
 

 

Abstract— Second-order derivatives are used to obtain more 

information from the pixels in a magnetic resonance image. This 

information is the difference between the values of pixels, which 

is a factor in the measurement of the level of contrast in the 

image. This information is presented in the form of a histogram 

of second-order values, which expresses differences in pixel 

values caused by contrast between details in the image. The 

proposed method of contrast measurement utilizes a Laplace 

curve together with the histogram, both of which are generated 

with image data. The curve and histogram are used to determine 

a measurement quantity that expresses the level of contrast and 

the presence of details in the image. The measurement quantity, 

which is a score, describes the change of contrast in the image as 

contrast enhancement is applied. This score is compared with 

other established contrast scores that utilize data from an 

individual image, without comparison to another image. These 

other scores are average local contrast, root mean square 

contrast and Michelson contrast. The goal of the comparison is 

to determine the performance of the proposed score at detecting 

the occurrence of excessive gain as contrast enhancement is 

applied on an MRI image. Sample MRI images, including 

images from established databases, are used for the testing and 

comparison. The proposed score performs better than average 

local contrast and root mean square contrast and provides 

results that do not diverge as gain is increased. 

 
Index Terms—second-order derivatives, histograms, Laplace 

distribution curves, contrast measurement 

 

I. INTRODUCTION 

RI images provide information about the interiors of 

objects, such as the human body in the field of 

medicine. For the information to be presentable and useful, 

the MRI images must have sufficient levels of contrast among 

the image details. This contrast is improved with the use of 

contrast media and imaging techniques [1]. It can also be 

improved in post-processing [2]. In the case of post-

processing, the improvement in contrast is measured through 

the use of quantities such as the contrast-to-noise ratio [3]. 

This paper proposes a new quantity of contrast measurement 

through the use of the second-order derivatives of pixels in 

the MRI images. This contrast measurement is similar to 

measurements such as average local contrast, root mean 

square contrast and Michelson contrast, which use statistical 

calculations based on data in individual images. 

 

MRI images are generally presented as grayscale images. 

The differences between the gray values of pixels in the 

image provide the contrast that is needed to determine details 

in the image. The differences between the gray values of the 

pixels can be expressed by the second-order derivatives of 

each pixel and its neighbours. Second-order variables have 

been used for the analysis of MRI images, such as in texture 

analysis [4] and for noise reduction [5]. This paper proposes 

the use of second-order derivatives that are generated with the 

Laplacian operator for the calculation of a contrast score. 

The second-order derivatives are presented as histograms; 

the reason for this is described in the Methodology section. In 

order to differentiate these histograms from histograms of 

gray values, these histograms of second-order derivatives are 

henceforth referred to as “second-order histograms”. 

Research involving MRI images have utilized the profiles 

of histograms before. An example is the utilization of the 

curvature of intensity histograms of MRI images that have 

their contrast enhanced through brightness changes, in order 

to detect tumours [6]. In the case of the method that is 

proposed in this article, it utilizes the profile of the Laplace 

distribution curve together with the aforementioned second-

order histograms for the generation of a contrast score. 

II. METHODOLOGY OF CONTRAST MEASUREMENT 

A. Second-order Derivatives 

A 2-dimensional Laplacian operator with a 3 × 3 mask is 

used on every pixel to produce a second-order derivative [7]. 

In the case of pixels that are on the edges of the image, a 3 × 

2 or 2 × 3 mask is used, whichever appropriate. A 2 × 2 mask 

is used for pixels at the corners of the image. In these cases, 

the equation for the operator is changed to accommodate the 

masks. 

B. MRI Image Samples 

The development of the method uses a set of 150 MRI 

images drawn from multiple sources, including databases 

such as Radiopaedia and The Cancer Imaging Archives. The 

images are drawn from multiple sources for the purpose of 

diversity in the images that are used to test the proposed 

method. The tests utilize two means of changing the contrast 

of the images: applying gain on the images in progressive 

steps to produce additional images with different levels of 

contrast, and applying gray histogram equalization. The 
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samples also include images with labels and arrows to test the 

method’s response to the presence of detail markers.  

