that there is a
relationship between execution time and the extension of the
area where the UAVs are to be located.

TABLE VI: Case 1. Execution times for the worst-case
scenarios

Experiment Average ex-
ecution time
(s)

Total num-
ber of UAVs
(M )

Area (m2)

A GAEB 184.8 5 10,000,000

A GAEF 188.4 5 10,000,000

B GAEB 269.4 10 10,000,000

B GAEF 235.8 10 10,000,000

C GAEB 210 5 1,000,000

C GAEF 211.8 5 1,000,000

D GAEB 290.4 10 1,000,000

D GAEF 276.6 10 1,000,000

Figure 6 shows the convergence of the “best solution

found” as reported in Table V. When compared with one
another, the experiments that execute the GAEB are shown
to generate more improvements as the number of iterations
increase. In contrast, the experiments executing the GAEF
have fewer improvements or none as the number of iterations
increase. This suggests that experiments executing GAEF got
stuck in local maxima and they will require a mechanism
to escape from traps and more cycles to improve their
performances. In a GAEF, the UAVs’ locations change by
very small margins as compared to those of GAEB.

Table VII shows the performed experiments for Case 2;
i.e. the best-case scenario with five transmission channels per
UAV. To obtain statistical values, each experiment was run
50 times and the best and worst solutions for each scenario
were recorded. Then the average values and standard devi-
ation were calculated for each case. In general, the average
solution is considered a very good solution because the UAVs
were located very close to the optimal places. The standard
deviation for all the experiments is very low, indicating that,
most of the time, the algorithms obtain solutions very close
to the optimal.

TABLE VII: Case 2. Best-case scenario results. Experiments
using GAEB and GAEF to test the performance of both
methods. GAEB provided the best results.

Experiment Best solu-
tion found

Worst solu-
tion found

Average Standard de-
viation

E GAEB 0.450 0.388 0.425 0.015

E GAEF 0.442 0.398 0.421 0.010

F GAEB 0.730 0.632 0.686 0.020

F GAEF 0.670 0.578 0.622 0.018

G GAEB 0.498 0.428 0.452 0.017

G GAEF 0.472 0.438 0.454 0.009

H GAEB 0.786 0.660 0.722 0.028

H GAEF 0.722 0.616 0.671 0.021

Table VII shows that suitability of the solutions improves
when the number of transmission channels per UAV in-
creases, as compared to the solutions reported in Table V
from Case 1, worst-case scenario (one transmission channel
per UAV). This happens because mobile users are distributed
among the assigned channels, causing less interference,
which in turn allows more mobile users to link with the
UAVs. Therefore, there is a relationship between the number
of assigned channels and the coverage delivered: the more
channels assigned, the greater the number of services that
can be provided. It should also be noted that, in smaller
areas (1,000,000 m2) better solutions are obtained than in
large areas (10,000,000 m2). For example, consider the ex-
periments with the same number of UAVs but different area
sizes in which to deploy them: G GAEB and G GAEF vs.
E GAEB and E GAEF . Average fitness in experiments
G GAEB (1,000,000 m2) and G GAEF (1,000,000 m2)
is better than average fitness in experiments E GAEB
(10,000,000 m2) and E GAEF (10,000,000 m2). Similarly,
average fitness in experiments H GAEB (1,000,000 m2)
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Fig. 6: Convergence of the “best solution found”. (a):
A GAEB vs. A GAEF , (b): B GAEB vs. B GAEF ,
(c): C GAEB vs. C GAEF , (d): D GAEB vs.
D GAEF

and H GAEF (1,000,000 m2) is better than average fitness
in experiments F GAEB (10,000,000 m2) and F GAEF
(10,000,000 m2). This is an expected performance given
that, in a smaller area, more mobile users are covered with
the UAVs that are in place. In general, the average fitness
obtained by the GAEB (experiments E GAEB, F GAEB,
G GAEB and H GAEB) is better than that obtained by

the GAEF (experiments E GAEF , F GAEF , G GAEF
and H GAEF ).

Table VIII shows the average execution time of the GAEB
and GAEF when testing the experiments of Case 2, best-case
scenario. Just as in Case 1, it can be seen that the smaller the
area in which the UAVs are located, the longer the GAEB
and the GAEF take to execute. For example, experiments
G GAEB and G GAEF (both with 1,000,000 m2 and
M=5) have higher average execution times than experiments
E GAEB and E GAEF (both with 10,000,000 m2 and
M=5). Likewise, experiments H GAEB and H GAEF
(both with 1,000,000 m2 and M=10) have higher average
execution times than experiments F GAEB and F GAEF
(both with 10,000,000 m2 and M=10).

TABLE VIII: Case 2. Execution times for the best-case
scenario

Experiment Average ex-
ecution time
(s)

Total num-
ber of UAVs
(M )

Area (m2)

E GAEB 98.4 5 10,000,000

E GAEF 105.6 5 10,000,000

F GAEB 142.8 10 10,000,000

F GAEF 141.6 10 10,000,000

G GAEB 107.4 5 1,000,000

G GAEF 112.2 5 1,000,000

H GAEB 156.6 10 1,000,000

H GAEF 159.6 10 1,000,000

Figure 7 illustrates the convergence of the “best solution
found” as reported in Table VII. The experiments executing
the GAEB generate more improvements as the number of
iterations increase. Contrasting Figures 6 and 7, we observe
that the number of channels per UAV was a factor that
helped the experiments executing the GAEF to generate more
improvements as the number of iterations increased. Even
though the number of channels per UAV affect the fitness of
GAEF, the UAVs’ locations still change to a lesser degree
than a GAEB. Similar to the findings in Figure 6, in a GAEF,
a mechanism to escape from local traps and more iterations
are required to improve its fitness. This fact is independent
of the number of channels, number of UAVs and size of the
area.