C. Laplace Distribution Profile 

 Figure 1(a) shows an example of an MRI image. Figure 

1(b) shows the second-order histogram of the image in Figure 

1(a). The profile of the histogram closely follows a Laplace 

distribution. Figure 1(b) also includes a Laplace curve. The 

curve is generated through Equation (1) using the standard 

deviation of the distribution of second-order derivative values 

of the pixels in the image. Equation (1) is as follows: 
 

𝑓(𝑥|𝜇, 𝑏) = 𝑁 (
1

2𝑏
𝑒𝑥𝑝 (−

|𝑥 − 𝜇|

𝑏
)) 

𝑏 =  
𝜎

20.5
 

(1) 

 

where x represents a second-order derivative value,  

f is the frequency of x in the image, b is the diversity variable, 

σ is the standard deviation of the second-order derivative,  

µ is the mean of the second-order derivatives, and  

N is the number of pixels in the image. 

 

The method uses the curve to calculate the variables that 

determine the contrast score. This is similar to the 

methodology in the technique that reduces noise by using 

histograms of second-order derivatives [8]. 

 

D. Hypothesis on the Utilization of the Second-order 

Histogram and Curve 

Research and development of image processing techniques 

includes the utilization of the comparisons of distribution 

curves and histogram profiles. For example, Lai et al. used 

Gaussian curves and histograms of gray values to enhance 

contrast of images [9]. There has also been the utilization of 

histograms that have the profile of a Laplace distribution 

function, such as the use of a Laplacian operator to produce a 

histogram that provides data on the edges of objects in an 

image [10]. 

The proposed method uses a Laplace curve on histograms 

of second-order derivatives. The hypothesis behind this is that 

the differences in the heights of the curve and the frequencies 

in the histogram profile represent a way to quantify the 

contrast of details in the image. The hypothesis further states 

that when an image has good contrast, the differences are 

small, such that the second-order histogram resembles the 

Laplace curve. 

Thus, the proposed method focuses on the regions in a 

second-order histogram where the curve has a height greater 

than the corresponding interval in the histogram profile. The 

method calculates the differences in the heights of the curve 

and the frequencies in the histogram profile with Equation 

(2). Figure 1(b) shows an example of xj and j. 

𝑥𝑗 = 𝑓𝑗 − ℎ𝑗 (2) 

 

where j is the second-order derivative in the histogram, 

fj is the frequency of j, 

hj is the height of the curve at the location of j, and 

xj is the difference between the frequency of j and the 

corresponding height of the curve hj. 

 

Equation (3) uses Equation (2) to calculate the contrast 

score that this article proposes. 

𝑆𝑝 =
1

𝑁
 ∑ (𝑥𝑗|(𝑥𝑗 < 0))

𝑚

𝑛

 (3) 

where xj and j have been described in Equation (2), 

N is the number of pixels in the image, 

m and n are the boundaries of the aforementioned range of j, 

and Sp is the proposed contrast score. 

 

The condition xj < 0 ensures that regions where the curve 

height is greater than the height of the corresponding 

histogram interval are selected for the score calculation. 

E. Problem Statement 

Contrast enhancement may lead to excessive increases or 

decreases in the values of a pixel, thus resulting in the loss of 

details in an image when the pixel values overflow. The 

contrast score for the image should indicate this loss of detail. 

There are established contrast scores such as root mean 

square contrast (RMSC), average local contrast score (ALC) 

and Michelson contrast (MC) that involve statistical 

calculations of the data from the image [11]. However, these 

contrast scores may not indicate the aforementioned losses. 

F. Contrast Scores Used for Comparison 

The following equations are used for comparisons against 

the proposed contrast score. Equation (4) shows the equation 

for RMSC. 

Frequency 

1140 

σ = 55 

0 

263 - 263 358 -373 2nd-order value, Δf 

Fig. 1(b): Second-order histogram of MRI image in Fig. 1(a) 

fj 

𝑥𝑗 = 𝑓𝑗 − ℎ𝑗 

Fig. 1(a): MRI image of an abdomen 
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𝑅𝑀𝑆𝐶 = √
1

𝑁
∑(𝑘𝑖 − 𝑘𝑎𝑣𝑔)

2
𝑁

𝑖=1

 (4) 

where i is the raster coordinate of a pixel, 

ki is its gray value, and 

kavg is the average gray value of all pixels in the image, and 

N is the number of pixels in the image. 

Equations (5) to (7) show the equations for ALC. 

𝐴𝐿𝐶 =  
1

𝑁
∑ 𝑙𝑐𝑖

𝑁

𝑖=1

 (5) 

 

𝑙𝑐𝑖 =
|𝐿𝑖 − 𝐿𝑖−1| + |𝐿𝑖 − 𝐿𝑖+1| + |𝐿𝑖 − 𝐿𝑖−𝑤| + |𝐿𝑖 − 𝐿𝑖+𝑤|

4
 (6) 

𝐿𝑖 = 100√(
𝑘𝑖

255
)

𝛾

 (7) 

where i is the raster coordinate of a pixel, 

N is in Equation (1), 

w is the width of the image, 

lci is the local contrast score for a pixel, 

Li is its perceptual luminance, 

γ is the gamma correction factor, which is set to 2.2 as per the 

suggestion of Matković et al [11], and 

i-w, i+w, i-1 and i+1 are the coordinates for other pixels that 

are adjacent to the current pixel in the cardinal directions. 

 

For parity with the other contrast scores, which uses data 

from every pixel in the image, the Michelson contrast score 

uses a 3×3 mask for the region of interest, applied on every 

pixel, and then averaged. Equation (8) shows the equation for 

averaged Michelson contrast (AMC): 

𝐴𝑀𝐶 =
1

𝑁
∑ (

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

)

𝑁

𝑖=1

 (8) 

where i is the raster coordinate of a pixel, 

Imax is the highest value among the neighbouring pixels in the 

3×3 region of interest centered on pixel i, 

Imin is the lowest value among the neighbouring pixels, and 

N is the number of pixels in the image. 

 

 These established contrast scores have been selected for 

comparisons against the proposed contrast score because of 

their capability for calculations using data from a single 

image alone, without reference to another image. 

G. Calculation of Excessive Gain 

After applying contrast enhancement, there may be pixels 

that have their values set to or increased beyond the 

maximum of the scale, e.g. 255 on grayscale, or set to or 

decreased below the minimum, e.g. 0 on grayscale. However, 

these pixels can only have a maximum gray value of 255, or 

a minimum of 0. Therefore, in the case of these pixels, they 

are marked as having lost detail due to excessive gain. The 

justification is that they are no longer distinguishable from 

other pixels that have values at the maximum or minimum. 

The methodology collects these pixels into a set E, as 

expressed by Equation (9). Equation (10) determines the 

extent of detail loss from excessive gain. 

 

  𝑒𝑖 = 𝑓(𝑜𝑖) (9) 

𝐸 = {𝑒𝑖 |((𝑒𝑖 ≥ 255) ∪ (𝑒𝑖 ≤ 0))⋀(0 < 𝑜𝑖 < 255)} 

 

𝑝 = |𝐸| 

𝑃 =
𝑝

𝑁
× 100% 

(10) 

 

where oi is the original value of the pixel, 

ei is the value of the pixel after contrast enhancement, 

E is the set that has ei pixels that fulfill the conditions of 

excessive gain as described above, 

p is the number of pixels that have excessive gain, 

N is the number of pixels in the image, and 

P is the percentage of pixels that have excessive gain. 

 

The methodology considers the occurrence of excessive 

gain as P in Equation (10) rising above 0%. 

H. Hypothesis Testing with Incremental Application of 

Gain 

The idea behind this test is that the first peaking of a score 

indicates the occurrence of excessive gain. After excessive 

gain has occurred, the contrast score should decrease to 

account for the loss of detail due to excessive gain. For a 

contrast score to be accurate, its first peaking should occur 

close to the occurrence of excessive gain. 

 

The methodology considers that the first peaking is the first 

maximum that the score achieves before decreasing. The 

testing uses the number of contrast increments between the 

occurrence of excessive gain and the first peaking of a score 

as the measurement for how accurately the score detects the 

occurrence excessive gain. 

 

The contrast increments are implemented through the 

application of gain. The gain that is applied on the images is 

expressed as a multiplication of the values of the pixels. For 

example, a gain of ×1.1 multiplies the original value of a pixel 

by a factor of 1.1, with the result being the new value of the 

pixel. To test the response of the contrast score to varying 

levels of contrast enhancement, the applied gain is 

implemented in a series of steps. In each step, the applied gain 

is incremented by + 0.1, up to a maximum of ×3.0. The 

contrast scores for the image are calculated for each step. 

I. Hypothesis Testing with Gray Histogram Equalization 

Histogram equalization of gray levels is an established 

category of methods to enhance contrast in an image. These 

methods make use of data that is already in an image, such as 

the maximum and minimum pixel values [12], so the contrast 

scores that are described in part F are appropriate because the 

scores, and the proposed score, make calculations using data 

that is already in the image. 

 

However, this contrast enhancement method can cause 

excessive gain too. Ideally, the contrast scores in part F and 

the proposed score should be able to detect this and hence 

decrease in order to indicate the loss of detail due to excessive 

gain. This test intends to measure their performance against 

each other. 