To verify the quality of our solutions, we carried out
other experiments in order to compare our results with those
reported in [11]. The authors in [11] showed that 8 base
stations can serve up to 698 mobile users in a service area of
1,000,000 m2. Even though the context of [11] differs from
this research, that is, UAVs were not used as base stations and
were not studied in emergency situation, it is referenced here
to measure the quality of the solutions of this proposal. Then,
we performed the experiments I GAEB and I GAEF
for Case 1, worst-case scenario (one transmission channel).
In contrast, the experiments J GAEB and J GAEF are
for Case 2, best-case scenario (five transmission channels).
Each experiment was executed 50 times; the 698 mobile
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Fig. 7: Convergence of the “best solution found”. (a):
E GAEB vs. E GAEF , (b): F GAEB vs. F GAEF ,
(c): G GAEB vs. G GAEF , (d): H GAEB vs.
H GAEF

users locations were kept fixed within the affected area
and each individual (candidate solution) has different eight
UAVs locations. The parameter values for the emergency
LTE mobile network are specified in Table IV for GAEF
and GAEB. Table IX shows the results of the experiments.

Our algorithm covers on average more than 40% of mobile
users as in the experiments I GAEB and I GAEF show in

TABLE IX: Results obtained by Case 1 and Case 2

Experiment Best solu-
tion found

Worst solu-
tion found

Average Standard de-
viation

I GAEB 0.450 0.388 0.425 0.016
I GAEF 0.442 0.398 0.421 0.017
J GAEB 0.730 0.632 0.686 0.016

J GAEF 0.670 0.578 0.622 0.018

Table IX. Increasing the channels to five, as in the J GAEB
and J GAEF experiments in Table IX, covers on average
more than 60% of the 698 mobile users. This suggests that
the main factor that helps UAVs to improve coverage is
the number of channels. From Table IX we observe that
the GAEB (experiments I GAEB and J GAEB) obtains
better solutions than the GAEF (experiments I GAEF and
J GAEF ).

The “best solution found” for I GAEB and I GAEF
experiments reported in Table IX, is the best deployment of
the eight UAVs to cover the maximum number of mobile
users (see Figure 8). In contrast, Figure 9 shows the “best
solution found” (or the best deployment of the eight UAVs)
for J GAEB and J GAEF reported in Table IX. In
Figures 8 and 9, the eight UAVs are symbolized by big
squares in different colors while the small squares paired with
a number are colored in the same color as the UAVs; these
represent the mobile users to whom the UAV provides a voice
service. The red squares are mobile users who could not be
considered because they did not comply with the restrictions.
Contrasting deployments in Figures 8 and 9, we observe
more complete circle patterns when the GAEB is applied,
that is, in I GAEB and J GAEB. Irregular circle patterns
are observed when GAEF is applied, as in I GAEF and
J GAEF . This observation confirms that when the GAEF
is used, it leads to small changes in where the UAVs are
located.

VI. CONCLUSION AND FUTURE WORK

This research contributes to the state-of-the-art in meta-
heuristics in the identification of optimal locations to which
a limited number of UAVs can be deployed to provide
communication in an LTE network to as many mobile users
as possible in an area where communications are interrupted
by a natural disaster. To do so, we developed an optimization
model based on a GA with a steady-state population using
two different representations: binary and floating-point. A
GA with a steady-state population model was chosen to
reduce execution time.

According to the results of this study, the worst-case
and the best-case scenarios, we conclude that the solutions
obtained by the GAEB are of better quality than the solutions
obtained by the GAEF.

The results suggest that the GAEF needs to execute more
iterations in order to improve it’s solutions. This is because
changes in UAVs locations are smaller compared to the
GAEB.

The more transmission channels and UAVs assigned to
an area, the more extensive the coverage achieved. This
is because mobile users can be better distributed among a
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(a)

(b)

Fig. 8: Deployments of the “best solution found”. (a):
I GAEB, (b): I GAEF

greater number of UAVs and channels, thus decreasing the
amount of interference in signal.

According to execution times reported in both cases of
study, there can be seen a relationship between the execution
time and the extent of the area in which the UAVs need to be
located: the smaller the area, the longer the execution time.
In a small area, users are more crowded which in turn makes
it more difficult for the algorithm to find the set of mobile
users who do not interfere with each other.

We also compared our results with cutting-edge results
from a related study in which the authors reported that 8 base
stations could serve 698 mobile users in the area of 1,000,000
m2. In this context, the GAEF and GAEB covered on average
more than 40% of mobile users considering the worst-case
scenario (Case 1). In contrast, the GAEF and GAEB covered
on average more than 60% of mobile users in the best-case
scenario (Case 2). These results indicate that the number of
channels is a crucial factor in improving coverage.

For future work, we plan to apply other types of bio-
inspired algorithms to improve the quality of the solutions.

(a)

(b)

Fig. 9: Deployments of the “best solution found”. (a):
J GAEB, (b): J GAEF

The restriction of intra-tier interference, which is the inter-
ference that mobile users receive from UAVs by reusing the
same frequencies, will also be integrated into this optimiza-
tion model.
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of Baja California, Tijuana, México, both in Computer Science, in 2000
and 2006 respectively. He has published papers about quantum computing,
evolutionary computation, Mediative Fuzzy Logic, Ant Colonies, type-
2 fuzzy systems, embedded systems, and mobile robotic. He works as
a researcher at the Centro de Investigación y Desarrollo de Tecnologı́a
Digital (CITEDI) from the Instituto Politécnico Nacional. His research
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