 

After subjecting the sample images that were described in 

part B to gray histogram equalization (henceforth called 
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“GHE” for ease of writing), the excessive gain in the resulting 

images and their contrast scores are calculated as well. Table 

I shows the types of results that may be had for each type of 

contrast score from the tests with GHE-applied images, and 

the classification of the results according to the goals of this 

test. 
 

III. RESULTS & DISCUSSION 

A. Example of Proposed Score Measurement 

Figure 2(a) shows a version of the image in Figure 1(a) 

with a gain of ×1.8. Figure 2(b) shows the second-order 

histogram of the image in Figure 2(a). The histogram in 

Figure 2(b) has a wider range of second-order derivatives 

than Figure 1(b), which is expected because the application 

of gain increases the differences between the values of the 

pixels. In the case of Figure 1(a), its proposed score Sp is 

0.8696. As for Figure 2(a), its Sp is 0.8684. Excessive gain 

has affected 0.007% of Figure 2(a). Consequently, the change 

in Sp is small, but the change is still a decrease.  

Figure 3(a) is a version of the image in Figure 3(a) with a 

gain of 3.0. Figure 3(b) is its second-order histogram. 

Excessive gain has affected 12.411% of 3(a). It has removed 

details such as the porosity in the bones and the borders 

between the layers of subcutaneous fat. The intervals in the 

histogram of Figure 3(b) also become less contiguous than 

Figure 1(b) and Figure 3(b). Since Equation (3) calculates the 

score using regions where the curve is higher than the 

histogram profile, a lower score is expected. Consequently, 

the proposed score of Figure 3(b) is 0.3416, which is lower 

than the score for Figure 1(a). The change in the score has 

accounted for the excessive gain in this case.  

B. Example of Hypothesis Test with Incremental 

Application of Gain 

Table II shows an example of the incremental gain 

application on the MRI image in Figure 1(a). There are 20 

increments; each row presents the results of an increment. 

However, several rows are omitted from in Table II for 

display convenience. Excessive gain begins in the image at a 

gain of ×1.8, as shown in Table II. 

The RMSC score continues to increase as the applied gain 

increases, i.e. it does not have a clear peaking. This happens 

regardless of how much excessive gain has affected the 

image. The ALC score achieves its first peak much later, at 

an applied gain of ×2.9. The AMC score achieve its first peak 

much earlier, at an applied gain of ×1.1. The first peak of the 

proposed score also achieves its first peak much earlier, 

specifically before gain is applied. 

C. Results from Test with Incremental Application of 

Gain 

Table III shows that the RMSC score performs poorly at 

detecting the occurrence of excessive gain because it 

continues to increase with applied gain for more than half of 

the sample images. The ALC score performs better than the 

RMSC score, but does not achieve peaking for some sample 

Fig. 2(a): Version of MRI Image in Fig. 1(a) with gain of ×1.8 

Frequency 

2
nd

-order value, Δf 

0 

σ = 99 

701 

433 - 433 648 -673 

Fig. 2(b): Second-order histogram of the image in Fig. 2(a) 
  

Fig. 3(a): Version of MRI image in Fig. 1(a) with gain of 3.0 
  

Frequency 

2
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-order value, Δf 
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616 - 616 1068 -996 

Fig. 3(b):  Second-order histogram of the image in Figure 3(a) 
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images. However, the AMC and the proposed scores do 

achieve peaking for all sample images. 

 

The ALC score performs better than the AMC and the 

proposed scores in a small number of images in detecting the 

occurrence of excessive gain. Across all the images, the 

proposed score peaks closer to the occurrence of excessive 

gain than the other scores, but at a slightly higher standard 

deviation than AMC. These results suggest that the proposed 

score has slightly better performance than the Michelson 

score at detecting the occurrence of excessive gain. 

D. Results of Testing with Histogram Equalization 

Table IV shows the results of this test, grouped according 

to the occurrence of excessive gain or its non-occurrence. The 

proposed score rarely express a result of type (iii), which is a 

false positive. However, it is the least effective at expressing 

results of type (i), which is a true positive. This means that 

the proposed score is a conservative score, e.g. an image tends 

to score lower on the scale of this contrast measurement score 

than it would on the scales of the other scores. 

In both tests, the proposed score does not show any 

noticeably different results for either MRI images with text 

and symbols or images without them. 

 

 

IV. CONCLUSION 

The method that is proposed in this article measures 

contrast in an image without using other images or local 

regions in the image as base comparisons, like ALC, RMC 

and AMC do. These measurement methods do not include the 

factor of human perception, which involves the observer’s 

subjectivity [13]. This paper compares the proposed score 

against the other scores, because it does not include this factor 

too. 

 

 As shown in the results of the tests that are described in 

this article, the contrast score of this method does not diverge 

as contrast enhancement is gradually increased, unlike ALC 

and RMC. The proposed score is conservative, more so than 

even AMC. Consequently, it detects the occurrence of 

excessive gain earlier than the other contrast scores, but at the 

cost of misidentifying contrast improvements that occurred 

without excessive gain. On the other hand, a more complex 

score could be developed through having traits of the other 

scores incorporated into the proposed score, so as to improve 

its performance. 

 

TABLE I  
TYPES OF CASES FOR A CONTRAST SCORE IN TESTS WITH GRAY HISTOGRAM-

EQUALIZED (GHE) IMAGES 

Case Type (i) (ii) (iii) (iv) 

Excessive 

Gain* 
No Yes Yes No 

Inferences 

on GHE 

GHE did 
not cause 

loss of 

detail. 

GHE 

caused loss 

of detail. 

GHE 

caused loss 

of detail. 

GHE did 
not cause 

loss of 

detail. 

Contrast 
Score 

Increase Decrease Increase Decrease 

Inferences 

on Contrast 

Score 

Contrast 

score 

correctly 
expressed 

positive 

outcome. 

Contrast 

score 

correctly 
expressed 

negative 

outcome. 

Contrast 
score failed 

to  express 

negative 

outcome. 

Contrast 
score failed 

to  express 

positive 

outcome. 

Result 
Class 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Desirable Yes Yes No No 

*Described in part II.G. 

 
 

TABLE II 
AVERAGED RESULTS ACROSS VERSIONS OF THE MRI IMAGE IN FIGURE 1(A) 

WITH DIFFERENT LEVELS OF APPLIED GAIN 

 

Gain 

applied 
ALC RMSC AMC 

Proposed 

score 

Excessive 
gain in 

image (%) 

Original 4.849 0.113 0.2955 0.8696 - 

× 1.1 5.115 0.124 0.2996 0.8693 0 
× 1.2 5.335 0.135 0.2990 0.8703 0 

… … … … … …. 

× 1.7* 6.355 0.192 0.2987 0.8698 0 
× 1.8 6.529 0.203 0.2979 0.8684 0.007 

× 1.9 6.718 0.214 0.2988 0.8514 0.036 

… … … … … …. 
× 2.7 7.629 0.288 0.2907 0.8622 6.684 

× 2.8 7.647 0.293 0.2880 0.8573 8.381 

× 2.9 7.669 0.297 0.2863 0.8027 10.630 

× 3.0 7.637 0.300 0.2815 0.3416 12.411 

*indicates increment before occurrence of excessive gain 

TABLE III 
AVERAGED RESULTS ON THE PERFORMANCE OF THE CONTRAST SCORES 

ACROSS 150 SAMPLE MRI IMAGES  

 ALC RMSC AMC 
Proposed 

score 

Percentage of images in 
which the score 

continues to increase 

without any peaking (%) 

12.00 56.67 0 0 

     

Average number of gain 

increments between 
occurrence of excessive 

gain and first peaking 

7.92 13.02 1.25 1.05 

     
Standard deviation of 

gain increments between 

occurrence of excessive 
gain and first peaking 

4.71 4.49 1.36 2.31 

     

Percentage of images in 
which the score is closer 

to the occurrence of 

excessive gain than the 
other scores (%) 

2.50 0 46.67 50.83 

 
TABLE IV 

PERCENTAGE OF IMAGES WHERE THE SCORES EXPRESSED RESULTS OF THE 

CORRESPONDING TYPES, ACROSS 150 SAMPLE GRAY HISTOGRAM 

EQUALIZED MRI IMAGES 

Excessive 

gain 

occurred 

Case 
Types* 

Percentage of images (%) 

ALC RMSC AMC 
Proposed 

score 

No 

True 
Positive 

82.26 87.10 27.42 4.84 

False 
Negative 

17.74 12.90 72.58 95.16 

Yes 

True 

Negative 
13.64 9.09 53.41 94.32 

False 
Positive 

86.36 90.91 46.59 5.68 

*Refer to Table I for the explanation of the case types.  
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